
ENVY®/QA R1.3
Software Quality Assurance Tools

User's Guide

IBM VisualAge for Smalltalk

The information in this document is subject to change without notice and should not be construed as a
commitment by Object Technology International Inc. While precautions have been taken to ensure the
accuracy of the contents of this document, Object Technology International Inc. assumes no responsibility for
any errors or omissions.

This document is protected by copyright with all rights reserved. No part of this document may be copied by
any means whatsoever without the prior written consent of Object Technology International Inc.

ENVY is a registered trademark of Object Technology International Inc.
VisualAge is a trademark of International Business Machines Corporation.
Windows is a registered trademark of Microsoft Corporation.
Microsoft Word is a registered trademark of Microsoft Corporation.
FrameMaker is a registered trademark of Frame Technology Corporation.
Other product names may be trademarks of their respective companies.

Copyright © 1996 - 1999 Object Technology International Inc. (OTI).
OTI is a wholly owned subsidiary of IBM Canada, Ltd.

Object Technology International Inc.
2670 Queensview Drive voice: (613) 820-1200
Ottawa, Ontario fax: (613) 820-1202
Canada K2B 8K1

This is the ENVY/QA R1.3 User's Guide for IBM VisualAge for Smalltalk.

Document number: ED2900, Revision 1.0012
Date printed: June 2, 1999

Document Status: R1.3

Table of Contents

1 About This Guide...1

1.1 How to Use This Guide..1
1.2 How This Guide Is Organized...2
1.3 Conventions Used in This Guide...2

2 About ENVY/QA..3

2.1 Code Critic..4
2.2 Code Metrics ..4
2.3 Code Coverage ...4
2.4 Code Publisher ...5
2.5 Code Formatter ...5
2.6 Extensible Framework ...5

3 Installing ENVY/QA..7

3.1 Release Files ..7
3.2 Installing the Release Files ..8

4 Code Critic..9

4.1 Overview..9
4.2 Who Should Use This Tool ...9
4.3 Loading Code Critic... 10
4.4 Unloading Code Critic... 10
4.5 Guided Tour .. 11

4.5.1 Creating a Problem ... 11
4.5.2 Running Reviews .. 12
4.5.3 Browsing the Results ... 12
4.5.4 Fixing the Problems .. 13

4.6 Code Critic and the Development Browsers .. 13
4.6.1 Reviewing Configuration Maps ... 14
4.6.2 Reviewing Applications .. 14
4.6.3 Reviewing Classes ... 15
4.6.4 Reviewing Methods ... 15

4.7 Code Critic Options Dialog .. 16
4.8 Selecting Which Reviews to Run.. 16
4.9 Configuration Map Reviews ... 18

4.9.1 Missing Config Comment/Notes .. 18
4.10 Application Reviews ... 18

4.10.1 Missing WasRemovedCode ... 18
4.11 Class Reviews .. 18

4.11.1 Duplicate Pool Dictionaries ... 19
4.11.2 Extends Base Class ... 19
4.11.3 Missing Class Comment... 19

vi / Table of Contents ENVY/QA User's Guide

4.11.4 Missing Dependent Method... 19
4.11.5 Not Categorized Methods... 19
4.11.6 Poorly Named State Variables .. 20
4.11.7 Subclass Responsibility .. 20
4.11.8 Subclasses Base Class .. 20
4.11.9 Unreferenced Class.. 20
4.11.10 Unused Pool Dictionaries... 20
4.11.11 Unused State Variables .. 20

4.12 Method Reviews .. 21
4.12.1 Compiler Warnings ... 21
4.12.2 Could Be Cascaded.. 21
4.12.3 Could Use Self... 21
4.12.4 Defeats Compiler Optimization... 22
4.12.5 Direct State Variable Access ... 22
4.12.6 Identical to Inherited Method.. 22
4.12.7 Inefficient Convenience Method.. 23
4.12.8 Magic Values .. 23
4.12.9 Missing #yourself... 23
4.12.10 Missing Method Comment.. 23
4.12.11 Missing Primitive Fail Code.. 23
4.12.12 Not Implemented in Superclass.. 24
4.12.13 Poorly Named Method ... 24
4.12.14 Poorly Named Variables ... 24
4.12.15 Public/Private Inconsistency... 24
4.12.16 References Development Classes .. 24
4.12.17 References Global Variables ... 24
4.12.18 References outside Prereq Chain .. 25
4.12.19 References Own Class... 25
4.12.20 Reimplements System Method ... 25
4.12.21 Sends System Method... 25
4.12.22 Sent But Not Implemented.. 25
4.12.23 Should Call Superclass .. 26
4.12.24 Should Not Be Implemented.. 26
4.12.25 Should Use IsEmpty.. 26
4.12.26 Too Many Consecutive Concatenations... 26
4.12.27 Too Many Consecutive Messages .. 27
4.12.28 Unnecessary #isNil or #notNil ... 27
4.12.29 Unnecessary Parentheses... 27
4.12.30 Unsent Method.. 27
4.12.31 Unused Arguments .. 28

