

Evolution of a new TeamConnection Family,
Common do's and don'ts

Document Number TR 29.2333

Lee Perlov

TeamConnection/CMVC Development
IBM Software Solutions

Research Triangle Park, North Carolina
Copyright (C) 1997 IBM

ii Evolution of TeamConnection Family

 ABSTRACT

TeamConnection families evolve over time. As the family matures, things tend to
change. New TeamConnection family administrators tend to do many similar things right
and wrong. This document traces the growth of a typical TeamConnection family and
reflects on these choices.

 ITIRC KEYWORDS
 � TeamConnection

 � family administration

 ABSTRACT iii

iv Evolution of TeamConnection Family

ABOUT THE AUTHOR

Lee R. Perlov
Mr. Perlov is a Staff Programmer in the TeamConnection/CMVC development group. He
started working for IBM in 1985 in Gaithersburg, Md, in the Federal Systems Division on
various projects for the United States intelligence community. He then moved to RTP to
work on library development and support.

Mr. Perlov received a B.S.Acc degree in Accounting from the University of Florida in
1983. He also completed two years of graduate work in the Department of Computer
Science at the University of Florida.

 ABOUT THE AUTHOR v

vi Evolution of TeamConnection Family

 Contents

Introduction 1
Goals 1

Good System Administration 1
Appropriate Processes 1

Small Family Planning 2
Large Family Planning 2

Creating the family 3
Create users 3
Create components 3
Create releases 4

Early bumps and bruises 5
Team members losing each other's changes 5

Solution 5
After about a week our family would not start 5

Solution 6
Some other problems and inconsistencies 6
Some good ideas 6
Mature system administration 7

Enhancing the development process 9
Adding to the process 9
Other changes 9

Taking full advantage of TeamConnection 11
Use TeamConnection builders 11

Zipbuild builder for OS/2 and Windows 11
TeamConnection build messages for zipbuild 12

Use what strings in text and output files 13
TeamConnection keywords in a text file 14
Using tcwhat to show TeamConnection keywords 14

Consolidating releases 14

Automation and future enhancements 15
Automated shutdown and backup 15

Simple shutdown script 15
Automated Startup 16

Startup script for Administrator login 16
Extractor Access Role 16
New User exits 16

New user notice 17
Other user exits we are considering 17

Open issues 17
TeamConnection is still growing 18

Conclusion 19

Appendix A. Bibliography 21
TeamConnection Publications 21

 Contents vii

Related Redbooks 21
Related Technical Reports 21

Appendix B. Copyrights, Trademarks and Service marks 23

viii Evolution of TeamConnection Family

 Introduction

The TeamConnection services team, one of the departments in our development group,
recently created a new TeamConnection family to store their documents, class materials,
tools, etc. It was created on Windows NT because there was an available machine.
Also, no experienced family administrator was readily available to manage the family. As
a result, this family provides an excellent example of what tends to happen as a new
family evolves.

 Goals
During my time in CMVC and TeamConnection development, I have helped many new
family administrators make important choices about their families. I have developed a
few guiding principles that I try to instill in new family administrators.

Good System Administration
Since a family is only as reliable as the system it runs on, you must have a good system
administrator. A good systems administrator does all of the following:

 System Maintenance
For reliable system behavior reboot regularly, at least weekly. Also, check the file
systems regularly to make sure that files that grow during normal system operations (e.g.
audit.log) are archived and pruned.

 Good Backup
Mistakes happen - be prepared. You need regular backup of your family and your
system, periodic archival of these backups, and testing of your recovery procedures. It
also helps to document the configuration.

Good Security Standards
Enforce reasonable security standards. You need to protect your data and the integrity of
TeamConnection processes. It is important to minimize the number of super users. In
particular, it is important to maintain tight control of root password in Unix and physical
system access in Windows NT and OS/2.

 Appropriate Processes
Don't overwhelm new users - start with simple processes. TeamConnection allows for
changes to processes at any point in the development cycle. Start with simple processes
so that users can get used to the new tool, then add to the processes as you get closer to
delivering your product (i.e. when the cost of a mistake increases).

