Finding out the level of an application

Method to display the level and serviceability strings of your
application
Angel Rivera, Rick Russall

TR 29.3449

Visual Age TeamConnection Technical Support Team
IBM Software Solutions
Research Triangle Park, North Carolina, USA

O Copyright 2001, IBM Corp.
DISCLAIMER:

Thistechnical report is not an official publication from the Visual Age TeamConnection support
group. The authors are solely responsible for its contents.

Finding out the level of an application

Finding out the level of an application

ABSTRACT

This technical report provides amethod that developers can use to allow their customersto find
out the level (version, release, modification) of their application and related information from
embedded serviceability strings gathered during the compilation of the application, such as what
level or driver was used, which version and release, which operating system, etc.

There are two aspects to the method aspects:

* A setof serviceability strings that use the special @(#) string identifiers that can be extracted
from executable or shared library files by the “what” utility. This method has been extremely
useful with VisualAge TeamConnection and CMVC.

* A stand aonetool that has the sole purpose to provide all the serviceability information
related to the level of the application.

If all the appropriate serviceability strings are used, then this method will significantly reduce the
time to find out the actual version of the product that the customer is running. Furthermore, it
will reduce the diagnostic time for catching mistakes when the wrong file sets are installed
(problems that otherwise could take a very long and frustrating time to resolve).

ITIRC KEYWORDS

* Leve of an application
* Serviceability

Finding out the level of an application

ABOUT THE AUTHORS

Angel Rivera

Mr. Riverais an advisory software engineer and is the serviceability architect and RAS focal
point for IBM e-Business Tools.

Hejoined IBM in 1989 and since then had worked in the development and support of library
systems. He was the technical lead for CMVC Version 2 for many years. He was also the team
lead of the technical support team for Visual Age TeamConnection.

Mr. Riverahasan M.S. in Electrical Engineering from The University of Texas at Austin, anda

B.S. in Electronic Systems Engineering from the Instituto Tecnologico y de Estudios Superiores
de Monterrey, Mexico.

Rick Russell

Mr. Russell is a software engineer with the Visual Age TeamConnection devel opment and
technical support team. Hejoined IBM in 1998 and since then has worked in the devel opment
and support of library systems.

Mr. Russell hasan M.S. in Computer Science and Engineering from Penn State University.

He currently provides technical support for customers of Visual Age TeamConnection.

Finding out the level of an application

Was is the relationship of this method with RAS?
Are there translation issues involved?

Disclaimer

Acknowledgments

How to get the most up to date version of this technical report

Using the proposed methods to find out the level of an
application in the field

A set of embedded serviceability strings to be extracted by the “what”
utility

Standalone tool that displays the important serviceability information

What are the problems addressed with this method
Definition of product updates

Traditional problems

Thereisno universal standard to install a product and to find out itsversion
Some applications bypass the normal installation procedure for an operating system
Installation of thewrongfileset

Potential mismatch between client (GUI) and server components

-15-

Hot or temporary fixes might be not be properly registered with the operating system - 16 -

How to embed the serviceability strings in C language .

Part 1: Original structure of the files

Original sourcecodefor MYyAPP.C ..ot e e

-5-

=17 -

Finding out the level of an application

Original sourcecodefor themakefile i i ... -18-
Original source codefor the scriptstoinvokethemakefile -20-
Part 2: Modifications to include the serviceability strings -22 -

Creation of the necessary files and updates to make files and source code

L= -25-
Createthe“level.list” filewith the“static” strings -25-
Createthescript “do-what” i e e e - 26 -
Add entry for what-info.h and the do-what script in themakefile -33-
Detailed view of the generated sourceincludefile“what-info.c” -34-
Detailed view of the generated header includefile“what-info.h” -35-
Detailed view of the generated sourceincludefile “what-info-level.c” -35-
Modify the sour ce code for the executable file and add theincludefiles -35-
Updatethescript “do-build” - 36 -
Build the application and test the embedded serviceability strings. -41 -
Update of the necessary files when performing a build for an update to the

Product -44 -
How to implement the standalone tool in C language - 45 -
Createthe main sourcecodefile“myAppLevel.c’ - 45 -
How to embed the serviceability strings in Java - 47 -
Part 1: Original structure of thefiles - 47 -
Original sourcecodefor Myapp.javacuounan e - 48 -
Original sourcecodefor themakefiles i ... - 48 -
Original source codefor the scriptstoinvokethemakefile - 49 -
Original Source Codefor thebuild Scripts i - 50 -
Filesneeded: i -51-
Part 2: Modifications to include the serviceability strings -52 -
The main modificationsto includethe serviceability stringsare: -53-
Creation of the necessary files and updates to make files and source code

L 1= -55-
Createthe“level.list” filewith the“static” strings -55-
Createthescript “do-what” i e e -55-

-6-

Finding out the level of an application

Add entry for whatlnfo.java and the do-what script in the makefile
Detailed view of the generated classfile“whatInfojava”
Source codefor theexecutablefilemyapp ...
Updatethescript “do-build”

Create the main sour ce code file “myapplevel .java” for the standalonetool
MY AP Vel

Build the application and test the embedded serviceability strings.
FilesNeeded:
Doing DEBUG or BETA builds:

Update of the necessary files when performing a build for an update to the
Product .

Adding static serviceability strings to level.list

Adding dynamic serviceability strings to do-build.cmd:

How to get the files mentioned in this document

FTP site for TeamConnection
Obtaining a tool that fix Carriage Return and Line Feed problems
Obtaining Info-ZIP

Howtounzip files e

Copyrights, Trademarks and Service marks

Finding out the level of an application

Introduction

This technical report provides amethod that developers can use to allow their customers to find
out the level (version, release, modification) of their application and related information from
embedded serviceahility strings gathered during the compilation of the application, such as what
level or driver of the source code was used, which version and release, which operating system,
etc.

If all the appropriate serviceability strings are used, then this method will significantly reduce the
time to find out the actual version of the product that the customer is running. Furthermore, it
will reduce the diagnostic time for catching mistakes when the wrong file sets are installed
(problems that otherwise could take a very long and frustrating time to resolve).

This document will provide a concrete example of the methodology. We believe that providing
concrete examples that devel opers could use, would facilitate its usage:

e A sample application called “myApp” is shown inits original form, which does not use the
methodology explained in this document. The source code is very simple because we are not
concerned with other aspects of the development of an application. Also, the original Korn
shell scripts and Windows command batch files are shown. This provides a baseline that will
give areader a point of reference. We are providing a set of C source code and another set in
Java.

* The source code will be modified to contain the searchable strings mentioned in this
document; correspondingly, the associated scripts will also be modified to reflect the new
concepts. The objective isto show the reader, the relative little “delta” effort that is needed in
order to implement the methodol ogy.

* Also, the new standalone executable “myAppLevel” will be created which will be used to
indicate the version information as well as other important serviceability information. This
executable should be delivered with the application and should be present in subsequent
fixpaks or patches. Thistool is useful for applications that are standalone or that have few
components and which are delivered at the same time. However, it does not work in compo-
nent suites in which each component is delivered by itself.

The structure of this document is the following:

* Chapter “Using the proposed methods to find out the level of an application in the field”
explains the methodol ogy:
* The description of a set of serviceability strings that can be extracted viathe “what” utility.
* The description of a standalone tool that displays the important serviceability information.
* Chapter “What are the problems addressed with this method” describes the problems that this
methodology intends to avoid.
* Chapter “How to embed the serviceability stringsin C language’ describes how toembed the
serviceability strings in the executables, using the C language.

Finding out the level of an application

* Chapter “How to implement the standalone tool in C language” describes how to implement
the standalone tool, using the C language.

* Chapter “How to get the files mentioned in this document” explains how to get the source
code, Korn shell scripts and Windows command batch files mentioned in this document.

* Chapter “How to embed the serviceability stringsin Java’ describes how to embed the service-
ability stringsin the executables, using Java.

Why not simply use expandable keywords from TeamConnection or CMVC?

Certain software configuration management (SCM) tools, such as Visual Age TeamConnection
and CMV C, support expandable keywords which are included in text files. However, thereis a
limited number of strings and there are no strings for operating system information That is, an
approach that only uses expandable keywords will not cover the whole spectrum of usages
covered by the method described in this document.

Therefore, because we want to keep the proposed method as simple as possible and because
expandable keywords are not sufficient, their use is not exploited here.

Was is the relationship of this method with RAS?

The acronym “RAS’ means “Reliability, Availability and Serviceability”. The technique that we
proposeis part of the“S’ in RAS: serviceability.

The technique of embedding searchable strings in the executable code is hot new. The Unix
"what" command is used for this purpose and some vendors use it (such as Sun), some barely use
it (such as IBM) and some do not use it. We would like to motivate more IBM developersto
consider the use of these strings, and that is one of the objectives for writing this document.

Also, we take a step beyond the ssmple act of embedding strings by providing a technique of
preparing a stand alone tool that avoids the end user to type "geeky" commands such as the
"what" and "grep"

Are there translation issues involved?

In Unix applications, one of the main problems during installation is that the message catalog and
the local e setting might be incorrect for an application and this may cause the newly application
(including the proposed standalone level tool) to fail to execute. Thus, we cannot rely on the
assumption that the end user has the correct settings for the message catalog and locale. If the
strings were translated and placed in a message catal og, the end user may not be able to get any
translated messages from the standalone tool. Therefore, the sample source code shown in this
document actually embeds the English text strings inside the samples.

Finding out the level of an application

Disclaimer
Thistechnical report is not an official publication from the Visual Age TeamConnection support
group. The authors are solely responsible for its contents.

Acknowledgments

We would like to acknowledge the contribution of the following co-workers:

* Lee Perlov, IBM WebSphere team, who provided suggestions on using the “what” utility.

* Tim Orlowski, IBM Visual Age TeamConnection team, who devel oped scripts to handle the
“build time” serviceability strings.

* Werner Hahn, IBM Austin, who devel oped the workaround to avoid the removal of static
strings by optimization phase of the C compiler.

* Steve Brock, who pioneered several years ago in our support team the usage of the “what”
utility for serviceability purposes.

How to get the most up to date version of this technical report
The most up to date version of thistechnical report can be obtained from the following IBM
Visual Age TeamConnection Enterprise Server web site:

ftp://ftp.software.ibm.com/ps/products/teamconnecti on/paperdtrlevel . pdf

-10-

Finding out the level of an application

Using the proposed methods to find out the level of an appli-
cation in the field

This chapter provides the usage information of the proposed methods to find out the level of an
application in the field.

A set of embedded serviceability strings to be extracted by the “what” utility

Note for Intel users: The “what” and “grep” utilities described in this section are standard utilities
provided by Unix. Windows users can search the Internet for similar applications. See the appen
dix “How to get the tools” at the end of this document.

The method of using embedded serviceability strings that are extracted by the “what” utility has
been extremely useful with VisualAge TeamConnection and CMV C, because we can easily tell
which isthe actual version of the product that the customer is running.

The developers of an application can embed a set of serviceability strings that use the special
@(#) string identifiers and can be extracted from executable or shared library files by the “what”
utility.

The “what” utility searchesafile and displays the strings that have the substring @(#). This
combination of 4 characters does not appear in normal situations. Thus, they were chosen to be
the special combination of searchable keywords by the “what” utility.

In a situation when a customer contacts the technical support personnel, the support person can
tell the customer to execute the “what” utility against one of the executable files provided by the
product in order to show the embedded strings. For example, let’ s assume that the binary file
“myApp” isthe executable file for an application; thus, to find out the serviceability strings
embedded in thisfile, the customer could perform the following command:

what nyApp

And the resulting output would be displayed:

my App:
myApp Code generated in Platform AlIX oemppc3 2 4 000022559000
myApp Code generated using DBMS: DB2_UDB 5.2 Fixpak 11
myApp Release: 1.2.3.4
nyApp Driver: 2001-01-16
myApp |BM My Application, (C Copyright, |BM Corp., 1999, 2001

Because some operating systems (such as Solaris) use alot these searchable keys in their include
libraries. Thismeansthat if you just smply use in Solaris the “what” command against your
application that has your serviceability strings, you may get avery long list of items and you may
need to spend some time to find out your strings. Thus, to easily find your strings it is

-11 -

Finding out the level of an application

recommended to use an additional token related to the application to identify those strings that
are added to the product by the devel opers. For example, the searchable string “myApp” is used
in the example provided in this document, and in thisway it is possible to use the “grep myApp”
command after issuing the “what” command and quickly get only the desired strings. By the way,
the “grep” utility isastandard utility provided by Unix. It searches a stream of text for a searcha
ble keyword.

In case the “what” command displays other strings (such as from include libraries from Solaris),
the customer could specify a more detailed command which will show ONLY the desired strings
that have the sub-string “myApp”:

what nyApp | grep nmyApp

Standalone tool that displays the important serviceability information

This method has been extremely useful with Visual Age TeamConnection: the tool is called
“tclevel”. Thistool was modeled after the “db2level” utility introduced in DB2 UDB 5.2.

The usage of the “what” and “grep” utilities to get the serviceability information for an applica
tion israther “low-level” or “too techie”, mostly suited for advanced technical customers;
furthermore, these utilities are not readily available in Windows platforms. Novice customers
(and Windows customers) would appreciate avoiding those utilities and executing something
easier.

The developers of the application can provide a small standalone executable tool (whichis
shipped with the product update) that has the sole purpose of providing all the serviceability
information related to the level of the application, such as:
* Copyright information, including year and company name.
* Target operating system name and version, if applicable.
* Target database management system (DBMYS), if applicable.
* Complete version-release-modification (VRM).
* Fixpak or temporary fix information (if applicable).
*Additional data used during the compilation of the application, such as:
* Level or driver name.
* Indicatorsif the code was compiled with special parameters, such as;
* |f the executable was compiled with DEBUG options.
* |f the executable was compiled as a BETA version.

Thistool can be easily run by customers. For example, the customer could go to the command
prompt window and enter:

myAppLevel

And the resulting output will be displayed:

-12 -

Finding out the level of an application

@#) nyApp IBM My Application, (C Copyright, |IBM Corp., 1999, 2001
@+#) nyApp Code generated in Platform Wndows NT Version 4.0
@#) nyApp Code generated using DBMS: DB2_UDB 5.2 Fixpak 11

@#) nyApp Release: 1.2.3.4

@#) nmyApp Driver: 2001-01-16

@#) nyApp *** This is BETA code ***

@#) nmyApp Patch: 1

Other advantages of thistool are:

* Itisatotally stand-alone application. It does not use shared libraries or message catal ogs.
ThisisVERY useful in situations in which there is an installation or configuration problem.
If shared libraries or message catalogs were needed by the tool and there were this type of
problem, then the tool might not run.