4.13 Customizing the Reviews.. 28
4.13.1 Common Properties ... 28
4.13.2 Specific Properties .. 29
4.13.3 Modifying Properties.. 32

4.14 Saving and Loading Your Settings .. 33
4.15 Using the Code Critic Results Browser ... 34

4.15.1 Layout of the Code Critic Results Browser... 34
4.15.2 Launching the Code Critic Results Browser.. 35
4.15.3 Sorting by Type... 35
4.15.4 Sorting by Severity.. 35

Table of Contents / vii

4.15.5 Viewing a Problem .. 36
4.15.6 Ignoring Result... 36
4.15.7 Removing Results ... 36
4.15.8 Refreshing Results ... 37
4.15.9 Saving and Loading Results ... 37
4.15.10 Saving and Loading Ignore Sets ... 37
4.15.11 Reporting Results .. 38
4.15.12 Exporting Results to Text... 38
4.15.13 Exporting to Spreadsheet.. 38
4.15.14 Printing Results .. 38
4.15.15 Adding a Comment to the Results .. 38
4.15.16 Opening an Applications Browser... 39
4.15.17 Opening Other Browsers .. 39
4.15.18 Menus ... 39

4.15.18.1 File Menu... 39
4.15.18.2 Edit Menu... 40
4.15.18.3 Review Menu .. 40
4.15.18.4 Result Menu.. 40
4.15.18.5 Info Menu... 41

4.16 Advanced Concepts.. 42
4.16.1 Framework Configuration Maps ... 42
4.16.2 Code Critic Framework Classes .. 42
4.16.3 Implementing Your Review Subclass ... 42

4.16.3.1 Mandatory Methods ... 43
4.16.3.2 Optional Methods... 43

4.16.4 Example... 43

5 Code Metrics..47

5.1 Overview... 47
5.2 Who Should Use This Tool .. 47
5.3 Loading Code Metrics ... 48
5.4 Unloading Code Metrics ... 48
5.5 Guided Tour .. 49

5.5.1 Creating a Class to Measure .. 49
5.5.2 Running the Metrics .. 50
5.5.3 Browsing the Results ... 50

5.6 Code Metrics and the Development Browsers .. 50
5.6.1 Measuring Configuration Maps... 51
5.6.2 Measuring Applications .. 51
5.6.3 Measuring Classes... 52
5.6.4 Measuring Methods... 52

5.7 Code Metrics Options Dialog... 53
5.8 Selecting Which Metrics to Run... 53
5.9 Application Metrics ... 55

5.9.1 All Defined Classes .. 55
5.9.2 All Dependent Applications.. 55
5.9.3 All Extended Classes.. 55
5.9.4 All Prerequisites... 56
5.9.5 All Subapplications.. 56
5.9.6 Defined Classes.. 56

viii / Table of Contents ENVY/QA User's Guide

5.9.7 Dependent Applications ... 56
5.9.8 Extended Classes ... 56
5.9.9 Memory Size (Including Subapplications)... 56
5.9.10 Memory Size for Applications... 57
5.9.11 Prerequisites .. 57
5.9.12 Subapplications ... 57