Once your TeamConnection processes include defects/features and drivers,
TeamConnection is helping you deliver your product in a well defined, repeatable
manner, and you have a complete history of your changes. This is a mature process
configuration.

 Introduction 1

Small Family Planning
Most TeamConnection families are small families, or at least they start that way. Lots of
things will change over time. During the evolution of a new family, many things go right
and some tend to go wrong. This document is a chance to identify common mistakes and
opportunities. Just as important, it is a chance for new family administrators to feel a
little less alone making their decisions. Hopefully, my experience with a new family for
our services group will provide some suggestions that will minimize the difficulties asso-
ciated with learning new things and evolving.

Large Family Planning
In almost all cases, when you are populating a new TeamConnection family from a large
established codebase, you will take the time to do plenty of planning and preparation.
Usually, there is an experienced system administrator that can lend advice, and in many
cases an IBM consultant participates.

If anything, the biggest problem that occurs when setting up a new large family is that
too many of the available configuration options are used and the team members are over-
whelmed by the changes to the way they do work. Team members are asked to add new
steps to their development processes, without a clear understanding of the benefit.

The one case where overwhelming change is not a risk is when you are migrating a
family from CMVC to TeamConnection. CMVC family administrators can move their
existing processes and customization directly to TeamConnection. The primary chal-
lenges for these family administrators and users are taking advantage of the new capabili-
ties in TeamConnection and changes to the names of several objects. For example,
CMVC Tracks become TeamConnection Workareas. Overall, this group has the lowest
risk of "new family" problems of any new TeamConnection user group.

Even with planning, things can go wrong. Therefore, even family administrators for new
large TeamConnection families should find something useful in this document.

2 Evolution of TeamConnection Family

Creating the family

Your initial decisions when creating a family are crucial to the acceptance of configura-
tion management by the development team, and their opinion of TeamConnection as a
help or a hindrance to the development of their own product.

When you start setting up a new TeamConnection server, I recommend creating a
sandbox family. For example, we provide univwin to populate a TeamConnection family
on a Windows NT server. It creates objects, runs builds, and sets the security to none so
that anyone can play in the family. Even after you have your production family up and
running, you can come back to the sandbox whenever you need to try something new.
Also, univunix is available for Unix and univos2 for OS/2.

In the case of our services family, we already had lots of sandboxes and production fami-
lies available. After all, we are the developers of TeamConnection and we use it for our
own product development every day! So when we needed a family to store the materials
for our TeamConnection Administrator's Class and our TeamConnection Developer's
Class, we decided to create a new family and administer it ourselves.

The next step was to decide what operating system to use as the server for our family.
Since everyone in the services department travels with a Windows NT laptop that has the
TeamConnection Windows NT server installed, we picked an underutilized 150Mhz
Pentium PC running Windows NT Workstation 4.0.

One of our team members did the initial installation and setup. Here were the relevant
decisions and a few comments about them.

 Create users
Initially, we created every one of our users with super user authority. Since we are all
experts on TeamConnection, why not have all authority? While this arrangement could
easily work for us, it isn't what we recommend to customers when we provide consulting
services. We find this a very common mistake among new users of TeamConnection.
While it may provide faster startup, we recommend setting accesses to components prop-
erly in order to avoid future problems.

 Create components
Among the components created were three for our class materials. Since components are
used for defining processes, managing releases, managing defects and features and
assigning user access, we created one component for each class and another parent com-
ponent to group the classes together.

Some of the advantages of creating these components in our family were:

� We can assign user access for both classes from the commontraining_class com-
ponent.

� We can put parts that are unique to the "dev" or "admin" class in their own compo-
nent, and common parts in training_class.

� We can assign defects and features to the component for a specific class or to the
common component.

 Creating the family 3

� We can create unique releases for each class, with their own component processes
(e.g. defect/feature, design-size-review and verify).

� It is easy to change the components that owns parts, link releases and parts in
releases, and delete obsolete components. So, any decision we made could easily be
changed.