» If the product is supported in multiple platforms, then the customer support representatives
will have acommon way to find out the level of the application in al those platforms. That
is, they will not need to remember which commands are needed for EVERY single platform.

-13-

Finding out the level of an application

What are the problems addressed with this method

When a product is deployed in the field, it isimportant for all people involved (customer, support
personnel, developers) to know the exact version of the product that the customer is running.
Thisis specially important when fixes to the product have been released; it is critical to know the
precise version of the product.

Definition of product updates
These product updates in the field can take place in different ways, such as:

* A new version (such asversion 7).

* A release (such asrelease 7.2).

* A new fixpak or service pak or modification (such as 7.2.3).

* A new level or driver (such as 7.2.3.2).

* A “hot” patch or “hot” fix or temporary fix (such as 7.2.3.2 hotfix 1).

Traditional problems

This section describes some of the problems in finding out the version of the product that occur
with the most common approaches.

Thereisno universal standard to install a product and to find out its version

Different operating systems have different methods of installing applications and by the same
token, different ways of finding out the version of the installed products. For example:

* In Windows NT the applications are usually installed via Install Shield and via Windows
Installer in Windows 2000, but it is up to the packaging utility to update the registry with the
proper information. The user may need to access the registry directly (with the specific key) to
find out the version information of the application.

* In AlX, applications are usually installed viathe “smit” tool using the installp format (IBM
proprietary format). The command “Islpp” can be used to obtain the version information.

* In HP-UX, applications are usually installed viathe HP-UX proprietary format. The command
“swlist” can be used to obtain the version information.

* |n Solaris, applications are usually installed via the Sun proprietary format. The command
“pkginfo” can be used to obtain the version information.

-14 -

Finding out the level of an application

Some applications bypass the normal installation procedurefor an operating system

Some applications are installed by means of zip files or tar files, which bypass the normal instal-
lation procedures without updating the registry or the product database for the operating system.
This delivery method has the following disadvantages:

* The operating system does NOT have any formal information about the product that is
installed. Thus, the customer cannot use the normal administration commands to find out the
version of the application.

* The uninstallation of the product might be cumbersome, because the normal uninstallation
procedures from the operating system are not used.

However, this method has the advantage (for some customers) that the location of the directory
of the application can be specified by the customer.

Installation of the wrong fileset

This section isintended for those products that are built for multiple operating systems or multi-
ple database management systems (DBM Ss):

* The customer may have unpackaged and installed the wrong installation file for the target
operating system. For example, the customer unpackaged in Al X thetar file for HP-UX, and
because the binaries are not compatible, the application will fail to execute and the support team
and the customer might start chasing a problem that does not exist in the code. If the customer
searched the serviceability strings, the version information very likely will appear to be correct,
but will not give an indication that it is for the wrong operating system.

This means that besides the version information, it isimportant to add also what is the target
operating system for the executable file.

* The customer may have unpackaged the wrong installation filefor the target database manage-
ment system (DBMS). For example, the customer unpackaged the tar file for the server that
works on DB2 UDB, but the customer has installed only Oracle. This situation is similar to the
one above for the wrong operating system.

This means that besides the version information and the target operating system information, it is
important to add also what is the target. Thisisimportant if the application is built for different
DBMSs.

* The above issues could be extrapolated to other important pre-requisite or co-requisites. That

is, besides the information about the version, target operating system and DBMS, other service
ability information should be readily available.

-15-

Finding out the level of an application

Potential mismatch between client (GUI) and server components

Some applications that have a GUI component place the version information under the “ About
the product” option in the Help menu. The problem is that this information may only be directly
relevant to the client GUI. That is, when the customer looks at the version of the client, the
customer may assume that it represents the version of the server. If the server code is updated to
anewer version, that version will also generally not be seen in the “ About the product” dialog on
the client.

Hot or temporary fixes might be not be properly registered with the operating system
When updates to the code are installed, these updates may not update the registry with the neces

sary information, especialy for fixpaks or “hot” or ”temporary” fixes. Thus, it isimportant to
find out explicitly the version information of these updates.

-16-

Finding out the level of an application

How to embed the serviceability strings in C language

This section describes how to embed the serviceability strings in the executable file for a sample
application called “myApp” which is developed in the C language. This application could be
built using make files in multiple platforms using multiple DBMSs; specifically, the cases for
AlIX and Windows NT are thoroughly explained.

The files mentioned in this section are available from the “c” subdirectory of the expanded zip
filereferred to in the section “How to get the files mentioned in this document “.

The structure of this chapter is asfollows:

* Part 1: Origina structure of thefiles.
A sample application called “myApp” isshown inits origina form, which does not use the
methodology explained in this document. The source code is very simple because we are not
concerned with other aspects of the development of an application. Also, the original Korn
shell scripts and Windows command batch files are shown. This provides a baseline that will
give areader a point of reference.

e Part 2: Modifications to include the serviceability strings
The source code will be modified to contain the searchable strings mentioned in this
document. The objective isto show the reader, therelative little “delta” effort that is needed
in order to implement the methodology.

Part 1: Original structure of the files

Let’s start with the description of the simple application myApp which iswritten in C and which
does not contain the serviceability strings. The ideaisto provide a baseline to help understand
the modifications explained later on.

* The overal picture of the source code is the following:

nyfpp.c (‘mai n)

+---> | ncludes stdio

* The overal picture of the processing is the following:

do-build
|
+ Preparation step: set flags, deletes tenp files
|
+ Invokes the nake file with appropriate flags

+ Invokes C conpiler

-17 -

Finding out the level of an application

Original source code for myApp.c

Notice that thisis avery small and simple program.
/ *
NAME: nmyApp. c

PURPCSE:
This file provides the main() for the sanple application.

NOTES:
To conpil e:
Uni x: cc nmyApp.c -0 nyApp
W ndows: icc nyApp.c /Fe nyApp. exe
*/
#i ncl ude <stdio. h>
i nt mai n(void)
printf("The myApp executable is running.\n");
printf("It prints this message and then exits.\n");
return O;

}

/* end of file */

Original source code for the makefile

Unix makefile: myApp-x.mak

NAVE: nyApp- X. mak
#

PURPGCSE:
This is the makefile for building the nyApp application in Unix.
#

NOTES:

* To build the application:

make -f myApp-x. mak nyApp
#

COWPI LER=cc

CFLAGS=

all: nyApp

myApp: main.o
$(COWPI LER) -0 nyApp nyApp. o

nyApp. o: nyApp. ¢
$(COWPI LER) $(FLAGS) -c nyApp.c

end of file

-18-

Finding out the level of an application

Windows makefile: myApp-w.mak

NAVE: nyApp- w. mak
#

PURPGCSE:
This is the makefile for building the nyApp application in W ndows.
#

NOTES:

* To build the application using Wndows 32-bit (Visual Age C++):
nmake -f myApp-w. mak nmyApp. exe

#

COWPI LER=i cc

all: nyApp. exe

myApp. exe: nyApp. obj .
$(COWPI LER) / Fe nyApp. exe myApp. obj

myApp. obj : myApp. c
$(COWPI LER) $(FLAGS) /C+ myApp.c

end of file

-19-

Finding out the level of an application

Original source code for the scriptsto invoke the makefile

Korn shell script: do-build.ksh

#!/usr/bin/ksh
#
NAMVE: do-build. ksh [debug | beta]

#

SAMPLE | NVOCATI ON:

do- bui I d. ksh debug

#

PURPOSE:

This is the top level script to build the application
#

Rempve files

rm nyApp
rm*.o

Process option

if [$# -ge 1]
t hen
typeset -u COPTI ON=$1
echo "opti on=$CPTI ON'
case "$OPTION' in
BETA| bet a)
FLAGS=" - DBETA

DEBUG debug)
FLAGS=' - DDEBUG - g’

[N}
*

print "Unrecogni zed option: $OPTI O\

esac
fi

I nvoke the make fil e:
make -f nyApp-x.mak all FLAGS="$FLAGS
end of file

-20-

“ny App”.

Finding out the level of an application

Rexx command file: do-build.cmd

[* *]

/**

NAME: do-build.cnd [debug | beta]

PURPCSE
This is the top level script to build the application "nyApp".

SAMPLE | NVOCATI ON
rexx do-build.cnd debug

***/

/* Rermove files */

" @lel *.obj’

" @el *.exe

/* Verify the input paraneters */

parse arg option
usage = "do-build.cnd [debug | beta]"

/* Do the processing only if all variables are specified */

if (option = "") then
do
FLAGS=""
end
el se
do
if (option = "debug") then
do
FLAGS="/Ti + / DDEBUG'
end
el se
do
if (option = "beta") then
do
FLAGS="/ DBETA"
end
el se
do
say "*** Error: wong option. If specified, it must be: debug or beta"
say usage
exit 1
end
end
end

say "do-build.cnd: begin"
/* Invoke the nmake file */
say 'nmake -f myApp-w mak all FLAGS=' FLAGS

"nmake -f myApp-w nmak all FLAGS="'FLAGS "
/* end of file */

-21-

Finding out the level of an application

Part 2: Modifications to include the serviceability strings

There are 2 types of serviceability strings, from the point of view of their creation times. All
these strings will eventually be placed in the source code include what-info.c and the header
include what-info.h:

Strings that seldom change, such as the copyright information, the product name, the
company name. For this reason, in this document these strings are referred as “ static strings”.
They are defined in the“level .list” file and handled inside the script “do-what”. Thisfileis
the one that can be created, checked-out, modified and then checked-in from alibrary system
only when of these variables needs to be changed (not a daily event). We felt that was too
cumbersome to add into this file those variables that may change daily, because we did not
want to have the overhead of checking out and checking in every day thisfile thisfile.
Strings that change frequently or that can be obtained from the environment or have
additional processing. It is not worthy to add them into the level.list file because it would
cause alot of overhead with the software configuration system. Instead, these variables are
handled by the main build script “do-build” and then added to atemporary “master.list” file,
which in turn is handled by the script “do-what”. A sub-classification of these variablesis
shown below:

» Strings that change frequently and which are specified by the user, usualy when a
build activity is performed, such as the driver/level. These strings are referred as
“build-time strings’. They are passed as parameters or as environment variables tothe
script “do-build”.

» Stringsthat can be obtained from the environment, such as the version of the operat-
Ing system used during the build. These strings are referred as “environmental
strings’.

» Stringsthat do not fit neatly into the above categories, such as when building beta
code or debug code. These strings are referred as “ miscellaneous strings'.

The main modifications to include the serviceability strings are:

* A permanent file, named “level.list”, that has a set of variable-value pairs which specify the
“static” searchable strings to be embedded in the executables. Thisfile can be stored in a
software configuration library. These are the strings that do not change very much The format is
one row per entry; each entry is composed of avariable name, a space character and avariable
value which is the rest of the row. For example:

productinfo IBM My Application
copyrightlinfo (C Copyright, |IBM Corp., 1999, 2001
rel easelnfo Rel ease: 1.2.3.4
dbrsl nf o DBMS: DB2 UDB 5.2 Fixpak 11
pat chl nfo Pat ch: 0

-22 -

Finding out the level of an application

* A temporary file, named “master.list”, which will be recreated during each build and which
will have the strings from the “level list” file and will have additional strings (thisis done inside
do-build). Eventually this master.list will be handled by the script “do-what” to generate the
include files “what-info”, which are described next. For example, the whole contents of the
master.list file includes three variables (in blue) which are obtained at build-time; the rest are the
variables that are copied from the “level.list” file.

driverinfo Driver: 2001-03-09
bui | dMbdel nfo Build Mbde: Nornal
platform nfo This code was generated in Wndows NT Version 4.0
productinfo IBM My Application
copyrightlinfo (C Copyright, |IBM Corp., 1999, 2001
rel easelnfo Release: 1.2.3.4
dbrsl nf o DBMS: DB2 UDB 5.2 Fixpak 11
pat chl nfo Pat ch: 0

* Aninclude header file “what-info.h” and an include source file “what-info.c” are generated by
the script “do-what” from the “master.list” file. Thus, the overall picture of the source codeisthe
following:

Thelinesin blue are new or modified lines with respect to the original version.

nyfpp.c (‘mai n)
+---> Includes stdio and string

+---> | ncludes what-info.h and what-info.c

* The overal picture of the processing is the following:

Thelinesin blue are new or modified lines with respect to the original version.

do-build
Preparation step: set flags, deletes tenp files
Copies the entries from"level.list” into "master.list"

Appends to "master.list” the rest of the variables

+— +— +— +—

I nvokes the nake file with appropriate flags

I nvokes do-what who reads the "master.list"” to create:
what -i nfo. h and what-info.c

+
|
I .
+ Invokes C conpiler

The implementation can be split into two stages:

-23-

Finding out the level of an application

a) Creation of the necessary files and updates to make files and source code files. Thisis done
only once.

b) Update of the necessary files when performing aroutine build, in which there is an update to
the product.

- 24 -

Finding out the level of an application

Creation of the necessary files and updates to make files and source code files

Thefirst step in the implementation of this method is the creation of the necessary files and the
updates to the make files and the source code files. Thisis done only once.

* Create afile named “level.list” that has a set of variableName-variableValue pairs which
specify the “static” searchable strings to be embedded in the executables. This file can be stored
in a software configuration library. These are the strings that do not change very much

* Create a script called “do-what.cmd” or “do-what.ksh” which will generate the include files:
* what-info.h which is a header include file for the application.
* what-info.c which is a source include file for the application.
* what-info-level.c which is a source include file for the standalone level application.

* In the make file for the application, add an entry for the include file “whatinfo.h”. In that way,
it is built from scratch. Also, add entries to invoke the “do-what” script.

* Create an include source code file called “what-info.c” which will make use of dummy state
ments with the serviceability strings. Thisis done to avoid the compiler’s optimizer from strip-
ping the actual strings from the executable or shared library files: the ideais to both declare and
use the strings, even though the usage is totally irrelevant (but will tell the optimizer to keep
those strings!).

* Modify the source code for the executable file and add the include files “what-info.h” and
“what-info.c”.

* Modify the script called “do-build” which invokes the “make” utility to build the product. This
script can set some variables that might be included in the master.list file.

* Build the application and test the embedded serviceability strings.

Therest of this section provides actual samples that illustrate the points.