5.10 Class Metrics ... 57
5.10.1 Accessors ... 57
5.10.2 All Class Methods.. 58
5.10.3 All Instance Methods ... 58
5.10.4 All Instance Variables ... 58
5.10.5 All Subclasses ... 58
5.10.6 Class Coupling .. 58
5.10.7 Class Methods ... 59
5.10.8 Class Response ... 59
5.10.9 Class Variables ... 59
5.10.10 Cyclomatic Complexity... 59
5.10.11 Depth of Hierarchy.. 59
5.10.12 Direct Variable Accesses .. 60
5.10.13 Global/Pool References .. 60
5.10.14 Instance Methods ... 60
5.10.15 Memory Size for Classes .. 60
5.10.16 New Methods... 60
5.10.17 Pool Dictionaries .. 61
5.10.18 Ratio API/Internal .. 61
5.10.19 Ratio Public/Private .. 61
5.10.20 Refined Methods... 61
5.10.21 Specialization Index.. 61
5.10.22 Subclasses.. 62

5.11 Method Metrics... 62
5.11.1 Lines of Code... 62
5.11.2 Lorenz Complexity... 62
5.11.3 Memory Size for Methods ... 62
5.11.4 Method Density... 63
5.11.5 Statements.. 63

5.12 Customizing the Metrics .. 63
5.12.1 Common Properties ... 63
5.12.2 Specific Properties .. 64
5.12.3 Modifying Properties.. 65

5.13 Saving and Loading Your Settings .. 67
5.14 Using the Code Metrics Results Browser.. 67

5.14.1 Layout of the Code Metrics Results Browser ... 67
5.14.2 Launching the Code Metrics Results Browser.. 68
5.14.3 Hiding In-Range Results ... 69
5.14.4 Removing Results ... 69
5.14.5 Refreshing Results ... 69
5.14.6 Saving and Loading Results ... 70
5.14.7 Reporting Results ... 70
5.14.8 Exporting Reports to Text ... 70
5.14.9 Exporting to Spreadsheet... 70

Table of Contents / ix

5.14.10 Printing Results .. 71
5.14.11 Adding a Comment to the Results .. 71
5.14.12 Opening an Applications Browser... 71
5.14.13 Opening Other Browsers .. 71
5.14.14 Menus ... 72

5.14.14.1 File Menu... 72
5.14.14.2 Edit Menu... 72
5.14.14.3 Metric Menu... 72
5.14.14.4 Result Menu.. 73
5.14.14.5 Info Menu... 74

5.15 Advanced Concepts.. 74
5.15.1 Framework Configuration Maps ... 74
5.15.2 Code Metrics Framework Classes .. 74
5.15.3 Implementing Your Metric Subclass.. 75

5.15.3.1 Mandatory Methods ... 75
5.15.3.2 Optional Methods... 75

5.15.4 Example... 75

6 Code Coverage..79

6.1 Overview... 79
6.2 Who Should Use This Tool .. 79
6.3 Loading Code Coverage .. 80
6.4 Unloading Code Coverage .. 80
6.5 Guided Tour .. 80

6.5.1 Creating an Application .. 80
6.5.2 Selecting the Applications to Watch... 82
6.5.3 Watching Your Application ... 82
6.5.4 Ignoring Methods ... 82

6.6 Code Coverage and the Development Browsers.. 83
6.6.1 Coverage on Configuration Maps... 83
6.6.2 Coverage on Applications .. 83

6.7 Using the Code Coverage Browser ... 84
6.7.1 Layout of the Code Coverage Browser.. 84
6.7.2 Launching the Code Coverage Browser... 85
6.7.3 Status Area.. 85
6.7.4 The Control Buttons .. 85
6.7.5 Refreshing the Browser ... 86
6.7.6 Ignoring Components... 86
6.7.7 Restoring Components.. 87
6.7.8 Saving and Loading Your Coverage Setup... 87
6.7.9 Reporting Results ... 88
6.7.10 Exporting Reports to Text ... 88
6.7.11 Exporting to Spreadsheet... 88
6.7.12 Printing Results ... 89
6.7.13 Adding a Comment to the Results ... 89
6.7.14 Menus .. 89

6.7.14.1 File Menu... 89
6.7.14.2 Edit Menu... 89
6.7.14.3 Applications Menu ... 89
6.7.14.4 Classes Menu.. 92

x / Table of Contents ENVY/QA User's Guide

6.7.14.5 Methods Menu.. 92
6.7.14.6 Info Menu... 93

7 Code Publisher ..95

7.1 Overview... 95
7.2 Who Should Use This Tool .. 96
7.3 Loading Code Publisher .. 96
7.4 Unloading Code Publisher .. 96
7.5 Guided Tour .. 97