Some of the drawbacks to the decisions for our family were:

� There may be too few parts to justify keeping track of three components.
� Many or most of the parts may be common to the two classes, in which case we

would spend extra effort because we would need to create and use a workarea for
each release every time we modified a common part.

Initially, we chose the prototype process for our components. This meant that we
would not use any defects or features for creating and updating our parts.

 root

 |

other components ... + ... other components

 training_class

 |

 +------+------+

 | |

 admin_class dev_class

 Create releases
As I alluded to already, we decided to create one release for each class, each one in their
own component. Again, we selected the prototype process for our releases. Further, we
created only one workarea for each release and we all shared it. Since we were each
checking in unique parts, we didn't think any of the parts would be common across both
releases. This sounded like an easy and safe way to start.

The advantages of this arrangement in our family were:

� In TeamConnection, we only need to create and edit parts. We could set our compo-
nent, release and workarea in the GUI settings page and all of our changes could use
these defaults.

� We only needed to use one of the TeamConnection GUI dialogs, Parts.
� We could defer all other decisions about process until later.

The disadvantages of this arrangement for our family were:

� Whenever anyone wanted to create a new version of their part changes using
workarea -freeze, it versioned the changes for everyone using that workarea.

� We delayed committing our changes to the release, so we didn't really have a
baseline for our releases.

� We decided later that several parts would be common, so we had to reference both
releases when checking in changes.

All in all, it was a good choice.

4 Evolution of TeamConnection Family

Early bumps and bruises

When creating a new family, some things tend to be overlooked or put off until later.
Here are the problems we ran into with our services family, and what we did to correct
them. This is a chance for us to put our early problems in perspective and emphasize
how the simple actions we took can make these problems disappear.

Team members losing each other's changes
We started out sharing a workarea for each release. Also, we all had super user access.
As a result, it was easy to unlock a file when another team member had it checked out.
Finally, we weren't using defects and features, so we didn't keep any records of why we
were making our changes.

So, when it came time for us to edit each other's parts, we had some confusion and some
lost changes. This was only a minor problem, but it was an indication that our processes
needed to start "growing up".

 Solution
� Work in your own workareas

TeamConnection allows you to share changes between workareas using workarea

-refresh and part -link. Since it takes only a few seconds to create your own
workarea, it is not necessary to share workareas.

� Do not use super user accounts for normal development

A super user can circumvent the TeamConnection development processes you config-
ured to insure effective teamwork. In one case, after we added drivers to the
process, a super user inadvertently integrated a workarea directly into the release,
bypassing the driver and corrupting our release baseline.

In the case of our family, most of the members of the team are also TeamConnection
experts. As such, they want to keep a super user account. The best way to accom-
modate them is to remove super user access from their regular account, then create a
new super user account that they will use less frequently.

I always recommend that the login name reflect super user authority. So, I have a
super user account named "su_perlovl", whereas my regular account is "perlovl". I
use su_perlovl rarely to insure I am following the development process, as intended.

After about a week our family would not start
About a week after we created our services family, the family daemons crashed and
would not restart. One of the team members used an ObjectStore (the database used by
TeamConnection) tool to verify the integrity of the database, and the tool reported prob-
lems. He was afraid we had lost all of our work. However, after I rebooted the
Windows NT server everything worked fine.

 Early bumps and bruises 5

 Solution
 � Reboot regularly

An operating system like Windows NT needs to be rebooted regularly. Otherwise,
there is a degradation of performance and unexpected problems occur.

� Perform regular backups

If the database is corrupted by keeping TeamConnection running while the server is
experiencing severe problems, it may be necessary to restore from a backup. We try
to copy the family database to another file every night as an incremental backup, and
copy the entire directory structure to another directory weekly as a full backup.

� Perform vital records backups

What we call vital records backup is merely copying the files you have backed up to
another location. Choose somewhere far enough from your current server so that
they cannot both be damaged by the same event, such as a fire in your building.
One of the strengths of TeamConnection is that you can restore a backup onto any
server platform (i.e. AIX, HP-UX, Windows NT and OS/2), regardless of the current
server operating system. We copy our weekly backup to tape and have that tape sent
to another physical location weekly.