Createthe“level.list” filewith the® static” strings

The format is one row per entry; each entry is composed of a variable name, a space character
and avariable value which is the rest of the row. For example:

productinfo IBM My Application
copyrightlinfo (C Copyright, |IBM Corp., 1999, 2001
rel easelnfo Rel ease: 1.2.3.4
dbrsl nf o DBMS: DB2 UDB 5.2 Fixpak 11
pat chl nfo Pat ch: 0

-25-

Finding out the level of an application

Createthe script “do-what”

Create a script called “ do-what.cmd” (in REXX) or “do-what.ksh” (in Korn shell) which will
generate the include files “what-info” with all the desired serviceability strings. The sample script
was developed to be self-contained, in the sense that if you want to add a new serviceability
string, you do not need to modify this “do-what” script.

Korn shell script: do-what.ksh

#!' [usr/bin/ksh
i NAME: do-what. ksh |evelListFile includeFi| eBaseNanme
SAMPLE | NVOCATI ON:

do-what . ksh master.list what-info

PURPCOSE
To prepare the fol
of the serviceabil

owi ng include files with the information
t
(such as master.|list
f
f

y strings specified in the levelListFile argunent
)
!
i
i
o}

, such as what-info.h

* jinclude header e
e, such as what-info.c
e

I

* include source
* include source f
such as what-inf

I
I
| e for standal one | evel application
-level.c
CUSTOM ZATI ON NOTES:
* See the sections | abel ed "CUSTOM ZATI ON REQUI RED'
* You may want to custom ze this script to suit your needs.
For exanpl e:
* Replace the value for the "keyword" variable to identify
your application.

B N N

#***/

CUSTOM ZATI ON NEEDED.
Set the keyword to be used during what and grep

keywor d="my App"
Verify the input paraneters

if "$#" -eq 2]
t he
I

o S5

vel Li st Fi |l e=$1

i ncl udeFi | eBaseNanme=$2

i ncl udeHeader Fi | e=* echo $i ncl udeFi | eBaseNane‘ " . h"
i ncl udeSour ceFi | e=* echo $i ncl udeFi | eBaseNane‘ ". c"

i ncl udeSour ceLevel Fi |l e=* echo $i ncl udeFi | eBaseNane' " -1 evel . c"

print "do-what.ksh begin"

print " ->file with level information: $levelListFile "

print " -> include header file: $i ncl udeHeader Fi | "

print " -> include source file: $i ncl udeSour ceFi | e"

print " -> include source level file: $i ncl udeSour ceLevel Fi |l e"
el se

print "*** Error. Invalid nunber of argunents"”
print "Usage: do-what.ksh levelListFile includeFil eBaseNane"
print ""
exit 1
fi

- 26 -

Finding out the level of an application

#

CGenerating the include header file
#

print ""

print "do-what.ksh: generating include header file: $includeHeaderFile"

rm $i ncl udeHeader Fi |l e 2>/ dev/ nul
print "/* Nane: $i ncl udeHeaderFile */"
$i ncl udeHeader Fi l e

print "/* Purpose: This file is generated during build tine. *["

$i ncl udeHeader Fi l e

print "/* It has the "build-tinme’ serviceability information. */"

$i ncl udeHeader Fi l e

print "/* to be displayed by using the what utility. *["

$i ncl udeHeader Fi l e

print ""

$i ncl udeHeader Fi l e

print "#ifndef _WHAT INFO H "

$i ncl udeHeader Fil e

print "#define WHAT INFO H "

$i ncl udeHeader Fil e

while read |ine

do
nanme='echo $line | cut -d ' -f1° # Get first field
val ue=echo $line | cut -d° ' -f2-' # Get everything after the fi
stringVal ue=' echo "char $nameg[] = \"@#) $keyword $value\";"’
print "$stringVal ue"

$i ncl udeHeader Fi l e

done < $level ListFile

print ""

$i ncl udeHeader Fi l e

print "#endif"

$i ncl udeHeader Fi l e

print ""

$i ncl udeHeader Fi |l e

print "/* end of file */"

$i ncl udeHeader Fi l e

#

CGenerating the include generic source file

#

print ""

print "do-what.ksh: generating include generic source file:

$i ncl udeSour ceFi | e"

rm $i ncl udeSour ceFil e 2>/ dev/ nul |

print "/* Name: $i ncl udeSourceFile */"

$i ncl udeSour ceFi l e

print "/* Purpose: This file is generated during build tine. [

$i ncl udeSour ceFi l e

print "/* It has the "build-time’ serviceability information. */"

$i ncl udeSour ceFi l e

print "/* to be displayed by using the what utility. [

$i ncl udeSour ceFi l e

print "/* Note: It is necessary to declare and use the variables */"

$i ncl udeSour ceFi |l e

print "/* in order to fool the conpiler; otherw se, the [

$i ncl udeSour ceFi l e

print "/* conpiler will renpve them fromthe executable. *"

$i ncl udeSour ceFi |l e

-27-

>>
>>
>>
>>
>>
>>

>>

rst field

>>

>>
>>
>>

>>

>>
>>
>>
>>
>>
>>

>>

Finding out the level of an application

print
$i ncl udeSour ceFil e
print "int dummy=3;
$i ncl udeSourceFil e

print "char dummyString[2000];

$i ncl udeSourceFil e
print ""
$i ncl udeSourceFil e

while read |ine
do
nanme='echo $line | cut

/* Set to a nunber

-d’

-f1

Get first field

stringVal ue="strcpy(dumysString, $nane) ;"

print "$stringVal ue"
$i ncl udeSourceFil e
done < $levelListFile
print ""
$i ncl udeSour ceFil e

print "if (dumy == -7077) {"

$i ncl udeSourceFil e

print " printf(\"%\", dumyString);"

$i ncl udeSourceFil e
print "}"

$i ncl udeSour ceFil e
print ""

$i ncl udeSourceFil e

print "/* end of file */"
$i ncl udeSourceFi l e

#

CGenerating the include |evel
#

pr i nt "

source file

print "do-what.ksh: generating include |evel source file:

$i ncl udeSour ceLevel Fi |l e"

rm $i ncl udeSour ceLevel Fil e 2>/ dev/ nul

print "/* Nane:
$i ncl udeSour ceLevel Fil e

$i ncl udeSour ceLevel File */"

print "/* Purpose: This file is generated during build tine.

$i ncl udeSour ceLevel Fil e

print "/* It has the ’"build-time’

$i ncl udeSour ceLevel Fil e

serviceability information

print "/* to be displayed by the standal one | evel application

$i ncl udeSour ceLevel Fil e
pr i nt nn
$i ncl udeSour ceLevel Fil e

while read line
do
name='echo $line | cut

-d’

-f1

CGet first field

stringValue="printf(\"%\\\n\", $nane) ;"

print "$stringVal ue"
$i ncl udeSour ceLevel Fil e
done < $levelListFile

-28-

different than -7077 */"

*/n
*/n
*/n

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

Finding out the level of an application

print "" >>
$i ncl udeSour ceLevel Fil e
print "/* end of file */" >>

$i ncl udeSour ceLevel Fil e

print "do-what.ksh: done!"
print ""

exit O

end of file

Rexx command file: do-what.cmd

[* *]

/**

NAME: do-what.cnd | evel Fil eLi st incl udeFi | eBaseNane

SAVPLE | NVOCATI ON
rexx do-what.crmd naster.list what-info

PURPOSE
To prepare the following include files with the infornmation
of the serviceability strings specified in the |evel ListFile argunent
(such as level.list).

* include header file, such as what-info.h

* include source file, such as what-info.c

* include source file for standal one | evel application,

such as what-info-level.c

CUSTOM ZATI ON NOTES
* You may want to custom ze this script to suit your needs. There are
sone sections that are | abel ed "CUSTOM ZATI ON NEEDED'. For exanpl e:
* Replace the value for the "keyword" variable to identify
your application.

***/

/* CUSTOM ZATI ON NEEDED. */
/* Set the keyword to be used during what and grep. */

keywor d="my App"
/* Verify the input paraneters */

parse arg level ListFile includeFil eBaseNanme .
usage = " usage: rexx do-what.cnd | evelListFile includeFil eBaseNane"

/* Do the processing only if all variables are specified */

if (levelListFile="") | (includeFileBaseName="") then

do
say "*** Error: paraneters m ssing"
say usage
exit 1

end

say "do-what.cnd: begin"

/* Open input file */
rcFile = streanm(levellListFile, C, ’'open read)

-29.

Finding out the level of an application

if (rcFile \= "READY:") then

do
say "*** Error while trying to open file: " levelListFile
say " The return code is: " rcFile
say " Exiting now. "
exit 1
end

/* Open output file: header file */
i ncl udeHeaderFil e = includeFil eBaseNane || ".h"
rcFile = stream includeHeaderFile, C, ’'open wite’')
if (rcFile \= "READY:") then
do

say "*** Error while trying to open file:

i ncl udeHeader Fi |l e

say The return code is: rcFile
say " Exi ti ng now. "
exit 1

end

/* Open output file: generic source file */

i ncl udeSourceFile = includeFil eBaseNane || ".c
rcFile = stream(includeSourceFile, C, 'open wite')
if (rcFile \= "READY:") then

do
say "*** Error while trying to open file: " includeSourceFile
say " The return code is: " rcFile
say " Exiting now. "
exit 1
end

/* Open output file: level source file */
i ncl udeSourcelLevel File = includeFil eBaseNane || "-level.c"
rcFile = stream(includeSourcelLevel File, C, 'open wite')
if (rcFile \= "READY:") then
do

say "*** Error while trying to open file:

i ncl udeSour ceLevel Fil e

say The return code is: rcFile
say " Exi ti ng now. "
exit 1

end

[**x*x*xx%x Create the output include header file *****x*xxkxx/

say
say "do-what.cnd: generating include header file: " includeHeaderFile

outLine = '/* Nane: ' includeHeaderFile ' */’

tenp = LI NEQUT(i ncl udeHeader Fil e, outLine);

outLine = '/* Purpose: This file is generated during build time. */’

tenp = LI NEQUT(i ncl udeHeader Fil e, outLine);

outLine = '/* It has the "build-tine" serviceability information. */’
tenp = LI NEQUT(i ncl udeHeaderFil e, outLine);

outLine = '/* to be displayed by using the what utility. *[
tenp = LI NEQUT(i ncl udeHeaderFil e, outLine);

outLine ="’

tenp = LI NEQUT(i ncl udeHeader Fil e, outLine);

outLine = '#i fndef _WHAT INFO H'’
tenp = LI NEQUT(i ncl udeHeaderFil e
outLine = '#define WHAT INFO H_
tenp LI NEQUT(i ncl udeHeader Fil e, outLine);
outLine ="’

tenp = LI NEQUT(i ncl udeHeader Fil e, outLine);

out Li ne);

DO UNTIL (LINES(levelListFile) =0) /* Read until the end of file */

-30-

Finding out the level of an application

pair = LINEIN(levelListFile)
PARSE VAR pair variabl eNane vari abl eval ue
out Line="char " variabl eNane"[] = ""@#) " keyword variablevalue " "";"
temp = LI NEQUT(i ncl udeHeader Fil e, outLine)
END /* do until */

out Li ne = '#endif’

tenp = LI NEQUT(i ncl udeHeader Fil e, outLine);
outLine ="’

tenp = LI NEQUT(i ncl udeHeader Fil e, outLine);

outLine = '/* end of file */’
tenp = LI NEQUT(i ncl udeHeader Fil e, outLine);

STREAM i ncl udeHeaderFile, C, ’'close’);

rc =
rc = STREAM |l evel ListFile, C, ’'close’);

say "do-what.cnd: the include header file i ncl udeHeader Fi l e is now ready!”

[**x*x*xx%x Create the output include generic source file ******xx*xxkx/

/* Open input file */

rcFile = streanm(levellListFile, C, ’'open read)
if (rcFile \= "READY:") then

do

say "*** Error while trying to open file: levelListFile

say The return code is: rcFile

say " Exi ti ng now. "

exit 1
end
say ""
say "do-what.cnd: generating include generic source file: " includeSourceFile
outLine = '/* Nane: ' includeSourceFile ' */’
tenmp = LI NEQUT(i ncl udeSourceFil e, outLine);
outLine = '/* Purpose: This file is generated during build tine. *[
tenmp = LI NEQUT(i ncl udeSourceFil e, outLine);
outLine = '/* It has the "build-tinme" serviceability information. */’
tenmp = LI NEQUT(i ncl udeSourceFil e, outlLine);
outLine = '/* to be displayed by using the what utility. *[
tenmp = LI NEQUT(i ncl udeSourceFil e, outLine);
outLine = "/* Note: It is necessary to declare and use the variables */"
tenmp = LI NEQUT(i ncl udeSourceFil e, outLine);
outLine = "/* in order to fool the conpiler; otherw se, the *["
tenmp = LI NEQUT(i ncl udeSourceFil e, outLine);
outLine = "/* conpiler will renobve them fromthe executabl e. *["
tenmp = LI NEQUT(i ncl udeSourceFile, outLine);
outLine ="’

tenmp = LI NEQUT(i ncl udeSourceFil e, outLine);

outLine = "int dummy=3; /* Set to a nunber different than -7077 */"
tenp = LI NEQUT(i ncl udeSourceFile, outLine);

out Li ne = "char dumyString[2000]; "

tenp = LI NEQUT(i ncl udeSourceFile, outLine);

outLine = ""

DO UNTIL (LINES(levelListFile) =0) /* Read until the end of file */
pair = LINEIN(levelListFile)
PARSE VAR pair variabl eNane vari abl eval ue
out Li ne="strcpy(dummyString,"” variabl eNane ");
temp = LI NEQUT(i ncl udeSourceFil e, outlLine)

END /* do until */

-31-

Finding out the level of an application

outLine ="’
tenp = LI NEQUT(i ncl udeSourceFile, outLine);
outLine = "if (dummy == -7077) {"

tenp = LI NEQUT(i ncl udeSourceFile, outLine);
outLine =" printf(""%"",dumyString);"
tenp = LI NEQUT(i ncl udeSourceFile, outLine);
outLine = "}"

tenp = LI NEQUT(i ncl udeSourceFile, outLine);

outLine ="’

tenmp = LI NEQUT(i ncl udeSourceFil e, outLine);
outLine ='/* end of file */’

tenmp = LI NEQUT(i ncl udeSourceFil e, outLine);
rc = STREAM i ncl udeSourceFile, C, 'close');
rc = STREAM |l evel ListFile, C, 'close);

say "do-what.cnd: the include source file i ncl udeSourceFile is now ready!"