7.5.1 Publishing Configuration Maps .. 98
7.5.2 Publishing Applications.. 98
7.5.3 Publishing Classes .. 99
7.5.4 Code Publisher Output Options Dialog...100

7.6 Output Formats...101
7.6.1 HTML—Hypertext Markup Language ...101
7.6.2 LaTeX—A Document Preparation System..101
7.6.3 MIF—Maker Interchange Format...102
7.6.4 OTIML—OTI Markup Language...102
7.6.5 RTF—Rich Text Format..102

7.7 Code Publisher Settings Dialog ...103
7.8 Application Publishing Options ...104
7.9 Class Publishing Options ..104
7.10 Method Publishing Options...105
7.11 Cross-Reference Publishing Options ..105
7.12 General Publishing Options ...105
7.13 Saving and Loading Your Settings ..106

8 Code Formatter..107

8.1 Overview...107
8.2 Who Should Use This Tool ..107
8.3 Loading Code Formatter ..108
8.4 Unloading Code Formatter ..108
8.5 Guided Tour ..108

8.5.1 Creating a Class and Method ...108
8.6 Code Formatter and the Development Browsers..109

8.6.1 Formatting Configuration Maps ..110
8.6.2 Formatting Applications..110
8.6.3 Formatting Classes ..110
8.6.4 Formatting Methods ..111

8.7 Formatting Source ...111
8.8 Code Formatter Settings Dialog ...112
8.9 Formatting Blocks ..114

8.9.1 Block Arguments on the Start Line...114
8.9.2 Block Variables on a New Line...114
8.9.3 Line up Brackets ..115
8.9.4 Space between Square Brackets ...115
8.9.5 Start Open Brackets on the Same Line...116

8.10 Formatting Comments...116
8.10.1 Format Comments in the Body of the Code...116
8.10.2 Format Method Header Comment...117

Table of Contents / xi

8.11 Formatting Conditional Statements ..117
8.11.1 Apply Rule (Line up #ifTrue:ifFalse:) to All ..117
8.11.2 Indent #ifFalse: (When Not Lined Up) ...118
8.11.3 Line up #ifTrue:ifFalse:...119

8.12 Formatting Indentation...119
8.12.1 Indent Long Keywords in Cascades..120
8.12.2 Indent Nested Receivers..120

8.13 Formatting Keywords ...120
8.13.1 Always Put a Single Keyword on the Same Line...121
8.13.2 Always Split Keywords ..121
8.13.3 First Selector of Long Keywords on the Same Line..121
8.13.4 Keep #to:do: on the Same Line ..122
8.13.5 Keep Right-Hand Side of an Assignment (:=) on the Same Line ..122

8.14 Formatting Line Breaks ...123
8.14.1 Blank Line between Comments and Temps ...123
8.14.2 Blank Line between Selector and Comments ...123
8.14.3 Blank Line between Temps and the Body of the Method...124
8.14.4 Retain Blank Lines ..124

8.15 Formatting Parentheses..125
8.15.1 Line up Array Parentheses ..125
8.15.2 Line up Parentheses ..125
8.15.3 Space between Parentheses..126
8.15.4 Start Open Array Parentheses on the Same Line ...126
8.15.5 Start Open Parentheses on the Same Line ...127

8.16 General Formatting...127
8.16.1 Add Optional Periods ..127
8.16.2 Add a Space after Return (^) ..128
8.16.3 Use the Maximum Width (Ignore the Window Width) ...128

8.17 Advanced Options ...129
8.17.1 Formatting Code Indentation...129

8.17.1.1 Code...130
8.17.1.2 Code Continuation ..130

8.17.2 Formatting Comment Indentation ..130
8.17.2.1 Beside Line of Code ...130
8.17.2.2 Comment ..131
8.17.2.3 Comment Continuation..131

8.17.3 Formatting Margins ...132
8.17.3.1 Maximum Width..132
8.17.3.2 Minimum Width for Comments ...132

8.18 Saving and Loading Your Settings ..133

9 Troubleshooting ..135

Bibliography...137

Index..138

List of Figures

Figure 1 — Code Critic Options dialog. ... 16
Figure 2 — Code Critic Settings dialog.. 17
Figure 3 — Code Critic Advanced Settings dialog... 32
Figure 4— Code Critic Results Browser. .. 34
Figure 5 — Code Metrics Options dialog... 53
Figure 6 — Code Metrics Settings dialog.. 54
Figure 7 — Code Metrics Advanced Settings dialog... 66
Figure 8 — Code Metrics Results Browser... 68
Figure 9 — Code Coverage Browser. .. 84
Figure 10 — Code Publisher Output Options dialog...100
Figure 11 — Code Publisher Settings dialog...103
Figure 12 — Code Formatter Settings dialog...113
Figure 13 — Formatter Advanced Settings dialog...129