� Do not use a Windows NT Server as a desktop system when it is performing as a
server

Windows NT, while a multitasking operating system, can easily be slowed down by
an application running on the desktop. Also, these applications can hasten the need
to reboot. As a result, desktop applications tend to severely impact TeamConnection
family server performance. We only use our Windows NT server system to run
TeamConnection daemons and perform family administration activities.

Some other problems and inconsistencies
Here are some other, smaller errors and difficulties we ran into during the early stages of
our family's evolution:

� Using tcadmin to create our family, we specifiede:\dept_cfj for the family direc-
tory. The family created was:

e:\dept_cfj\dept_cfj\dept_cfj.tcd

This created an extra dept_cfj subdirectory.

� Everyone worked in one release and no one performed a workarea freeze. As a
result, only the most current version of each part was saved. This is an easy mistake
to make, since there is nothing to force you to create new versions.

� Windows NT Workstation does not have the TCP/IP tools of NT Server. This would
have helped by providing remote access.

Some good ideas
Not everything we did was bad. We really liked these decisions:

� We set the release and component processes toprototype.

In other words, all we needed to do was create a workarea and we were up and
running. This is easy to learn and to use, reducing stress and effort for new users.

6 Evolution of TeamConnection Family

� We limited our file names to 8.3

We voluntarily limited our filenames to a filename of 8 characters and a file type of
3 characters. For example, we defined our "readme" as README.txt. This will
extract the same on all PC and Unix filesystems, including DOS FAT.

� We created an "obsolete" component for deleted components

A component named "obsolete" is a good parent for other components that are no
longer used.

Mature system administration
Gradually your team will become accustomed to TeamConnection and the data in the
family will become critical to your group's success. At this point, you should have done
all of the things I just listed to ensure you have mature system and family administration
practices. Again, your family is only as reliable as the system it runs on, and the proc-
esses you have in place. Since we made the changes I have listed, we have not had a
failure or lost any data.

 Early bumps and bruises 7

8 Evolution of TeamConnection Family

Enhancing the development process

As we moved closer to delivering a product using TeamConnection we wanted to reduce
the risk of developers causing code to be lost, builds to fail, etc.. At this point, we
needed to balance our desire not to be encumbered by process and the need for our team
to insure that our changes were brought together without mistakes. Here are some ele-
ments I added to our TeamConnection processes in our services family to help insure that
no data was lost and our product was built correctly.

Adding to the process
As soon as you have enough data in a TeamConnection release, you will want to freeze
that information by committing it into the release. Also, you will want to incrementally
add to that release in a controlled manner and keep a record of why you added your
changes. Drivers are used as collectors of workareas and allow you to commit a group of
related changes at one time and in an orderly manner. Defects and features identify why
you are making the changes in your workareas.

� Add drivers to ensure clearly identified deliverables
� Add defects/features to create history for changes
� Update access lists to control who updates parts

 Other changes
Here are some minor changes we made as we enhanced our process

� Linking shared parts across releases

As I already mentioned, some of our parts are common across releases. I identified
those parts and added them to the other releases usingpart -link. Now, whenever
this part changes we are reminded to specify a workarea for all releases that are
common for that part.

� Use path information for parts

Our parts were created without path information. This is fine for a small release,
where all of the parts are related, but it can be confusing when the parts extracted
into a directory do not have a relationship, or there is more than one file in the
release with the same name, such as README. In those cases, you need to add path
information to make the parts manageable when they are extracted.

� Autopruning saves space, but loses change history

We had turned on autopruning for one of our releases to see if we liked it or not.
Since we were doing all of our work in one workarea, as soon as I committed that
workarea our entire change history was pruned!

We decided to turn autopruning off until we have a much more established baseline
and the changes in each workarea become smaller.

 Enhancing the development process9

10 Evolution of TeamConnection Family

Taking full advantage of TeamConnection

You aren't taking full advantage of TeamConnection until you do a few things to ensure
your product builds reliably and that you can track the results of your build.