[**x*x*x%x%x Create the output include |evel source file ******x*xxkxx/

/* Open input file */

rcFile = streanm(levellListFile, C, ’'open read)
if (rcFile \= "READY:") then

do

say "*** Error while trying to open file: level ListFile

say " The return code is: " rcFile
say " Exi ti ng now. "
exit 1

end

Say nn

say "do-what.cnd: generating include |evel source file:
i ncl udeSour celLevel File

outLine = '/* Name: ' includeSourcelLevel File ' */’

tenp = LI NEQUT(i ncl udeSourcelLevel File, outlLine);

outLine = '/* Purpose: This file is generated during build tine. *
tenp = LI NEQUT(i ncl udeSourcelLevel File, outlLine);

outLine = '/* It has the "build-tine" serviceability information. */’
tenp = LI NEQUT(i ncl udeSourcelLevel File, outlLine);

outLine = '/* to be displayed by the standal one | evel application */’
tenp = LI NEQUT(i ncl udeSourcelLevel File, outlLine);

outLine ="’

tenp = LI NEQUT(i ncl udeSourcelLevel File, outlLine);

DO UNTIL (LINES(levelListFile) =0) /* Read until the end of file */
pair = LINEIN(levellListFile)
PARSE VAR pair vari abl eNane vari abl eval ue
outLine="printf(""%\n""," variabl eName ");
tenp = LI NEQUT(i ncl udeSourceLevel Fil e, outLine)
END /* do until */

outLine ="’
tenp = LI NEQUT(i ncl udeSourcelLevel File, outlLine);
outLine ='/* end of file */’

tenp = LI NEQUT(i ncl udeSourcelLevel File, outlLine);

STREAM i ncl udeSour ceLevel File, C, ’'close’);

r
r STREAM | evel ListFile, C, ’'close’);

cC =
cC =

say "do-what.cnd: the include source file i ncl udeSourcelLevel File " is now

ready!"

-32-

Finding out the level of an application

say "do-what.cnd: done!"
exit O

/* end of file */

Add entry for what-info.h and the do-what script in the makefile

In the make file for the application, add an entry for the include file “what-info.h”. In that way, it
Is built from scratch. Also, add entries to invoke the “ do-what” script.

Notice that this makefile includes also “myAppLevel” which will be explained |ater.

Unix makefile: myApp-x.mak

Thelinesin blue are new or modified lines with respect to the original version.

NAME: nyApp- X. mak

#

PURPOSE:

This is the makefile for building the nmyApp application in Unix.
#

NOTES:

* To build the application:

make -f nmyApp-x. mak nyApp

* The generation of the what-info* files is done by do-what. ksh
#

COWPI LER=cc

CFLAGS=

all: nyApp nyAppLevel

myApp: what-info.h main.o
$(COWPI LER) -0 nyApp nyApp. o

myAppLevel . what-info.h nmyAppLevel .o
$(COWPI LER) -0 nyAppLevel nyApplLevel .o

nyApp. o: nyApp. ¢
$(COWPI LER) $(FLAGS) -c myApp.c

myAppLevel . o: nyApplLevel . c
$(COWPI LER) $(FLAGS) -c nyApplLevel.c

what - i nf 0. h:
./ do-what . ksh master.list what-info

end of file

Windows makefile: myApp-w.mak
Thelinesin blue are new or modified lines with respect to the original version.

NAVE: nyApp- w. mak

-33-

Finding out the level of an application

#

PURPOSE:

This is the makefile for building the nyApp application in Wndows.
##

NOTES:
* To build the application using Wndows 32-bit (Visual Age C++):
nmake -f myApp-w. mak nmyApp. exe

* The generation of the what-info* files is done by do-what. cnd
#

COWPI LER=i cc

all: nyApp. exe nyAppLevel . exe

myApp. exe: what-info.h myApp. obj
$(COWPI LER) / Fe nyApp. exe myApp. obj

myAppLevel . exe: what-info.h nyAppLevel . obj
$(COWI LER) /Fe myAppLevel . exe myAppLevel . obj

myApp. obj : nyApp. ¢
$(COVPI LER) $(FLAGS) / C+ myApp. c

nyAppLevel . obj: nyApplLevel . c
$(COWPI LER) $(FLAGS) / C+ nyAppLevel .c

what - i nfo. h:
rexx .\do-what.cnd nmaster.list what-info

end of file

Detailed view of the generated sour ceinclude file“ what-info.c”

The script “do-what” will generate a source include file “what-info.c” which makes use of
dummy statements with the serviceability strings. Thisis done to avoid having the compiler’s
optimizer strip the actual strings from the executable or shared library files.

/* Name: what -info.c */

/* Purpose: This file is generated during build tine. */
/* It has the "build-tine" serviceability information. */
/* to be displayed by using the what utility. */
/* Note: It is necessary to declare and use the variables */
/* in order to fool the conpiler; otherw se, the */
/* conpiler will renove them fromthe executabl e. */
i nt dummy=3; /[* Set to a nunber different than -7077 */

char dummyString[2000];
strcpy(dumysString, driverinfo);
strepy(dumysString, buil dvbdelnfo);
strcpy(dumysString, platforminfo);
strcpy(dumyString, productlinfo);
strcpy(dumyString, copyrightinfo);
strcpy(dumyString, releaselnfo);
strcpy(dumyString, dbnslnfo);
strcpy(dummyString, patchinfo);

if (du == -7077) {
printf("%", dunmyString);

/* end of file */

-34-

Finding out the level of an application

Detailed view of the generated header includefile“what-info.h”

The script “do-what” will generate a header include file “what-info.n”:

/* Nane: what-info.h */

/* Purpose: This file is generated during build tine. */
/* It has the "build-tine" serviceability information. */
/* to be displayed by using the what utility. */

#i fndef _WHAT_INFO H_
#define _WHAT I NFO H_

char driverlnfo[]
char bui | dModel nf
char platform nfo
Version 4.0 "

char productlnfo[
char copyright | nf

"@#) nyApp Driver: 2001-03-09 *;
="@#) nmyApp Build Mode: Normal :
= "@#) nyApp This code was generated in Wndows NT

@#) myApp |BM My Application ";
"@#) nyApp (C) Copyright, IBM Corp., 1999, 2001 “;
'@

[
]

0
[
]
0

[

n=ru

char rel easelnfo[] #) nyApp Release: 1.2.3.4

char dbmslnfo[] = "@#) nyApp DBMS: DB2 UDB 5.2 F|xpak 11 ",
char patchlinfo[] = "@#) nyApp Patch: 0 ;

#endi f

/* end of file */

Detailed view of the generated sour ce include file “what-info-level.c”

The script “do-what” will generate a source include file “what-info-level.c”, which is used in the
standalone level application to actually print the serviceability strings

/* Nane: what-info-level.c */

/* Purpose: This file is generated during build tine. */
/* It has the "build-tine" serviceability information. */
/* to be displayed by the standal one | evel application */

printf("%\n", driverinfo);
printf("%\n", buildMdelnfo);
printf("%\n", platformnfo);
printf("%\n", productinfo);
printf("%\n", copyrightinfo);
printf("%\n", releaselnfo);

printf("%\n", dbnslinfo);
printf("%\n", patchlinfo);

/* end of file */

Modify the sour ce code for the executable file and add theincludefiles

Modify the source code for the executable file and add the include files “what-info.h” and
“what-info.c”. Notice the comment lines that describe important details when including these
files.

Thelinesin blue are new or modified lines with respect to the original version.

-35-

Finding out the level of an application

/*
NAME: nmy App. ¢

PURPOSE

This file provides the main() for the sanple application
that will illustrate how to enbed serviceability strings.
*/

#i ncl ude <stdi o. h>
#i ncl ude <string. h>

/* Include the header file with the information for the 'what’ command */
#i ncl ude "what-info.h"

i nt mai n(void)

~

* | nclude the source file with the information for the 'what’ command */
/* 1t needs to be |ocated after the | ast statenent of the

vari abl e decl arati on section, because it will declare nore vari abl es
and then use them */

#i ncl ude "what -info.c"
printf("The nmyApp executable is running.\n");
printf("It prints this nessage and then exits.\n");
return O;

}

/* end of file */

Update the script “do-build”

Update the script called “ do-build.cmd” (in REXX) or “do-build.ksh” (in Korn shell) which
invokes the “make” utility to build the product. This script can set some variables that might be
included in the “master.list” file. This main build script needed substantial updates.

Korn shell script: do-build.ksh

#!/usr/bi n/ksh
NAME: do-buil d. ksh driverName [debug | beta]

SAMPLE USACES:
do-build. ksh driverl
do-bui Il d. ksh 2001-03-01 debug

PURPOSE
This is the top level script to build the application "myApp".

CUSTOM ZATI ON NOTES:
* See the sections |abeled "CUSTOM ZATI ON REQUI RED'
* This exanple has 3 variables that need to be added to the nmaster.li st
file, because they change often and/or are set at build tinme.
+ They need to be defined in Section "Definition" and
+ They need to be added to the master.list in Section "Adding to List".
The vari abl es are:
DRI VER _NAMVE -> ldentifier which nmight be related to the build date.

HEEHH SRR H

-36-

Finding out the level of an application

This is passed as an input paraneter to this script.
BUI LD_MODE -> Norrmal (default), or Debug or Beta
OPERATI NG_SYSTEM -> Using "unane -a" to find out the nane.
This is conmputed at build-tine.
* The file "level.list" has the serviceability strings that do not change
often. The contents of this file is copied into the "master.list".
* The master.list file is a tenporary file that contains all the
serviceability strings. This file is generated every single tine
this build script is invoked and it is used inside the nain make file
(myApp-x. mak) which in turn, calls do-what.ksh.

R RH

#**

if [$# -eq 0]

t hen
print "Error: need to specify driver nane."
print "Usage: do-build.ksh driverNanme [debug | beta]"
exit 1

fi

print "do-build.ksh: Starting a build of the nyApp application”
print "date: ‘date'"
print ™"

CUSTOM ZATI ON REQUI RED: Section "Definition”

* Set up the variables that change frequently:

export BU LD _MODE=" Nor mal "

Find out the version and nanme of the operating system

export OPERATI NG_SYSTEMF unane -a

if ["$OPERATI NG SYSTEM' = ""]

t hen
print "*** Error: no output from unane"
exit 1

f

CUSTOM ZATI ON REQUI RED:
* You need to list the files to be renoved before doing a build.

rm nmyApp # This is the main application

rm nmyAppLevel # This is the standal one | evel application
rmwhat-info.h # This is the common include header file.

rmwhat-info.c # This is the generic include source file.
rmwhat-info-level.c # This is the include source file for |evel application.
rmmaster.|ist # This is a tenporary file, with the conplete Iist of
strings.

rm*.o

CUSTOM ZATI ON REQUI RED:
* You need to handl e the appropriate processing of input argunents.
For exanpl e, the DEBUG and BETA options are set.

if [$# -ge 1]
t hen
typeset -u DRI VER NAVE=$1
if [$# -eq 2]
t hen
typeset -u OPTI ON=$2
case "$OPTION' in
BETA| bet a)
FLAGS=" - DBETA
export BU LD MODE="BETA"

1

-37-

Finding out the level of an application

DEBUQ debug)
FLAGS=" - DDEBUG - g’
export BU LD MODE=" DEBUG'

1
*

print "Unrecogni zed option: $OPTI ON'

esac
i
fi

CUSTOM ZATI ON REQUI RED: Section "Adding to List"

* It is necessary to create the master.list file with the variables

defined in this script. Follow the format bel ow, which is al so used

inthe file with those serviceability strings that do not change often,
#

such as level.list. The format is a variabl eNane (such as driverlnfo)
followed by a value which can be several strings.
print " driverInfo Driver: $DRI VER NAME" >> npaster.|ist

print "buil dvbdel nfo Build Mde: $BU LD MODE" >> pmaster.|ist
print " platforminfo This code was generated i n $OPERATI NG SYSTEM' >>
master.|ist

CUSTOM ZATI ON REQUI RED:

* |f you use a nane other than "level.list", then custonize the follow ng
statenents.
level ListFile="l]evel.list"

while read |ine
do

print $line >> master.list
done < $levellListFile

CUSTOM ZATI ON REQUI RED:
* Invoke your make file

make -f nyApp-x.mak all FLAGS="$FLAGS"
end of file

Rexx command file: do-build.cmd
[* */

/**

NAME: do-build.cnd driverNane [debug | beta]

SAMPLE | NVOCATI ON:
rexx do-build.cnd 2001-03-09 debug

PURPCSE:
This is the top level script to build the application "mApp".

NOTES:
* Atenporary file named "do-ver.out" is used.

CUSTOM ZATI ON NOTES:
* See the sections | abel ed "CUSTOM ZATI ON REQUI RED" .

-38-

Finding out the level of an application

* This exanple has 3 variables that need to be added to the nmaster.|ist
file, because they change often and/or are set at build tinme.
+ They need to be defined in Section "Definition" and
+ They need to be added to the master.list in Section "Adding to List".
The vari abl es are:

DRI VER _NAVE -> |dentifier which might be related to the build date.
BUI LD_MODE -> Normal (default), or Debug or Beta
OPERATI NG_SYSTEM -> Using "unane -a" to find out the nane.

* The file "level.list" has the serviceability strings that do not change

often. The contents of this file is copied into the "master.list".

* The master.list file is a tenporary file that contains all the
serviceability strings. This file is generated every single tine
this build script is invoked and it is used inside the nain nmake file
(myApp-w. mak) which in turn, calls do-what.cnd.

************************************)\'7\'*******************************/

say "do-build. ksh: Starting a build of the nyApp application”

say "date: "
"@late /t"
say ""

/* Verify the input paraneters */

parse arg driverName option
usage = "do-build.cnd driverNane [debug | beta]"

/* CUSTOM ZATI ON REQUI RED: Section "Definition"
Set up the variables that change frequently:

*
/
if (driverName = "") then
do
say "*** Error: need to specify the driver nane."
say usage
exit 1
end
el se
do
DRI VER_NAME=dr i ver Nane
end

BUI LD_MODE=" Nor mal ’

/* Issue the "ver" command and store the output in a tenmporary file nanmed

“do-ver.out".