List of Tables

Table 1 — Reviewing applications. .. 15
Table 2 — Reviewing classes... 15
Table 3 — Review groupings... 17
Table 4 — Enabling reviews. ... 18
Table 5 — Default severity levels.. 29
Table 6 — Specific review properties... 31
Table 7 — Code Critic property values and their descriptions.. 33
Table 8 — Elements of the Code Critic Results Browser. ... 35
Table 9 — Subclassing CtMeasure.. 42
Table 10 — Measuring applications... 52
Table 11 — Measuring classes. ... 52
Table 12 — Metrics groupings... 54
Table 13 — Enabling metrics. ... 55
Table 14 — Default lower and upper thresholds... 64
Table 15 — Specific metric properties... 65
Table 16 — Code Metrics property values and their descriptions.. 66
Table 17 — Elements of the Code Metrics Results Browser. ... 68
Table 18 — Subclassing CtMeasure. .. 75
Table 19 — Watching applications... 83
Table 20 — Elements of the Code Coverage Browser... 85
Table 21 — Ignoring methods in a component.. 87
Table 22 — Restoring all methods in a component. .. 87
Table 23 — Publishing applications. ... 99
Table 24 — Publishing classes.. 99
Table 25 — Elements of the Code Publisher Output Options dialog. ...100
Table 26 — MIF output files..102
Table 27 — Groupings of publisher options...103
Table 28 — Enabling publisher options..104
Table 29 — Application publishing options. ...104
Table 30 — Class publishing options. ..105
Table 31 — Method publishing options...105
Table 32 — Cross-reference publishing options. ...105
Table 33 — General publishing options..106
Table 34 — Formatting applications. ...110
Table 35 — Formatting classes..111
Table 36 — Categories of formatter options...113
Table 37 — Enabling formatter options...114
Table 38 — Property values and their descriptions...129

1 About This Guide

This guide describes how to set up and use ENVY/QA, which is a suite
of software quality-assurance tools packaged in a flexible framework.
ENVY/QA comprises:

• Code Critic

• Code Metrics

• Code Coverage

• Code Publisher

• Code Formatter

• User-extensible QA framework

1.1 How to Use This Guide

This guide is written for experienced users of ENVY/Developer.

Because ENVY/QA is a multiplatform product, screen shots and the
conventions for capitalizing menu items may vary, depending on the
Smalltalk platform and operating system you are using. This document
includes screen shots and menu items created with a generic Smalltalk
platform and a Windows presentation manager.

2 / About This Guide ENVY/QA User's Guide

1.2 How This Guide Is Organized

The remainder of this guide is divided into several chapters. The next
chapter introduces ENVY/QA. The following chapter describes the
installation procedure. The remaining chapters describe each
ENVY/QA tool.

1.3 Conventions Used in This Guide

The following typographical conventions are used in this guide.

• Class names are shown as OrderedCollection.

• Configuration maps are shown as ENVY/QA for VisualAge
Smalltalk.

• Method selectors are shown as #at:put:.

• Menu options are shown as Edit Õ Copy.

• Browsers are shown as Application Manager.

• Variables are shown as temperature.

• Filenames are shown as FILE1.TXT.

• Keys are shown as SHIFT.

+ A hint, clarification, or comment is shown like this.

6 A warning is shown like this.

Sample code is displayed as:

self at: aName put: aValue

2 About ENVY/QA

ENVY/QA is a suite of software quality-assurance tools packaged in a
flexible framework. The tools comprise:

• Code Critic

• Code Metrics

• Code Coverage

• Code Publisher

• Code Formatter

• User-extensible QA framework

ENVY/QA provides the critical quality-assurance tools that
development teams need to consistently produce high-quality
production software with low defect counts. Managers can analyze
development team productivity; they can publish Smalltalk
applications to promote reuse within the enterprise. Source-code
formatting supports enterprise-wide standards.