Use TeamConnection builders
A fully automated build insures that only what is in the TeamConnection family is built
into your product. Using TeamConnection to build your process removes manual inter-
vention from one of the most common problem areas in development, building exactly
what you have stored in your library.

Since our family produces class materials, the built product is a zip file containing those
materials. So I added azipbuild builder. This builder is:

� Written in DOS batch, so it will run in Windows and OS/2
� Imbeds the TeamConnection context Family, Release, Workarea in the Zip file using

TeamConnection environment variables
� Uses the (@)# symbol so that what and tcwhat can identify the TeamConnection

context
� Displays lots of useful information that will show up in build messages

Look at the examples in “Zipbuild builder for OS/2 and Windows,” “TeamConnection
build messages for zipbuild” on page 12, “TeamConnection keywords in a text file” on
page 14 and “Using tcwhat to show TeamConnection keywords” on page 14 for how we
use a builder and keywords.

Note: In the following examples, lines were continued using backslashes (\) in order to
accommodate formatting limitations.

Zipbuild builder for OS/2 and Windows
Of course, I needed to start a build processor and build agent in order to do the builds.
The easiest place to do that for my family was the TeamConnection family server
machine. In most cases, it will be your development machine.

@echo off

echo TeamConnection zip file builder

echo -TC_FAMILY: %TC_FAMILY%

echo -TC_RELEASE: %TC_RELEASE%

echo -TC_LOCATION: %TC_LOCATION%

echo -TC_INPUT: %TC_INPUT%

echo -TC_INPUTTYPE: %TC_INPUTTYPE%

echo -TC_OUTPUT: %TC_OUTPUT%

echo -TC_OUTPUTTYPE: %TC_OUTPUTTYPE%

echo -TC_WORKAREA: %TC_WORKAREA%

echo Build Start

echo @(#) Package context: Family %TC_FAMILY%, Release %TC_RELEASE%, \

Workarea %TC_WORKAREA% > tmpfile

zip -z %TC_OUTPUT% %TC_INPUT% < tmpfile

erase tmpfile

echo --------------------

dir %TC_OUTPUT%

echo Contents of zip file

 Taking full advantage of TeamConnection11

unzip -l %TC_OUTPUT%

echo Processing complete

TeamConnection build messages for zipbuild
There is not a parser associated with this

part object.

Messages from the builder:

6ð21-4ð3 A successful build resulted from using the builder zipbuild. The

builder return code is ð

\\\\\\\\\\\\\\\\\\Builder Listing Follows\\\\\\\\\\\\\\\\\\\\\\\\

The following line is the command which was passed to the system:

###

'zipbuild.cmd '

###

The following is the stdout and stderr output from the command:

TeamConnection zip file builder

-TC_FAMILY: dept_cfj

-TC_RELEASE: class1_admin

-TC_LOCATION: E:\DEPT_CFJ\DEPT_CFJ\BIN\FHBBUILD

-TC_INPUT: day1_1.prz day2_2a.prz day3_1a.prz day1_2.prz \

trtcoem.ps day3_3.sam readme.pubs doscmd.exe \

trtcoem.txt README.txt doscmd.c day3_4.prz \

trtcvscm.txt class1_3.sam class.cmd class2_2a.sam \

trtcvscm.ps class2_3.sam day1_3.prz day1_1c.prz \

 day2_3.prz

-TC_INPUTTYPE: TCPart TCPart TCPart TCPart TCPart TCPart \

TCPart TCPart TCPart TCPart TCPart TCPart TCPart \

TCPart TCPart TCPart TCPart TCPart TCPart TCPart \

 TCPart

-TC_OUTPUT: admclass.zip

-TC_OUTPUTTYPE: TCPart

-TC_WORKAREA: 1

Build Start

adding: day1_1.prz (deflated 66%)

adding: day2_2a.prz (deflated 58%)

adding: day3_1a.prz (deflated 66%)

adding: day1_2.prz (deflated 76%)

adding: trtcoem.ps (deflated 87%)

adding: day3_3.sam (deflated 83%)

adding: readme.pubs (deflated 62%)

adding: doscmd.exe (deflated 67%)

adding: trtcoem.txt (deflated 78%)

adding: README.txt (deflated 61%)

adding: doscmd.c (deflated 71%)

adding: day3_4.prz (deflated 68%)

adding: trtcvscm.txt (deflated 74%)

adding: class1_3.sam (deflated 85%)

adding: class.cmd (deflated 22%)

adding: class2_2a.sam (deflated 73%)

adding: trtcvscm.ps (deflated 83%)

adding: class2_3.sam (deflated 84%)

adding: day1_3.prz (deflated 5ð%)