The vari abl e " OPERATI NG_SYSTEM will have the version of the operating
system
*/
verout = "do-ver.out"

"@er >" verout
do while lines(verout)
parse val ue linein(verout) wi th OPERATI NG SYSTEM
end
call lineout verout
"@lel " verout

/* Renpve files */

/* CUSTOM ZATI ON REQUI RED:
You need to list the files to be renoved before doing a build.

*/
"@el what-info.h’ [* This is the common include header file. */
"@lel what-info.c’ /* This is the generic include source file. */

-39-

Finding out the level of an application

"@el what-info-level.c’ /* This is the include source file for |evel applica-
tion. */

"@lel master.list’ /* This is a tenporary file, with the conplete |ist
of strings. */
"@el *.obj’

" @lel *.exe’

/* CUSTOM ZATI ON REQUI RED:
You need to handl e the appropriate processing of input argunents.
For exanpl e, the DEBUG and BETA options are set.

*/

/* Do the processing for the option */

if (option = "") then

do
FLAGS=""

end

el se

do
if (option = "debug") then
do

FLAGS="/Ti + / DDEBUG'
BUI LD _MODE=" DEBUG
end
el se
do
if (option = "beta") then
do

FLAGS="/ DBETA"
BU LD_MCODE=" BETA’

end

el se

do
say "*** Error: wong option. If specified, it nust be: debug or beta”
say usage
exit 1

end

end

end

/* CUSTOM ZATI ON REQUI RED
Specify the permanent file "level.l
change often. This is the input fi
Specify the tenporary file "master
strings. This is the output file.

ist" with the variables that do not
e.

list" that will have all the

* [

/[* Open input file */

inputFile="1evel.list’

rcFile = stream inputFile, C, ’'open read)
if (rcFile \= "READY:") then

do
say "*** Error while trying to open file: " inputFile
say " The return code is: " rcFile
say " Exi ti ng now. "
exit 1
end

/* Open output file */
outputFile="master.list’

rcFile = stream outputFile, C, ’'open wite)
if (rcFile \= "READY:") then

do

say "*** Error while trying to open file: outputFile

- 40 -

Finding out the level of an application

say " The return code is: " rcFile
say " Exi ti ng now. "
exit 1

end

/* CUSTOM ZATI ON REQUI RED: Section "Adding to List"

It is necessary to create the master.list file with the variabl es
defined in this script. Follow the format bel ow, which is al so used
inthe file with those serviceability strings that do not change often,
such as level.list. The format is a variabl eNane (such as driverlnfo)
foll owed by a value which can be several strings.

*
/

out Li ne=" driverinfo Driver: " DRI VER NAMVE

tenp = LI NEQUT(outputFile, outlLine);

out Li ne="bui | dModel nfo Build Mde: " BU LD MODE

tenp = LI NEQUT(outputFile, outlLine);

outLine=" platformnfo This code was generated in " OPERATI NG SYSTEM
tenp = LI NEQUT(out putFile, outlLine);

DO UNTIL (LINES(inputFile) =0) /* Read until the end of file */
outLine = LINEIN(inputFile)
tenp = LI NEQUT(out put Fi | e, out Li ne)

END /* do until */

rc
rc

STREAM out putFile, C, 'close’);
STREAMinputFile, C, ’'close');

/* I nvoke the make file */

say 'nmake -f myApp-w. nmak all FLAGS=" FLAGS
"nmake -f myApp-w. mak all FLAGS="' FLAGS "’
/* end of file */

Build the application and test the embedded serviceability strings.

Now that all the components are ready, you can proceed to build the application and test the
embedded serviceability strings.

Unix: Execute the build script and test the serviceability strings (normal mode):
The following command will generate the executable myA pp:

$ do-buil d. ksh 2001-03-09

The output messages of the executable myApp are:

$ nmyApp _ ,
The nyApp executabl e is running.

It prints this message and then exits.
Usethe ‘what’ utility to see the embedded serviceability strings:

$ what nyApp
my App: . . - .
61 1.11 src/bos/usr/ccs/lib/libc/ __threads init.c, libcthrd, bos43

-41 -

Finding out the level of an application

K, 9823A 43K 6/12/98 12:37:06
myApp Driver: 2001-03-09
myApp Buil d Mode: Nor mal
myApp This code was generated in Al X tcai x08 3 4 006081014C00
myApp |BM My Application
myApp (C) Copyright, IBM Corp., 1999, 2001
myApp Rel ease: 1.2.3.4
myApp DBVS: DB2 UDB 5.2 Fixpak 11

myApp Patch: 0O

Notice that there was an extraline in the output that had nothing to do with the application. Thus,
it is possible to issue the following to filter only those strings for “myApp”:

$ what nyApp | grep nyApp

my App: i

myApp Driver: 2001-03-09

myApp Buil d Mode: Nor mal

myApp This code was generated in Al X tcaix08 3 4 006081014C00
myApp | BM My Application

myApp (C) Copyright, IBM Corp., 1999, 2001

nmyApp Rel ease: 1.2.3.4

myApp DBVS: DB2 UDB 5.2 Fixpak 11

myApp Patch: 0

Windows. Execute the build script and test the serviceability strings (normal):

c:\> rexx do-build.cnd 2001-03-09

The output messages of the executable myApp are:

c:\>nyApp
The nmyApp executabl e is running.
It prints this nessage and then exits.

c:\> what nmyApp. exe
My App. exe:
myApp Driver: 2001-03-09
myApp Buil d Mode: Nor mal
myApp Code generated in Platform Wndows NT Version 4.0
MyApp | BM My Application
myApp (C) Copyright, IBM Corp., 1999, 2001
myApp Rel ease: 1.2.3.4
myApp DBVS: DB2 UDB 5.2 Fixpak 11

myApp Patch: 0O

Unix: Executethe build script and test the serviceability strings (beta):

$ do-build. ksh 2001-03-09 beta

$ what nyApp | grep nyApp

my App: .

myApp Driver: 2001-03-09

myApp Build Mdde: Beta

myApp This code was generated in Al X tcai x08 3 4 006081014C00

myApp | BM My Application

- 42 -

Finding out the level of an application

myApp (C) Copyright, |BM Corp., 1999, 2001
myApp Release: 1.2.3.4
nyApp DBMS: DB2 UDB 5.2 Fixpak 11

myApp Patch: 0O

Windows. Execute the build script and test the serviceability strings (beta):

c:\> rexx do-build.cnd 2001-03-09 beta

c:\> what nyApp. exe
My App. exe:
myApp Driver: 2001-03-09
myApp Build Mdde: Beta
myApp Code generated in Platform Wndows NT Version 4.0
MyApp | BM My Application
myApp (C) Copyright, IBM Corp., 1999, 2001
nmyApp Rel ease: 1.2.3.4
myApp DBVS: DB2 UDB 5.2 Fixpak 11
myApp Patch: 0

-43-

Finding out the level of an application

Update of the necessary files when performing a build for an update to the
product

The second step in this method is ssimply the maintenance of the necessary files when performing
abuild for an update to the product.

* |f you need to add another “static” string, the only changeisto add it to the “level.list” file,
which isafile that should be under library control.

* |f you need to add another kinds of serviceability string, then you need to add it in the script
“do-build”, and follow the customization notes to properly include all the necessary statements.

* Build the application and test the embedded serviceahility strings.

Finding out the level of an application

How to implement the standalone tool in C language

This section describes how to prepare a standal one serviceability tool that displays the desired
serviceability strings. This application could be built using make files in multiple platforms using
multiple DBMSs; specifically, the cases for Windows NT and AlX are thoroughly explained.

This standal one serviceability tool needs to be built and delivered with the normal application.

The files mentioned in this section are available from the "c" subdirectory from the zip file
referred to in the section "How to get the files mentioned in this document ".

This section is a continuation of the previous section “How to embed the serviceability stringsin
C language”, in which scripts, makefiles and included files are described in detail. This current
chapter covers only the details on the source file for the standal one executable “myA ppLevel”
which displays the desired serviceability strings. By the way, the makefiles from the previous
chapter already handle the compilation and linking of this standalone tool.

Create the main sour ce codefile“myAppLevel.c’

Create a source code file called “myAppLevel.c” which will make use of dummy statements with
the serviceability strings and will display them.

Notice that you can add extra variables that are not defined in what-info.h and what-info.c, such
as “dummyPatch” in order to display the patch (also called hot-fix or temporary fix) for the
application.

/*
NANME: nyApplLevel . c
PURPOSE
This file provides the main() for the sanpl e standal one
tool for an application that will illustrate how to enbed
serviceability strings.
NOTES:
To conpil e:
Uni x: cc myApplLevel .c -0 nmyAppLeve
W ndows: icc nyAppLevel.c /Fe nyAppLeve
*/

#i ncl ude <stdio. h>
#i ncl ude <string. h>

/* Include the header file with the information for the 'what’ command */
#i ncl ude "what -i nfo. h"

i nt mai n(void)
formation for the "what’ command */

n
ast statenent of the variable
Il declare nore vari abl es

/* Include the source file with the
/* It needs to be |ocated after the
it

i
|
decl arati on section, because W

- 45 -

Finding out the level of an application

use them */

#i ncl ude "what-info-1evel.c"

and t hen
return O
}
/* end of f

ile */

Unix: Executethe build script and test the serviceability strings (normal):

$ do-buil d.

$ nyApplLeve
@#) myApp
@#) myApp
@#) myApp
@#) myApp
@#) myApp
@#) myApp
@#) nmyApp
@#) myApp

ksh 2001-03-09 beta

I

Driver: 2001-03-09

Bui | d Mode: BETA

This code was generated in Al X tcai x08 3 4 006081014C00
| BM My Application

(C Copyright, |1BM Corp., 1999, 2001

Rel ease: 1.2.3.4

DBMS: DB2 UDB 5.2 Fixpak 11

Patch: O

Windows. Execute the build script and test the serviceability strings (beta):

c:\>rexx d

(9]

\> nyAppL
) "YApp
) "VApp
) "VApp
) "YApp
) "YApp
) "YApp
) "YApp
) "YApp

QIQIRINIRIRIRIN

o-bui | d. cnd 2001- 03- 09

evel . exe
Driver: 2001-03-09
Bui | d Mode: Nornal
This code was generated in Wndows NT Version 4.0
I BM My Application
(© Copyright, 1BM Corp., 1999, 2001
Rel ease: 1.2.3.4
DBMVS: DB2 UDB 5.2 Fixpak 11
Pat ch: 0

- 46 -

Finding out the level of an application

How to embed the serviceability strings in Java

This section describes how to embed the serviceability strings in the executable file for a sample
application called “myapp” which is developed in the Java language. This application could be
built using make files on multiple platforms using multiple DBMSs. In what follows, the process
is thoroughly documented for AIX and Windows NT.

Thefilesin this section are available from the “java” subdirectory of the expanded zip file
referred to in the section “How to get the files mentioned in this document “.

The structure of this chapter is asfollows:

* Part 1: Origina structure of thefiles.
A sample application called “myapp” is shown inits original form, which does not use the
methodology explained in this document. The source code is very simple because we are not
concerned with other aspects of the development of an application. Also, the original Korn
shell scripts and Windows command batch files are shown. This provides a baseline that will
give the reader a point of reference.

e Part 2: Modifications to include the serviceability strings
The source code will be modified to contain the searchable strings mentioned in this
document. The objective isto show the reader, the relatively small “delta” effort that is
needed in order to implement the methodology.

Part 1: Original structure of the files

Let’s start with the description of the simple application myapp which iswritten in Java and
which does not contain the serviceability strings. Theideaisto provide a baseline to help under-
stand the modifications explained later on.

* The overal picture of the source code is the following:
nyApp. j ava (nmain)
* The overal picture of the processing is the following:
do-build
|
+ Preparation step: set flags, delete tenp files
|
+ Invoke the make file

+ I nvoke Java conpil er

-47 -

Finding out the level of an application

Notice that thisis avery small and simple program.

Original source code for myapp.java
/ *

NANME: myapp. j ava
PURPOSE
This file provides th
[il

that wil illustrate

SAMPLE | NVOCATI ON

iy Java nyapp. nyapp

package nyapp;

public class nyapp
/ / VARl ABLES

public static fina
public static fina
public static fina
public static fina

public static void nai

System out. println("
System out. println("

}/ /end main()
}/ lend nyapp

e main() for the sanple application
how to enbed serviceability strings.

bool ean DEBUG = f al se;

String debuglnfo = "*** This is DEBUG code ***";
bool ean BETA = fal se;

String betalnfo = "*** This is BETA code ***"

n(String[] args)

The base nyapp executable is running.");
It prints this nmessage and then exits.");

Original source code for the makefiles

Unix makefile: myApp-x.mak

NAME: nyapp- x. mak
#

PURPCSE:
This is the makefile
#

for building the nmyapp application in UN X

NOTES:

* To build the application

make -f nyapp-x. nmak nmyapp
#

COWPI LER=j avac

all: clean nyapp
nmyapp: nyapp/ nyapp. cl ass

nmyapp/ myapp. cl ass: nyapp/ nyapp. j ava

$(COWPI LER) nyapp/

cl ean:
-cd nyapp; rm*.c
end of file

myapp. j ava

ass; cd ..

- 48 -

Finding out the level of an application

Windows makefile: myApp-w.mak

NAVE: nyApp- w. mak
#

PURPGCSE:
This is the makefile for building the nyApp application in W ndows.
#

NOTES:

* To build the application using Wndows 32-bit (Visual Age C++):
nmake -f myApp-w. mak nmyApp. exe

#

COWPI LER=i cc

all: nyApp. exe

myApp. exe: nyApp. obj _
$(COWPI LER) / Fe nyApp. exe myApp. obj

myApp. obj : myApp. c
$(COWPI LER) $(FLAGS) /C+ myApp.c

end of file

Original source code for the scriptsto invoke the makefile

Korn shell script: do-build.ksh
#!/usr/bi n/ ksh
NAME: do-buil d. ksh driverNanme [debug | beta]
SAMPLE USACES:
do-build. ksh driverl
do-bui Il d. ksh 2001-03-01 debug

PURPCSE:
This is the top level script to build the application "myapp".

HHEHFEHHFHHHHH

#***********************************)\-7\-*****************************

* You need to handl e the appropriate processing of input argunents.
For exanpl e, the DEBUG and BETA options are set.

if [$# -ge 1]
t hen
typeset -u DRI VER NAVE=$1
if [$# -eq 2]
t hen
typeset -u OPTI ON=$2
case "$OPTION' in
BETA| bet a)
prl nt "**********ERRG:{**********"
print "Set the BETA variable in the java source code for nyapp "

print "to 'true’ and then call this script without the beta parameter."”