ENVY/QA R1.3 loads into the following development environments:

• IBM VisualAge for Smalltalk

ENVY/QA uses the following terminology for code elements.

Configuration map
A collection of applications.

Application
A collection of class fragments and (sub)applications.

4 / About ENVY/QA ENVY/QA User's Guide

Class
A class definition and all class and instance methods.

Class fragment
The portion of a class within a given application. This consists of
any methods defined by the class within the application. If the class
is defined by the application, the class fragment contains the class
definition.

Method
The implementation for a method selector.

2.1 Code Critic

Code Critic analyzes methods, classes, applications, and configuration
maps for potential common problems. You can view results on line,
print them, or export them to text or spreadsheet format.

Code Critic’s heuristics minimize the number of false defects, allowing
you to focus on the important problems. Code Critic is ENVY/Packager-
aware, using ENVY/Packager methods defined by applications. You can
customize Code Critic reviews on line to allow for subtle differences in
project priorities. You can customize settings, save them on disk, and
load them from disk.

Code Critic provides an open and extensible framework that lets you
easily create new code reviews to be included automatically in the user
interface.

2.2 Code Metrics

Code Metrics gathers static metrics on methods, classes, applications,
and configuration maps. You can define thresholds for each metric. You
can view all results or focus on methods outside the thresholds. You
can customize settings, save them on disk, and load them from disk.

You can print result reports or export them to text format or to
spreadsheet format. You can customize report sections.

Results contain summary statistics and fine-grained data that let you
focus on the system at a high level or focus on individual areas.

Code Metrics provides an open and extensible framework that lets you
easily create new code metrics to be included automatically in the user
interface.

2.3 Code Coverage

Code Coverage lets you monitor a set of applications during regression
testing. You interact with the applications in the normal manner
through a user interface test plan or by executing automated test

About ENVY/QA Code Publisher / 5

suites. As the application’s methods are executed, Code Coverage
tracks the unexecuted methods and focuses your attention on the
untested areas of the system. Unexecuted methods indicate potential
gaps in the test plan.

You can save and load settings that include information about the
applications being tested. This lets you set up future coverage sessions
quickly to ensure that changes to your test suites are achieving the
required level of software coverage.

Code Coverage produces printed or file-based reports that detail the
coverage results. You can customize report sections.

2.4 Code Publisher

Code Publisher produces typeset-quality manuals from applications,
classes, and methods. The report structure is highly customizable. You
can easily create documents that include only the API methods and
their comments. You can produce in-depth manuals containing code,
cross-reference tables, and quick look-up indexes to be used during
code reviews.

Code Publisher can export to these formats:

• LaTeX

• RTF

• MIF

• HTML

• SGML (OTIML DTD)

HTML manuals are internally hyperlinked to let you navigate easily on
line. To further improve readability, embedded GIF images are
included in HTML output.

2.5 Code Formatter

Code Formatter lets you format Smalltalk source code. Custom controls
let you define the formatting style. You can preview a style to
determine quickly the effect on the code.

In addition to letting you format methods, Code Formatter lets you
format entire classes, class hierarchies, and applications.

2.6 Extensible Framework

ENVY/QA contains an open and extensible tools framework that lets
you develop new QA tools easily. A tool registers the types of objects on
which it operates. The framework then ensures automatically that the

6 / About ENVY/QA ENVY/QA User's Guide

tool is displayed in the appropriate development browsers. You can
build new QA tools without learning the details of the browsers.

3 Installing ENVY/QA

ENVY/QA is delivered in a standard library export file that contains
several configuration maps. The main configuration map for the
VisualAge environment is:

ENVY/QA for VisualAge Smalltalk

This configuration map is contained in a Smalltalk-specific library
export file. The installation process is a normal import and load
sequence. The supplied configuration map is self-contained and no
other application support files are required, with the exception of the
publishing template and style-support files.

3.1 Release Files

ENVY/QA is shipped on a CD-ROM that contains all supported
platforms for a specific Smalltalk vendor. In this way, developers can
change platforms easily without exchanging media or licenses;
however, single-user license restrictions still apply.

8 / Installing ENVY/QA ENVY/QA User's Guide

3.2 Installing the Release Files

Please see the README.TXT file on your CD-ROM for installation
instructions for ENVY/QA.