12 Evolution of TeamConnection Family

adding: day1_1c.prz (deflated 63%)

adding: day2_3.prz (deflated 46%)

enter new zip file comment (end with .):

 Volume in drive E has no label.

 Volume Serial Number is 7ð32-D7B7

 Directory of E:\DEPT_CFJ\DEPT_CFJ\BIN\FHBBUILD

1ð/26/97 1ð:19p 1,ð73,557 admclass.zip

 1 File(s) 1,ð73,557 bytes

593,816,576 bytes free

Contents of zip file

Archive: admclass.zip

@(#) Package context: Family dept_cfj, Release class1_admin, Workarea 1

Length Date Time Name

------ ---- ---- ----

655548 1ð-25-97 ð5:56 day1_1.prz

245466 1ð-25-97 ð5:56 day2_2a.prz

 838ð8 1ð-25-97 ð5:56 day3_1a.prz

115317 1ð-25-97 ð5:56 day1_2.prz

296373 1ð-25-97 ð5:56 trtcoem.ps

 17779 1ð-25-97 ð5:56 day3_3.sam

4821 1ð-25-97 ð5:56 readme.pubs

 896ðð 1ð-25-97 ð5:56 doscmd.exe

 826ð7 1ð-25-97 ð5:56 trtcoem.txt

4248 1ð-26-97 22:19 README.txt

3431 1ð-25-97 ð5:56 doscmd.c

 59878 1ð-25-97 ð5:56 day3_4.prz

137926 1ð-25-97 ð5:5ð trtcvscm.txt

 8969ð 1ð-25-97 ð5:56 class1_3.sam

51 1ð-25-97 ð5:56 class.cmd

 53258 1ð-25-97 ð5:56 class2_2a.sam

361377 1ð-25-97 ð5:56 trtcvscm.ps

 6ð161 1ð-25-97 ð5:56 class2_3.sam

2ðð229 1ð-25-97 ð5:56 day1_3.prz

619122 1ð-25-97 ð5:56 day1_1c.prz

215194 1ð-25-97 ð5:56 day2_3.prz

 ------ -------

3395884 21 files

Processing complete

\\\\\\\\\\\\\\\\\\\\\End Of Builder Listing\\\\\\\\\\\\\\\\\\\\\\

End of build report for: 'admclass.zip'

Use what strings in text and output files
Since my class materials were all binary files, I could only use TeamConnection
keywords in my README file.

 Taking full advantage of TeamConnection13

TeamConnection keywords in a text file
Here are the first few lines in that README file:

README for Education class materials:

Keywords:

$KW=@(#); $ChkD=1997/1ð/26 22:17:55; $FN=README.txt; $Own=jhook; \

$Ver=1ð-25-97a:2;

$EKW;

...

Using tcwhat to show TeamConnection keywords
C:\education>tcwhat admclass.zip

admclass.zip:

Package context: Family dept_cfj, Release class1_admin, \

 Workarea admin_copyright

 Consolidating releases
Initially, we created separate releases for the Adminstrator's and Developer's classes. It
made extraction of the parts belonged with each class easier. Once we added output
parts, we were able to extract the built output files instead of extracting all of the parts in
each release. At this point, there is no reason for separate releases. A new, combined,
release was created, one of the releases was linked into the new release, then the unique
parts in the second release were linked in.

The biggest advantage of using only one release is that only one workarea needs to be
created for each defect or feature, and there is no need to specify "common releases"
when checking in parts. This eliminates the risk of accidentally breaking links, resulting
in out of date parts in some releases.