- 49 -

Finding out the level of an application

print ""
print "./do-build.ksh driverNane"
exit 1

DEBUG| debug)

prlnt "**********ERRO?**********"

print "Set the DEBUG variable in the java source code for nyapp "

print "to "true’ and then call this script wthout the debug paraneter:"”
print ""

print "./do-build.ksh driver Nanmge"

exit 1

(IR}
*

print "Unrecognized option: $OPTI ON'
esac
fi
fi
* Invoke your make file
make -f nyapp-x.mak all FLAGS="S$FLAGS"

end of file

Original Source Code for the build Scripts

Rexx command file: do-build.cmd

[* *]

/**

NAME: do-build.cnd [debug | beta]

SAMPLE | NVOCATI ON
rexx do-build.cnd 2001-03-09 debug

PURPOSE
This is the top level script to build the application "nmyapp"

***/

/* Verify the input paraneters */

parse arg driverName option
usage = "do-build.cnd [debug | beta]"

/* Do the processing for the option */

if (option = "") then

do
FLAGS=""

end

el se

do
if (option = "debug") then
do

Sa.y "**********ERRmk*********"

-850 -

Finding out the level of an application

say "Set the DEBUG variable in the java source code for myapp "
say "to 'true’ and then call this script without the debug paraneter:"

say ""
say "rexx do-build.cnd driverNane"
exit 1
end
el se
do
if (option = "beta") then
do

Say "**********ERRO:\»\-*********"
say "Set the BETA variable in the java source code for nyapp "
say "to 'true’ and then call this script without the beta paraneter.”

say "
say "rexx do-build.cnd driverNane"
exit 1
end
el se
do
say "*** Error: wong option. If specified, it nust be: debug or beta"
say usage
exit 1
end
end
end
/* Section: |Invoke the make file */

say 'nmake -f nyapp-w mak all FLAGS=" FLAGS
"nmeke -f myapp-w. mak all FLAGS="' FLAGS "’
/* end of file */

Files needed:

java\base\do-build.cmd
java\base\do-build.ksh
java\base\myapp-w.mak
java\base\myapp-x.mak
java\base\myapp\myapp.java

Building the base myapp application:

The steps that follow are for both Windows (INTEL) and AIX (UNIX) platforms since the java
code is built on and runs on both platformsin essentially the same way.

1) First create the files above or unzip the trlevel.zip file described in the section
“How to get the Files Mentioned in this Document.”.

2) Add the location of the myapp directory to the CLASSPATH variable

Intel: set CLASSPATH=%CLASSPATHY <t heLocati onOf ThenyappDbirect ory>
UNI X export CLASSPATH=$CLASSPATH: <t heLocat i onCOf ThenyappDi r ect ory>

-51-

Finding out the level of an application

For example,
set CLASSPATH=%CLASSPATHY D: \ri ck\ papers\trl evel \java\ base

*NOTE: itisimportant to have your CLASSPATH set properly, including having the current
working directory (.) inthe CLASSPATH. Hereisan example:

CLASSPATH=. ; c:\jdk1.1.8\lib\classes. zip;c:\jdkl. 1.8\Iib;D:\rick\papers\trleve
\j ava\ base

2) cdinto the java\base directory (javalbase on UNIX) and build the myapp and myapplevel
executables by running the do-build script. NOTE: UNIX users must run a CRLF tool on all
filesto remove carriage return characters ("M).

Syntax: do-build.cnd driverName [debug | beta]

Intel: rexx do-build.cnd
UNI X: chnmod 755 do-buil d. ksh
./ do-build. ksh

3) Test the myapp application by running it.
javamyapp.myapp

The myapp application only prints out a message that it was running and then exits:

The base nyapp executable is running.
It prints this message and then exits.

In real life the myapp application would be your main application to which you wish to add the
serviceability strings.

4) Test the standard "what" command against the myapp executable.

what myapp\ nyapp. cl ass

It does not display any information because there are no serviceability stringsin the product.

myapp\myapp.class.

Part 2: Modifications to include the serviceability strings

There are 2 types of serviceability strings, from the point of view of their creation times. All
these strings will eventually be placed in the java class whatinfo.

-52-

Finding out the level of an application

» Stringsthat seldom change, such as the copyright information, the product name, the
company name. For this reason, in this document these strings are referred as “ static strings”.
They are defined in the “level list” file and handled inside the script “do-what”. level listisa
permanent file that once created can be checked-out from, modified and then checked-in to a
library system when one of these variables needs to be changed (not adaily event). We felt
that it was too cumbersome to include those variables that may change daily, because we did
not want to have the overhead of checking out and checking in the file every day.

» Stringsthat change frequently or that can be obtained from the environment or require
additional processing. It is not feasible to add them into the level.list file because it would
cause alot of overhead with the software configuration system. Instead, these variables are
handled by the main build script “do-build” and then added to atemporary “master.list” file,
which in turn is handled by the script “do-what”. A sub-classification of these variablesis
shown below:

» Stringsthat change frequently and which are specified by the user, usualy when a
build activity is performed, such as the driver/level. These strings are referred to as
“build-time strings’. They are passed as parameters or as environment variables tothe
script “do-build”.

» Stringsthat can be obtained from the environment, such as the version of the operat-
ing system used during the build. These strings are referred to as “ environmental
strings’.

» Stringsthat do not fit neatly into the above categories, such as when building beta
code or debug code. These strings are referred as “ miscellaneous strings'.

For the java version of myapplevel there is also another type of string --- the build mode which is

embedded within the myapp application itself. These are hard-coded strings that reside within

the main application and which represent either DEBUG or BETA builds. These are the only
strings that are not included in the master.list. The myapplevel application will retrieve the infor-
mation about the build mode directly from the myapp application.

The main modificationsto include the serviceability stringsare:

* A permanent file, named “level.list”, that has a set of variable-value pairs which specify the
“static” searchable strings to be embedded in the executables. This file can be stored in a
software configuration library. These are the strings that do not change very much The format is
one row per entry; each entry is composed of avariable name, a space and avariable value
which isthe rest of the row. For example:

productinfo IBM My Application
copyrightinfo (C) Copyright, |IBM Corp., 1999, 2001
rel easelnfo Release: 1.2.3.4
dbnsl nf o DBMS; DB2 UDB 5.2 Fixpak 11
pat chl nf o Pat ch: 0

* A temporary file, named “master.list”, which will be recreated during each build and which
will have the strings from the “level.list” file and will have additional strings (thisis done inside
do-build). Eventually this master.list will be handled by the script “do-what” to generate the
whatlnfo class which is described next. For example, the master.list file includes three variables

-53-

Finding out the level of an application

(in blue) which are obtained at build-time; the rest are the variables that are copied from the
“level.list” file.

driverinfo Driver: 2001-03-09
bui | dMbdel nfo Build Mbde: Nornal
platform nfo This code was generated in Wndows NT Version 4.0
productinfo IBM My Application
copyrightlinfo (C Copyright, |IBM Corp., 1999, 2001
rel easelnfo Release: 1.2.3.4
dbrsl nf o DBMS: DB2 UDB 5.2 Fixpak 11
pat chl nfo Pat ch: 0

* The whatInfo class is generated by the script “do-what” from the “master.list” file. Thus, the
overall picture of the source codeis the following:.

myApp. j ava (main)

* The overal picture of the processing is the following:

Thelinesin blue are new or modified lines with respect to the original version.

do--build
L Preparation step: set flags, deletes tenp files
L Copies "static" variables from"level.list" into the "nmaster.list"
L Prepends the "dynam c" variables to the "master.list"
L I nvokes the nmake file

I nvokes do-what which reads the "master.list" to create:
what | nf 0. j ava

+
+ I nvokes Java conpil er

The implementation can be split into two stages:

a) Creation of the necessary files and updates to make files and source code files. Thisis done
only once.

b) Update of the necessary files when performing aroutine build, in which there is an update to
the product.

These two steps are discussed in detail next.

Finding out the level of an application

Creation of the necessary files and updates to make files and source code files

Thefirst step in the implementation of this method is the creation of the necessary files and the
updates to the make files and the source code files. Thisis done only once.

* Create afile named “level.list” that has a set of variableName-variableValue pairs which
specify the “static” searchable strings to be embedded in the executables. This file can be stored
in a software configuration library. These are the strings that do not change very much

* Create a script called “do-what.cmd” or “do-what.ksh” which will generate the whatlnfo class:
* whatlnfo.java isaclass for the myapplevel application.

* In the make file for the application, add an entry for the classfile “whalnfo.java’. In that way,
it is built from scratch. Also, add entries to invoke the “do-what” script.

* Modify the script called “do-build” which invokes the “make” utility to build the product. This
script can set some variables that might be included in the master.list file.

* Build the myapp and myapplevel applications and test the embedded serviceability strings.

Therest of this section provides actual samples that illustrate the points.

Createthe“level.list” filewith the " static” strings

The format is one row per entry; each entry is composed of a variable name, a space character
and avariable value which is the rest of the row. For example:

productinfo IBM My Application
copyrightlinfo (C Copyright, |IBM Corp., 1999, 2001
rel easel nfo Rel ease: 1.2.3.4
dbrsl nf o DBMS: DB2 UDB 5.2 Fixpak 11
pat chl nfo Pat ch: 0

Createthe script “do-what”

Create ascript called “do-what.cmd” (in REXX) or “do-what.ksh” (in Korn shell) which will
generate the class file “whatInfo” with all the desired serviceability strings. The sample script
was devel oped to be self-contained, in the sense that if you want to add a new serviceability
string, you do not need to modify this “do-what” script.

Korn shell script: do-what.ksh

#!/ usr/ bi n/ ksh

#

NAME: do-what. ksh | evel ListFile includeFil eBaseNane
#

SAMPLE | NVOCATI ON:

-B5-

Finding out the level of an application

do-what . ksh master.list what-info
PURPCSE:

PURPOSE

To generate the java class whatlnfo which will be instantiated
by both the myapp and nyappl evel applications. The "report"
method will be used to display all the serviceability strings.

CUSTOM ZATI ON NOTES:
* See the sections |abeled "CUSTOM ZATI ON REQUI RED'.
* You may want to customize this script to suit your needs. For exanple:
* Replace the value for the "keyword" variable to identify
your application.

HHEHHE BRI EETR

#***/

CUSTOM ZATI ON NEEDED.
Set the keyword to be used during what and grep

keywor d="nmyapp"
Verify the input paraneters

if ["$#" -eq 2]

t hen

| evel Li st Fil e=$1

i ncl udeFi | eBaseNane=%$2

i nf oFi | e=* echo $i ncl udeFi | eBaseNane' ".j ava"
print "do-what.ksh begin"

print " ->file with level information: $levelListFile "
print " ->info file: $i nf oFi | e"
el se

print "*** Error. Invalid nunber of argunents"”
print "Usage: do-what.ksh |evelListFile includeFil eBaseNane"
print ""
exit 1
fi

#
Cenerating the java info file
#

print
print "do-what.ksh: generating info file: $infoFile"

rm $i nfoFil e 2>/ dev/ nul

print "/* Nane: $infoFile */" >> $infoFile
print "/* Purpose: This file is generated during build tine. *o>>
$infoFile

print "/* It has the 'build-time’ serviceability information. */" >>
$infoFile

print "/* to be displayed by using the nyapplevel utility. *o>>
$infoFile

print "" >>
$infoFile

print "package $keyword;" >>
$infoFile

print "" >>
$infoFile

print "public class $includeFil eBaseNane" >>
$infoFile

print "{" >>
$infoFile

-56 -

Finding out the level of an application

print * [/This class is generated by do-what.ksh or do-what.cnd. Do not
nodi fy!" >> $infoFile

print " //VAR ABLES" >>
$infoFile
while read line
do
nane='echo $line | cut -d ' -f1° # Get first field
val ue=echo $line | cut -d ' -f2-' # Get everything after the first field
stringValue="echo " public String $nane = \"@#) $keyword $val ue\";"’
print "$stringVal ue" >>
$infoFile
done < $levellListFile
print " //MNMETHODS" >> $infoFile
print " public void report()" >> $infoFile
print " {" >> $infoFile
print "" >> $infoFile
while read |ine
do
nanme='echo $line | cut -d ' -f1° # CGet first field
val ue=" echo $line | cut -d ' -f2-' # Get everything after the first field
stringVal ue= echo " Systemout.println(this.$nanme);""
print "$stringVal ue" >>
$infoFile
done < $levellListFile
print " }//end of report()" >> $infoFile
print "}//end of whatlnfo" >> $infoFile
print "" >> $infoFile
print "/* end of file */" >> $infoFile

print "do-what.ksh: done!"
print ""

exit O

end of file

Rexx command file: do-what.cmd

**/

/**

NANE: do-what.cnd | evel Fi |l eLi st i ncl udeFi | eBaseNane

SANVPLE | NVOCATI ON
rexx do-what.cnd nmaster.list whatlnfo

PURPOSE

To generate the java class whatlnfo which will be instantiated
by both the nyapp and nyappl evel applications. The "report”
method will be used to display all the serviceability strings.

CUSTOM ZATI ON NOTES
* You may want to custom ze this script to suit your needs. There are
sone sections that are | abel ed "CUSTOM ZATI ON NEEDED'. For exanpl e:
* Repl ace the value for the "keyword" variable to identify
your application.