After installation, newly-opened development browsers have a Tool
menu option on their menus. In addition, the Transcript’s ENVY or
Smalltalk Tools pulldown menus have the new options Tools and
Tool Settings.

4 Code Critic

4.1 Overview

Code Critic lets you detect potential problems automatically in a body
of code. It is integrated fully with the existing development browsers
and provides an ideal environment for integrating software quality
assurance directly into the development process.

Code Critic has an extensible set of reviews. A review is a specific type
of measure that executes over code elements, and either completes
successfully or produces warnings.

Warnings detected by Code Critic do not necessarily indicate wrong
code. You should use Code Critic as an automated first pass to
identifying potential problems. You should then decide whether an
identified warning is a problem within the scope of ongoing
development.

The Code Critic Results Browser lets you view Code Critic’s results
and correct problems.

4.2 Who Should Use This Tool

Developers can use Code Critic to:

• standardize coding styles and improve the consistency of code
among team members

10 / Code Critic ENVY/QA User's Guide

• quickly identify and correct common bugs

• focus on potential areas for detailed code inspections

Project managers can use Code Critic to:

• identify design or implementation dependencies

• obtain a quick summary of the state of a component

Release engineers can use Code Critic to:

• gauge the overall quality of a component

• identify potential packaging problems

4.3 Loading Code Critic

Code Critic is installed automatically as part of the complete
installation of ENVY/QA (see Chapter 3).

If you want to use only Code Critic:

1. Open the Configuration Maps Browser.

2. Load the most recent edition of the QA Code Critic configuration
map with required maps.

When Code Critic is loaded:

• the system menu has new submenus:

• Tool Õ Review...

• Tool Settings Õ Review...

• newly opened development browsers have a Tool Õ Review menu

You are now ready to use Code Critic.

4.4 Unloading Code Critic

To unload Code Critic:

1. Open the Configurations Maps Browser.

2. Unload the loaded edition of the QA Code Critic configuration
map.

6 Before unloading Code Critic, make sure that all Code Critic
Results Browsers are closed.

3. If Code Critic is the only ENVY/QA tool loaded, you can also unload
(in order) the following configuration maps:

(a) QA Code Tools (CC/CM) Framework

(b) QA Framework

Code Critic Guided Tour / 11

4.5 Guided Tour

In this section, we guide you through the process of:

• creating a problem

• running reviews

• browsing the results

• fixing the problems

4.5.1 Creating a Problem

Create the following class and methods. Note that the method
named:age: intentionally introduces a typing error to demonstrate a
message generated by the code review. Please type the method as
shown.

Person class

Object subclass: #Person
instanceVariableNames: 'name age '
classVariableNames: ''
poolDictionaries: ''

Person public class methods

named: aString age: anInteger
"Answer a new instance of the receiver whose name is aString
and age is anInteger."

^self new
mane: aString;
age: anInteger

Person public instance methods

age

^age

happyBirthday
"The receiver has had a birthday.
Display a Happy Birthday greeting, and make him/her a year older."

age := age + 1.
System message: ('Happy ', self age printString, ' Birthday, ', self name, '!')

name
"Answer the name (String) of the receiver."

^name

12 / Code Critic ENVY/QA User's Guide

Person private instance methods

age: anInteger
"Set the age (Integer) of the receiver to anInteger."

age := anInteger

name: aString
"Set the name (String) of the receiver to aString."

name := aString

4.5.2 Running Reviews

After you have added the Person class and its methods, run Code Critic
as follows.

1. Open a Classes Browser and select the Person class.

2. Select Classes Õ Tool Õ Review Õ Class....

3. When the Code Critic Options dialog opens, click OK.

Code Critic runs all reviews on the Person class.

4.5.3 Browsing the Results

After the reviews run, the Code Critic Results Browser displays the
results. To browse the results:

1. In the left list, select review Direct state variable access.

The right list shows the results of the review type.

2. In the right list, select method Person>>#happyBirthday.

The text area shows the source code of the method and highlights
age. This indicates that the instance variable age is accessed directly
without an accessor. The status area above the source area provides
additional information about the problem.

3. Select the method again.

The next problem is highlighted automatically. You can also click
Next to advance to the next problem.