14 Evolution of TeamConnection Family

Automation and future enhancements

The evolution of a family is never really complete. It is easy to think of little (or big)
changes that might make your development activities run a little smoother. Also, it is
occasionally useful to clean house by removing processes, components, and other config-
uration options that aren't contributing to your productivity any longer.

After making the necessary process changes to ensure that we could deliver our class
materials reliably, we considered what would make our job easier and more reliable.
Here are some enhancements we are considering for our services family in the future:

Automated shutdown and backup
The automation of startup and shutdown, including a reboot, is useful. However, for my
family I rely on a wide range of IBM internal use only tools for automation. Here is
what you will want to do:

 1. shutdown family
 2. shutdown database
3. copy .tcd file(s)
4. send to another system (vital records backup)

 5. reboot

Here is what we currently use for shutdown and backup. We need to schedule an NT
"at" job (an "at" job is a specially scheduled process that can be started at a later time)
and make the TeamConnection processes into Windows NT services to complete the
automation. OS/2 and Unix are already fully enabled for this sort of automation. In
Windows NT, a product needs to be Microsoft Back Office compliant (i.e. processes run
as "services"). You can work around this by using the Windows NT Resource Toolkit to
enable the existing code as a service.

Notes:

1. Some of the tools in the example are not generally available.

2. In the following examples, lines were continued using backslashes (\) in order to
accommodate formatting limitations.

Simple shutdown script
@echo off

REM Stop TeamConnection

e:

cd \dept_cfj\dept_cfj

erase kill.bak

ren kill.out kill.bak

REM Kill TeamConnection daemons

REM Redirection may cause errors

kill -f notifyd

kill -f teamcd

kill -f teamagnt

kill -f teamproc

rem manually stop ObjectStore to get messages

net stop "ObjectStore Server R4.ð" > kill.out 2>&1

 Automation and future enhancements15

net stop "ObjectStore Cache Manager R4.ð" >> kill.out 2>&1

REM Copy database

erase dept_cfj.bak

copy dept_cfj.tcd dept_cfj.bak

reboot

 Automated Startup
Here is our current start up script. It runs after Windows NT has rebooted and a user
logs in. Since ObjectStore automatically starts as a Windows NT Service, the script starts
the TeamConnection processes.

Startup script for Administrator login
@echo off

REM Start TeamConnection Daemons

e:

cd \dept_cfj\dept_cfj

erase starttcd.bak

ren starttcd.out starttcd.bak

rem Syntax: teamcd ... & stayed at teamcd (not background)

start teamcd dept_cfj@9ððð 3 > starttcd.out 2>&1

erase startntf.bak

ren startntf.out startntf.bak

start notifyd dept_cfj mailexit > startntf.out 2>&1 &

erase startbta.bak

ren startbta.out startbta.bak

start teamagnt -f dept_cfj -p bldsock -e NT -s @mal4@9ðð2 \

> startbta.out 2>&1 &

erase startbtp.bak

ren startbtp.out startbtp.bak

start teamproc -s @9ðð2 > startbtp.out 2>&1 &

echo all processes started

This tool is fairly rudimentary. Here are some improvements we look forward to imple-
menting in the near future:

1. Automated startup of TeamConnection daemons (as a Windows NT service)
2. Record startup results better
3. FTP the backup to another system for vital records backup

Extractor Access Role
A common role within a development group is a member who doesn't do active develop-
ment, only opening of defects/features and adding periodic remarks, as well as viewing
and extracting of parts. We call this person an Extractor. All that needs to be done is
to copy the acitons of general and add a few part actions.

New User exits
In a small family, user exits are nice to have, but not essential. There really isn't enough
activity to require them. Then again, anything to save steps is helpful. Here are some
user exits that could help this family run a little smoother.

16 Evolution of TeamConnection Family

New user notice
The welcome text that is mailed to a new user when their user account is created includes
the following:

� Family name, server host name and port number

dept_cfj@mal4.raleigh.ibm.com@9ððð

� Builder name and port
Server mal4.raleigh.ibm.com
Pool bldsock@9006
Environment NT

 � Access methods

PASSWORD_OR_HOST

Other user exits we are considering
 � Workarea automation

Automatically add workareas to integrate into a driver.