-57-

Finding out the level of an application

************************************)\'7\'*******************************/

[* CUSTOM ZATI ON NEEDED. */
/* Set the keyword to be used during what and grep. */

keywor d="nyapp"
/* Verify the input paraneters */

parse arg level ListFile includeFil eBaseNane .
usage = " usage: rexx do-what.cnd | evel ListFile includeFil eBaseNanme"

/* Do the processing only if all variables are specified */
if (levellListFile="") | (includeFileBaseName="") then

do
say "*** Error: paraneters m ssing"

say usage
exit 1
end

say "do-what.cnd: begin"

/* Open input file */

rcFile = stream(levellListFile, C, ’'open read)
if (rcFile \= "READY:") then

do

say "*** Error while trying to open file: level ListFile
y yi ng p

say " The return code is: " rcFile
say " Exiting now. "
exit 1

end

/* Open output file: */

i nfoFile = includeFil eBaseName || ".java"

rcFile = stream infoFile, C, ’'open wite)
if (rcFile \= "READY:") then
do

say "*** Error while trying to open file:

infoFile

say " The return code is: " rcFile
say " Exi ti ng now. "
exit 1

end

[*r*xxxx%xx% Create the info java file ***x*x*xxrxx)

say
say "do-what.cnd: generating info file: " infoFile

outLine = '// Nane: ' infoFile

tenp = LINEQUT(i nfoFile, outLine);

outLine = '// Purpose: This file is generated during build tinmne. '
tenp = LINEQUT(i nfoFile, outlLine);

outLine ="// It has the "build-time" serviceability information. ’

tenp = LINEQUT(i nfoFile, outLine);

outLine ="// to be displayed by using the what utility.
tenp = LINEQUT(i nfoFile, outlLine);

outLine ="’

tenp = LINEQUT(i nfoFile, outlLine);

out Line = ' package ' keyword ’;
tenp = LI NEQUT(i nfoFile, outLine);
outLine ="’

- 58 -

Finding out the level of an application

tenp = LINEQUT(i nfoFile, outlLine);

outLine = "public class ' includeFi| eBaseNane

tenp = LI NEQUT(infoFile, outLine);

outLine =" {’

tenp = LI NEQUT(i nfoFile, outlLine);

outLine ="' [//This class is generated by do-what. ksh or do-what.cnd. Do not
nodi fy!’

tenp = LINEQUT(i nfoFile, outlLine);

outLine ="' //VARI ABLES
tenp = LI NEQUT(infoFile, outLine);

DO UNTIL (LINES(levelListFile) =0) /* Read until the end of file */
pair = LINEIN(levellListFile)
PARSE VAR pair variabl eNane vari abl eval ue
outLine =" public String " variableNanme" = ""@#) " keyword vari abl eVal ue
tenp = LI NEOUT(infoFile, outLine)

END /* do until */

outLine ="’

tenp = LINEQUT(i nfoFile, outlLine);

outLine ="' //METHODS

tenp = LI NEQUT(infoFile, outLine);
outLine =" public void report()’
tenp = LINEQUT(i nfoFile, outLine);
outLine =" '

tenp = LI NEQUT(i nfoFile, outLine);
outLine ="’

tenp = LINEQUT(i nfoFile, outlLine);

rc = STREAM I evel ListFile, C, 'close);
/* Open input file */
rcFile = streanm(levellListFile, C, ’'open read)
if (rcFile \= "READY:") then
do
say "*** Error while trying to open file: " levellListFile
say " The return code is: " rcFile
say " Exi ti ng now. "
exit 1
end

DO UNTIL (LINES(levelListFile) =0) /* Read until the end of file */
pair = LINEIN(levellListFile)
PARSE VAR pair variabl eNane vari abl eval ue
outLine =" Systemout. println(this."variabl eNane");"
tenp = LI NEQUT(i nfoFile, outlLine)
END /* do until */

outLine =" }//end of report()’
tenp = LINEQUT(i nfoFile, outlLine);

outLine =" }//end of’ includeFil eBaseNane
tenp = LI NEQUT(i nfoFile, outLine);

out Line =
tenp = LINEQUT(i nfoFile, outlLine);

-59-

Finding out the level of an application

outLine ='/* end of file */’
tenp = LI NEQUT(i nfoFile, outlLine);

rc = STREAMinfoFile, C ’'close');

rc = STREAM I evel ListFile, C 'close');

say "do-what.cnd: the info class file " infoFile " is now ready!"
exit O

/* end of file */

Add entry for whatlnfo.java and the do-what script in the makefile

In the make file for the (myapp) application, add an entry for the classfile “whatinfojava’. In
that way, it is built from scratch. Also, add entries to invoke the “do-what” script.

Notice that this makefile also includes “myapplevel” which will be explained | ater.

Unix makefile: myApp-x.mak

NAME: mnyapp- x. mak

#

PURPOSE:

This is the makefile for building the nyapp application in UN X
#

NOTES:

* To build the application:

make -f nyapp-x.nak nyapp

#

COWPI LER=j avac

all: clean nmyapp nyappl evel

myapp: nyapp/ what | nf o. cl ass myapp/ myapp. j ava
$(COWPI LER) nyapp/ nyapp. j ava

nmyappl evel : myapp/ what | nf o. cl ass nyapp/ nyappl evel . j ava
$(COWPI LER) nyapp/ nyappl evel . j ava

nmyapp/ what | nf 0. cl ass:
cd nmyapp; ./do-what.ksh ../master.list whatlnfo; cd ..
$(COWPI LER) nyapp/ what I nf 0. j ava

cl ean:

-cd nyapp; rm*.class; rmwhatlnfo.java; cd ..
end of file

Windows makefile: myApp-w.mak
Thelinesin blue are new or modified lines with respect to the original version.

NAME: nyapp- w. mak

-60 -

Finding out the level of an application

PURPOSE
This is the makefile for building the nyapp application in Wndows.

* To build the application:
nmake -f nyapp-w. mak nyapp
#

COWPI LER=j avac

all: clean nmyapp nyappl evel

myapp: nyapp\what | nfo. cl ass myapp\ myapp.j ava
$(COWPI LER) nyapp\ nyapp. j ava

myappl evel . myapp\ what | nf 0. cl ass nyapp\ nyappl evel . j ava
$(COWPI LER) nyapp\ nyappl evel . j ava

myapp\ what | nf 0. cl ass:

cd nyapp
rexx .\do-what.crmd ..\nmaster.list whatlnfo
cd ..
$(COWPI LER) nyapp\ what I nf 0. j ava
cl ean:
cd nyapp

-del *.cl ass
-del whatlnfo.java
cd ..

end of file

Detailed view of the generated classfile “whatlnfo.java”

The script “do-what” will generate a header include file “whatinfo.java’:

/1 Nane: what | nfo. j ava

/1 Purpose: This file is generated during build tine.
/1 It has the "build-tine" serviceability information.
/1 to be displayed by using the what utility.

package rmyapp ;

?ubl ic class whatlnfo
/1 This class is generated by do-what.ksh or do-what.cnd. Do not nodify!
/1 VARI ABLES
public String driverinfo = "@#) nmyapp Driver: 2001-03-09 *“;
public String buildModelnfo = "@#) nyapp Build Mode: Normal “;
public String platform nfo ="@#) nyapp This code was generated in
W ndows NT Version 4.0
public String productl nfo = "@#) nyapp IBM M Application ";
public String copyrightinfo = "@#) nyapp (C Copyright, |BM
Corp., 1999, 2001 “;
public String releaselnfo = "@#) nyapp Release: 1.2.3.4 ";
public String dbnslinfo = "@#) nyapp DBMS: DB2 UDB 5.2 Fi xpak 11 ";
public String patchlnfo = "@#) mnyapp Patch: 0
public String developerinfo = "@#) nyapp Devel opers Ri ck Russell and
Angel Rivera ";

-61-

Finding out the level of an application

/ { METHODS
public void report()

Systemout. println(this.driverlnfo);
System out. println(this.buil dvbdel nfo);
Systemout. println(this.platformnfo);
System out. println(this.productlnfo);
System out. println(this.copyrightlnfo);
System out. println(this.rel easel nfo);
System out. println(this.dbnmslnfo);
System out. println(this. patchlnfo);

}//end of report()

}//end of whatlnfo

/* end of file */

Sour ce code for the executable file myapp

It is not necessary to nodify the source code for the nmyapp application other
than to add the word nmyapp and a few | eadi ng spaces to the front of DEBUG and
BETA strings so that appear lined up with the rest of the output fromthe
myappl evel application.

/*
NANME: nmyapp. j ava

PURPCSE
This file provides the main() for the sanple application
that will illustrate how to enbed serviceability strings.

SAVPLE | NVOCATI ON

y Java nyapp. nyapp

package nyapp;

public class nyapp
/1 VARl ABLES

public static final bool ean DEBUG = fal se;

public static final String debuglnfo =" nyapp *** This is DEBUG code
bublic static final boolean BETA = false;

public static final String betalnfo =" myapp *** This is BETA code

* kK.
)

public static void main(String[] args)

System out. prin
Systemout.prin

}//end main()
}//end nyapp

Update the script “do-build”

I n("The nyapp executable is running.");
In("It prints this nessage and then exits.");

— —+

-62-

Finding out the level of an application

Update the script called “do-build.cmd” (in REXX) or “do-build.ksh” (in Korn shell) which
invokes the “make” utility to build the product. This script can set some variables that might be
included in the “master.list” file. This main build script needed substantial updates.

Korn shell script: do-build.ksh

#! [usr/ bin/ ksh
#
NAME: do-buil d. ksh driverNane [debug | beta]

SAMPLE USAGES:
do-build. ksh driverl
do-bui l d. ksh 2001-03-01 debug

PURPGSE
This is the top level script to build the application "nyapp".

NOTES:
* Atenporary file naned "do-ver.out" is used.

CUSTOM ZATI ON NOTES
* See the sections |abeled "CUSTOM ZATI ON REQUI RED".
* This exanple has variables that need to be added to the master.|ist
file, because they change often and/or are set at build tinme.
- They need to be defined in Section "Definition of Dynam c Vari abl es”
- They need to be added to the master.list in Section "Create
ster.list".
The vari abl es are:

DRI VER_NAME -> |ldentifier which mght be related to the build date.
OPERATI NG_SYSTEM -> Use "ver" or "uname -a" to find out the OS | evel
* The file "level.list" has the serviceability strings that do not change

often. The contents of this file are copied into the "master.list".

* The master.list file is a tenporary file that contains all the
serviceability strings. nmaster.list is generated every single tine
this build script is invoked and it is used inside the main nake file
(myapp- x. mak) which in turn, calls do-what.cnd.

##########:ﬁzg HHEHFEHFHFHHFHHHHEHEFEHFHHHR

#**

if [$# -eq 0]

t hen
print "Error: need to specify driver nane."
print "Usage: do-build.ksh driverNane [debug | beta]"
exit 1

fi

print "do-build. ksh: Starting a build of the myapp application”
print "date: ‘date'"
pr i nt "wn

Find out the version and nane of the operating system

export OPERATI NG_SYSTEMF unane -a

if ["$OPERATI NG SYSTEM' = ""]

t hen
print "*** Error: no output from unane"
exit 1

fi

-63-

Finding out the level of an application

CUSTOM ZATI ON REQUI RED:
* You need to handl e the appropriate processing of input argunents.
For exanple, the DEBUG and BETA options are set.

if [$# -ge 1]
t hen
typeset -u DRI VER NAMVE=$1
if [$# -eq 2]
t hen
typeset -u OPTI ON=$2
case "$OPTION' in
BETA| bet a)
prl nt "**********ERRm**********"
print "Set the BETA variable in the java source code for nyapp "
print "to "true’ and then call this script wi thout the beta paraneter."

print ""
print "./do-build.ksh driverNane"
exit 1

DEBUG| debug)

prll’]t "**********ERRO:\)J:*********"

print "Set the DEBUG variable in the java source code for nyapp "

print "to "true’ and then call this script wthout the debug paraneter:"”
pri nt nn

print "./do-build.ksh driver Nang"

exit 1

R
print "Unrecognized option: $OPTI ON'
esac
fi
fi
CUSTOM ZATI ON REQUI RED:
You need to renove the old naster.list before doing a build.
NOTE: not really custom zation.

rmmaster.|ist # This is a tenporary file, with the conplete Iist of
strings.

CUSTOM ZATI ON REQUI RED:

You need to add variables that do not change often to the file

"level.list". This is the input file and i s pernanent.

"master.list" is a tenporary file that will have all the

serviceability strings. This is the output file.

CUSTOM ZATI ON REQUI RED: Section: "Create master.list"

* It is necessary to create the nmaster.list file with the variabl es

defined in this script. Follow the format bel ow, which is al so used
inthe file with those serviceability strings that do not change often,
such as level.list. The format is a variabl eNane (such as driverlnfo)
followed by a val ue which can be several strings.

print " driverinfo Driver: $DRl VER_NAME" >> master.|list

print " platforminfo This code was generated in $OPERATI NG SYSTEM' >>
master.list

CUSTOM ZATI ON REQUI RED:
* If you use a nane other than "level.list", then custonize the foll ow ng
statenent.

-64-

Finding out the level of an application

l evel ListFile="level .list"
while read |line

do

print $line >> master.list
done < $levelListFile

CUSTOM ZATI ON REQUI RED:
* Invoke your make file

make -f nyapp-x.mak all FLAGS="3$FLAGS"
end of file

Rexx command file: do-build.cmd
[* */

/**

NAME: do-build.cnd driverNane [debug | beta]

SAMPLE | NVOCATI ON
rexx do-build.cnd 2001-03-09 debug

PURPOSE
This is the top level script to build the application "nmyapp"

NOTES:
* Atenporary file named "do-ver.out" is used

CUSTOM ZATI ON NOTES
* See the sections | abel ed "CUSTOM ZATI ON REQUI RED" .
* This exanpl e has variables that need to be added to the master.|ist
file, because they change often and/or are set at build tine.
- They need to be defined in Section "Definition of Dynanmi c Vari abl es”
- They need to be added to the master.list in Section "Create
master.list".
The vari abl es are:

DRI VER _NAVE -> |dentifier which mght be related to the build date.
OPERATI NG _SYSTEM -> Use "ver" or "uname -a" to find out the OS | evel
* The file "level.list" has the serviceability strings that do not change

often. The contents of this file are copied into the "master.list".

* The nmaster.list file is a tenporary file that contains all the
serviceability strings. naster.list is generated every single tine
this build script is invoked and it is used inside the nmain nmake file
(myapp-w. mak) which in turn, calls do-what.cnd.

***/

say "do-build.cnd: Starting a build of the nyapp application”

say "date: "
"@late /t"
Say nn

/* Verify the input paraneters */

parse arg driverName option
usage = "do-build.cnd driverNane [debug | beta]"

-65-

Finding out the level of an application

/* Section: Definition of Dynam c Variables */

/* CUSTOM ZATI ON REQUI RED:
Set up the variables that change frequently:

*
/
if (driverName = "") then
do
say "*** Error: need to specify the driver nane."
say usage
exit 1
end
el se
do
DRI VER_NAME=dr i ver Nane
end

/* Issue the "ver" command and store the output in a tenmporary file nanmed

“do-ver.out".

The vari abl e ' OPERATI NG_SYSTEM will have the version of the operating
system
*/
verout = "do-ver.out"

"@er >" verout
do while Ilines(verout)
parse val ue linein(verout) wi th OPERATI NG SYSTEM
end
call lineout verout
"@lel " verout

/* CUSTOM ZATI ON REQUI RED:
You need to handl e the appropriate processing of input argunents.
For exanpl e, the DEBUG and BETA options may need to be set.

*/

/* Do the processing for the option */

if (option = "") then

do
FLAGS=""

end

el se

do
if (option = "debug") then
do

Sa.y "**********ERR@**********"
say "Set the DEBUG variable in the java source code for mnmyapp "

say "to 'true’ and then call this script without the debug paraneter:"”

say
say "rexx do-build.cnd driver Nange"
exit 1

end

el se

do
if (option = "beta") then
dosay LU S R I O S S O ERRO:{**********"
say "Set the BETA variable in the java source code for nyapp "

say "to 'true’ and then call this script without the beta paraneter.”

say
say "rexx do-build.cnd driverNane"
exit 1

end

- 66 -

Finding out the level of an application

el se
do
say "*** Error: wong option. If specified, it must be: debug or beta"
say usage
exit 1
end
end

end
/* Section: Renove files */

/* CUSTOM ZATI ON REQUI RED:

You need to renove the old naster.list before doing a build.
NOTE: not really custom zation
*/

"@el master.list’ /* generated file with the conplete list of
strings. */

/* CUSTOM ZATI ON REQUI RED:
You need to add vari ables that do not change often to the file
"level .list". This is the input file and is permanent.
"master.list” is a tenporary file that will have all the
serviceability strings. This is the output file.

*

/

/* Open input file */
/* CUSTOM ZATI ON REQUI RED

If you use a nanme other than "level.list", then custom ze the foll ow ng
statement. */
inputFile="1level.list’

rcFile = stream inputFile, C, 'open read)
if (rcFile \= "READY:") then

do
say "*** Error while trying to open file: " inputFile
say " The return code is: " rcFile
say " Exiting now. "
exit 1
end
/* Open output file */
outputFil e="master.list’
rcFile = stream(outputFile, C, 'open wite)
if (rcFile \= "READY:") then
do
say "*** Error while trying to open file: " outputFile

say The return code is: rcFile
say " Exi ti ng now. "
exit 1

end

/* Section: Create master.list" */

/* CUSTOM ZATI ON REQUI RED
It is necessary to create the master.list file with the variables
defined in this script. Follow the fornmat below, which is al so used
inthe file level.list which contains serviceability strings that do
not change often. The fornmat is a variabl eName (such as driverlnfo)
/follomed by a val ue which can be several strings.
*

out Li ne=" driverinfo Driver: " DRI VER NAME
tenp = LI NEQUT(out put Fil e, outLine);

-67-

Finding out the level of an application

outLine=" platform nfo This code was generated in " OPERATI NG SYSTEM
tenp = LI NEQUT(out put Fil e, outLine);

DO UNTIL (LINES(inputFile) =0) /* Read until the end of file */
outLine = LINEIN(InputFile)
tenp = LI NEQUT(out put Fi | e, out Li ne)

END /* do until */

rc = STREAMoutputFile, C, ’'close’);
rc = STREAMinputFile, C, 'close');
/* Section: |Invoke the make file */

say 'nmake -f nyapp-w. mak all FLAGS=" FLAGS '’
"nmake -f nyapp-w. mak all FLAGS="'FLAGS "’
/* end of file */

Create the main sour ce code file “myapplevel.java” for the standalone tool myapplevel

Create a source code file called “myapplevel.java’. Thisis a standalone application which will
ship with the main application myapp and which will display the serviceability strings.

package myapp;

/*

NANME: nmyappl evel . j ava
PURPCSE:

This file provides the main() for the application
nyappl evel which retrieves serviceability strings
fromthe application myapp.

SAMPLE | NVOCATI ON:
j ava nyapp. nyappl evel

*/

i mport nyapp. what | nf o;

public class nyappl evel

/ / VARl ABLES

what I nfo wi = nul |l ;
/ | METHODS
public nmyappl evel ()
{

this.wi = new what | nfo();

}/ 1/ end nyappl evel
public static void main(String[] args)
nyappl evel nal = new nyappl evel ();
i f(myapp. DEBUG == true)
System out . pri ntl n(myapp. debugl nf o) ;
i f(nmyapp. BETA == true)
System out . pri ntl n(myapp. bet al nfo);

[/Print out the serviceability strings.
mal . wi . report();

- 68 -

Finding out the level of an application

}/ /end main()
}//end myappl evel
Build the application and test the embedded serviceability strings.

Now that all the components are ready, you can proceed to build the application and test the
embedded serviceability strings.

Files Needed:
java\do-build.cmd
java\do-build.ksh
javallevel.list
java\myapp-w.mak
java\myapp-x.mak
java\myapp\do-what.cmd
java\myapp\do-what.ksh

java\myapp\myapp.java
java\myapp\myapplevel .java

Building myapp and myapplevel and testing the serviceability strings:

The steps that follow are for both Windows (INTEL) and AIX (UNIX) platforms since the java
code is built on and runs on both platformsin essentially the same way.

1) First create the files above or unzip the trlevel.zip file described in the section
“How to get the Files Mentioned in this Document.”.

2) Add the location of the myapp directory to the CLASSPATH variable

Intel: set CLASSPATH=%CLASSPATHY <t heLocati onOf ThenyappDbi rect ory>
UNI X export CLASSPATH=$CLASSPATH: <t heLocati onCOf ThenyappDi r ect ory>

For example,
set CLASSPATH=%CLASSPATHY D:\ri ck\ papers\trlevel\java

*NOTE: itisimportant to have your CLASSPATH set properly, including having the current
working directory (.) in the CLASSPATH. Hereisan example:

CLASSPATH=. ; c:\jdkl.1.8\lib\classes.zip;c:\jdkl.1.8\lib; D \rick\papers\trlevel
\java

2) cdinto the javadirectory and build the myapp and myapplevel executables by running the
do-build script. NOTE: UNIX users must run a CRLF tool on all files to remove carriage return
characters ("M).

- 69 -

Finding out the level of an application

Syntax: do-build.cnd driverNanme [debug | beta]
Intel: rexx do-build.cnd 2001-03-09
UNI X: chnmod 755 do-buil d. ksh

chnod 755 nyapp/ do-what . ksh
./ do-buil d. ksh 2001- 03-09

3) Test the myapp application by running it.

javamyapp.myapp
The myapp application only prints out a message that it was running and then exits:

The nyapp executable is running.
It prints this nmessage and then exits.

In real life the myapp application would be your main application to which you wish to add the
serviceability strings.

4) Test the standard "what" command against the myapp executable.

what nyapp\ nyapp. cl ass

which results in

myapp\ myapp. cl ass:

Since myapp is object-oriented and most serviceability strings are not stored within the myapp
class, "what" will not show the strings. If you wished to see the serviceability strings using the
“what” utility, you could issue the “what” command against the whatinfo class:

Intel: what nyapp\whatlnfo.class
UNI X: what myapp/ whati nfo. cl ass

which would produce

myapp\ what | nf 0. cl ass:
myapp (C Copyright, |BM Corp., 1999, 2001
myapp DBMS: DB2 UDB 5.2 Fixpak 11
nmyapp Driver: 2001-03-09

nyapp | BM My Application
nmyapp Pat ch: 0

myapp Release: 1.2.3.4
myapp This code was generated in Wndows NT Version 4.0

5) Test the myapplevel application

j ava nyapp. nyappl evel

Y ou should see

@#) nyapp Driver: 2001-03-09
@#) nyapp Build Mdde: Nornal

-70-

Finding out the level of an application

@#) nyapp This code was generated in Wndows NT Version 4.0

@#) nyapp |BM M Application

@#) nyapp (C Copyright, |BM Corp., 1999, 2001
@#) nyapp Release: 1.2.3.4

@+#) nyapp DBMVS: DB2 UDB 5.2 Fixpak 11
@#) mnyapp Patch: 0

Doing DEBUG or BETA builds:

do-build.cmd (do-build.ksh) will allow you to specify either debug or beta builds. However,
since Java does not have conditional compilation, the debug, beta, and normal builds are speci-
fied within the code of myapp.java by setting the variables DEBUG or BETA to either "true" or
"false". Thusto set up a debug build you would set DEBUG=true within myapp.java and
rebuild the code using the do-build script. The do-build script will print out a message instruct-
ing you to do this.

Intel: rexx do-build.cnmd 2001-03-09 debug
UNI X: ./do-build. ksh 2001-03-09 debug

results this message on Windows (Intel)

**********ERRO:\)**********
Set the DEBUG variable in the java source code for nyapp
to "true’ and then call this script without the debug paraneter:

rexx do-build.cnd driver Nane

and this on AIX (UNIX)

**********ERRO:\)k*********

Set the DEBUG variable in the java source code for nyapp
to 'true’ and then call this script wthout the debug paraneter:

./do-build.cnd driverNane
To perform a debug build, you need to open the file myappjava and change the following line
public static final bool ean DEBUG = fal se;

to look like this

public static final bool ean DEBUG = true;

Now, run the do-what script again without adding the debug argument:

Intel: rexx do-build.cnmd 2001-03-09
UNI X: ./do-build. ksh 2001-03-09

Once that is done myapplevel will read the DEBUG string directly out of the java myapp.class
file and "java myapp.myapplevel" resultsin

-71-

Finding out the level of an application

nyapp *** This is DEBUG code ***
@+#) mnyapp Driver: 2001-03-09
@#) nyapp Build Mdde: Nornal
@+#) mnyapp This code was generated in Wndows NT Version 4.0

@#) nyapp |IBM M Application

@#) myapp (C Copyright, |1BM Corp., 1999, 2001
@#) nyapp Release: 1.2.3.4

@#) mnyapp DBMS: DB2 UDB 5.2 Fi xpak 11

@#) nyapp Patch: 0
Beta builds foll ow the sane process.

Update of the necessary files when performing a build for an update to the
product

Thefirst part of this method to add serviceability strings to your application was to create al the
necessary files and rebuild the myapp and myapplevel applications. The second step in this
method is simply the maintenance of the necessary files when performing a build for an update to
the product. The actions required depend on whether the serviceability string you wish to add is
dynamic or static.

* |f you need to add another “static” string, the only changeisto add it to the “level.list” file,
which isafile that should be under library control.

* |f you need to add another kind of serviceability string, then you need to add it in the script
“do-build”, and follow the customization notes to properly include all the necessary statements.

* Build the application and test the embedded serviceability strings. The two types of strings are
discussed in the next two points.

Adding static serviceability strings to level.list

Y ou can add new static serviceability stringsto the level.list file. For example, if you wished to
add a serviceability string with the name of the program developers, you would add it to level.list
since (in this example anyway) the names of the developersis unlikely to change. The new entry
in level.list would appear as:

developerinfo Developers. Rick Russell and Angel Rivera

After rebuilding with the do-build script, "java myapp.myapplevel”
reports:

@#) nyapp Driver: 2001-03-20

@#) rmyapp This code was generated in Wndows NT Version 4.0
@#) nyapp IBM M Application

@#) nmyapp (C Copyright, |1BM Corp., 1999, 2001

@#) nyapp Release: 1.2.3.4

@#) rmyapp DBME: DB2 UDB 5.2 Fixpak 11

-72-

Finding out the level of an application

@#) myapp Patch: 0
@#) rmyapp Devel opers: Rick Russell and Angel Rivera

Adding dynamic serviceability strings to do-build.cmd:

Y ou can add serviceability strings for dynamic information to the do-build script. This
implies that you need to add the additional functionality to do-build.cmd or do-build.ksh to deter-
mine what the string should be. For instance, you might want to record the time the executables
were built. This could be accomplished by retrieving the date and time from the operating
system. Possibly there are environment variables that are used in the build of your product. One
such environment variable might be MY APP_REL EASE which you set to the current version of
the release being built. Y ou could retrieve thisinformation from MY APP_REL EASE within the
do-build script and then set a serviceability string equal to that value. In thisway the Release
string that used to come from level.list has become dynamic and would now be calcuated. There
is no overriding rule that determines whether a particular serviceability string has to be dynamic
(do-build) or static (level.list).

-73-

Finding out the level of an application

How to get the files mentioned in this document

Notes for Windows users:

- The“grep” utility isincluded in the Microsoft Windows Services for Unix (SFU). For more
details visit the URL: http://www.microsoft.com/windows2000/sfu/

- The scripts are written in REXX.

All the tools used here are available via the public Internet. The tools might be updated in the
future. The tools are zipped into asinglefile called trlevel .zip and it can be downloaded as
follows:

FTP site for TeamConnection
Y ou can download the code from our external FTP site for TeamConnection:

ftp://ftp.software.ibm.com/ps/products/teamconnection/papers/trievel .zip

Obtaining a tool that fix Carriage Return and Line Feed problems
In case that you have problems with the carriage return and line feed when trying to view or
compile the source code files, you can use thefixcrlf tool provided in the following ftp site:

ftp://ftp.software.ibm.com/ps/products/teamconnection/tool s/

Obtaining Info-ZIP
The Visua Age TeamConnection team uses the Info-Zip zip and unzip tools to package
compressed files (in which the files to be packaged are compressed first).

The main advantages of Info-ZIP are:

e Compatibility: these tools are compatible with other ZIP programs.

» Portability: they are available in ALL the platforms that are supported by VisualAge
TeamConnection.

* Cross-platform: A zip file prepared in Unix can be unzipped in the correct format in
Windows NT and vice versa.

Info-ZIP's software is free and can be obtained from:
ftp://ftp.uu.net:/pub/archiving/zip/

Because of the general value of these toals, it is recommended that you add the unzip and zip
toolsin adirectory in the PATH that is accessible to all the users for the machine, such as
C:\WINNT.

How to unzip files
* Toonly view the contents of the zip file (without actually unpackaging and uncompressing
thefiles) do: unzip -l trlevel.zip

-74 -

Finding out the level of an application

* To unpackage and uncompress the zip file do: unzip trlevel.zip

-75-

Finding out the level of an application

Copyrights, Trademarks and Service marks

The following terms used in thistechnical report, are trademarks or service marks of the

indicated companies:

TRADEMARK, REGISTERED TRADEMARK, OR
SERVICE MARK

COMPANY

IBM, VisualAge, TeamConnection, DB2 Universal
Database, CMVC

IBM Corporation

Unix Unix System Laboratories, Inc.
Windows, Windows NT Microsoft Corporation

Intel Intel Corporation

Info-ZIP Info-ZIP Group

Java, Solaris Sun Microsystems, Corp.
HP-UX Hewlett-Packward Corp.

*** END OF DOCUMENT ***

-76-