� Driver Create automation

Automatically create a new driver when a driver is committed, and allow only one
driver in working state for a release.

� Driver Commit automation

Automatically complete committed drivers at a specified time. It is good to update
the driver type at that time.

� Shadowing parts to a reference directory

Automatically copying updates to parts in a release, driver or workarea to a read-only
directory structure that is available to every user so that they can use tools to analyze
the contents of the parts.

 Open issues
There are still some things we haven't decided how to handle with our service family and
we are fully productive. So take heart, you aren't alone. Here is what we are still pon-
dering:

� What should our driver naming convention be and how should we open our drivers?

In some of our families, drivers are automatically opened as soon as a driver is com-
pleted within a release, and the name is derived from the date the driver was opened.
Somehow, this doesn't seem appropriate for us. We don't know when we will
commit each driver, so we can't pick an appropriate date. Further, the date the driver
was opened doesn't seem to make any sense. The good news is that it is easy to
rename a driver, so we aren't worrying about it.

� Port number too common

The currently used port number is 9000. This is a very common number. We will
probably change the number.

 Automation and future enhancements17

TeamConnection is still growing
TeamConnection is still growing and evolving. We always keep our eyes open for new
features in TeamConnection that can help us do our jobs better.

For example, we just replaced the notifyd mailexit sample with a new sample that for-
wards mail to Lotus Notes.

18 Evolution of TeamConnection Family

 Conclusion

A family with the appropriate processes and a smooth running system with sound system
administration practices allows TeamConnection to improve the productivity of your
development team.

I hope it is encouraging to know that even the TeamConnection development and services
teams need to spend a little time deciding what TeamConnection processes and configura-
tion options are most beneficial to their development needs.

The recommendations in this document helped the productivity of my department's devel-
opment efforts, and we hope it will help yours too.

 Conclusion 19

20 Evolution of TeamConnection Family

 Appendix A. Bibliography

 TeamConnection Publications
For more information on how to use TeamConnection, you can consult the following
manuals:

SC34-4551 TeamConnection, Administrator's Guide

SC34-4552 Getting Started with the TeamConnection Clients

SC34-4499 TeamConnection, User's Guide

SC34-45ð1 TeamConnection, Commands Reference

SC34-45ðð TeamConnection, Quick Commands Reference

 Related Redbooks
The following IBM redbooks provide practical advice about TeamConnection from soft-
ware specialists:

SG24-4648 Introduction to the IBM Application Development

 Team Suite

SG26-2ðð8 TeamConneciton Family and Application Develoment

SG24-461ð TeamConnection Workframe Integration Survival Guide

Related Technical Reports
The following technical reports provide hints for using TeamConnection:

29.2267 TeamConnection frequently asked questions: How to do

routine operating system tasks

29.2253 Comparison between CMVC 2.3 and TeamConnection 2

 Appendix A. Bibliography 21

22 Evolution of TeamConnection Family

Appendix B. Copyrights, Trademarks and Service
marks

The following terms used in this technical report, are trademarks or service marks of the
indicated companies:

+---------------------+---+

| TRADEMARK, | COMPANY |

| REGISTERED | |

| TRADEMARK OR | |

| SERVICE MARK | |

+---------------------+---+

| AIX, OS/2, IBM, | IBM Corporation |

| CMVC, | |

| TeamConnection | |

+---------------------+---+

| ObjectStore | Object Design, Inc. |

+---------------------+---+

| PKZip | PKWare, Inc. |

+---------------------+---+

| UNIX, USL | UNIX System Laboratories, Inc. |

+---------------------+---+

| Microsoft, Windows | Microsoft Corporation |

| Back Office, | |

| Windows NT | |

+---------------------+---+

| X Window System | Massachusetts Institute of Technology |

+---------------------+---+

END OF DOCUMENT ˚

 Appendix B. Copyrights, Trademarks and Service marks23