Code Critic Code Critic and the Development Browsers / 13

4.5.4 Fixing the Problems

When the text of the method is displayed in the text area:

1. Correct the problem by modifying the method text to:

happyBirthday
"The receiver has had a birthday.
Display a Happy Birthday message, and increment his/her age."

self age: self age + 1.
System message: ('Happy ', self age printString, ' Birthday, ', self name, '!')

2. Save the changed method.

When the problem is corrected, Code Critic automatically removes
the method from the Code Critic Results Browser.

3. Select the review Missing method comment and method
Person>>#age. (The method is missing a method comment.)

4. Modify the method to the following and save it:

age
"Answer the age (Integer) of the receiver."
^age

5. Select the review Sent but not implemented and method Person
class>>#named:age:. (The method has a spelling error: #mane:
should be #name:.)

6. Correct the spelling error and save the method. The method is now:

named: aString age: anInteger
"Answer a new instance of the receiver whose name is aString
and age is anInteger."

^self new
name: aString;
age: anInteger;
yourself

7. Correct the remaining problems in a similar manner.

4.6 Code Critic and the Development Browsers

Code Critic is integrated fully with the development browsers. You can
review code elements using Tool Õ Review in applicable development
browsers.

14 / Code Critic ENVY/QA User's Guide

Code Critic measures your code’s compliance to project guidelines and
standard practices. You can review the following types of code
elements:

• method

• class

• class fragment

• class hierarchy

• application

• application hierarchy

• configuration map

4.6.1 Reviewing Configuration Maps

To review a configuration map:

1. Open the Configuration Maps Browser.

2. Select a configuration map edition.

3. Select Editions Õ Tool Õ Review.

4. In the Code Critic Options dialog, click OK to start the review.

4.6.2 Reviewing Applications

You can review applications from the following browsers:

• Configuration Maps Browser

• Application Manager

• Applications Browser

• Classes Browser

• Class Hierarchy Browser

• Visual Age Organizer

To review an application

1. Open one of the browsers mentioned above.

2. Select the applications to be reviewed.

Code Critic Code Critic and the Development Browsers / 15

3. Select a menu option:

Item to review Menu option

applications Applications Õ Tool Õ Review Õ Application...1

applications and their loaded
subapplications

Applications Õ Tool Õ Review Õ Include All Subapplications..

Table 1 — Reviewing applications.

4. In the Code Critic Options dialog, click OK to start the review.

4.6.3 Reviewing Classes

You can review classes from the following browsers:

• Application Manager

• Application Browser

• Applications Browser

• Classes Browser

• Class Hierarchy Browser

• Visual Age Organizer

To review a class:

1. Open one of the browsers mentioned above.

2. Select the classes to be reviewed.

3. Select a menu option:

Item to review Menu option

classes Classes Õ Tool Õ Review Õ Class...

classes and all their subclasses Classes Õ Tool Õ Review Õ Include All Subclasses...

class fragments Classes Õ Tool Õ Review Õ Class Fragment...

Table 2 — Reviewing classes.

4. In the Code Critic Options dialog, click OK to start the review.

4.6.4 Reviewing Methods

You can review methods from the following browsers:

• Application Browser

• Applications Browser

1 In the Configuration Maps Browser, select Applications Õ Tools Õ Review.

16 / Code Critic ENVY/QA User's Guide

• Classes Browser

• Class Browser

• Class Hierarchy Browser

• Methods Browser

To review a method:

1. Open one of the browsers mentioned above.

2. Select the methods to be reviewed.

3. Select Method Õ Tool Õ Review.

4. In the Code Critic Options dialog, click OK to start the review.

4.7 Code Critic Options Dialog

When you select Tool Õ Review, the Code Critic Options dialog
opens. From this dialog you can run either all reviews (by clicking All),
or a specific set of reviews (by clicking Settings...).

If you have run Code Critic previously and saved a set of ignored
problems, you can choose to reuse this ignore set by toggling Use
Ignore Set. Problems from the ignore set are ignored automatically if
they occur again.

Click OK to start the review.

Figure 1 — Code Critic Options dialog.

4.8 Selecting Which Reviews to Run

When you are familiar with the different types of reviews, you may find
that some reviews are more useful than others at different stages of

Code Critic Selecting Which Reviews to Run / 17

development. In such cases, you may want to run only some of the
reviews.

You can select specific reviews in the Code Critic Settings dialog
shown below.

Figure 2 — Code Critic Settings dialog.

The Code Critic Settings dialog groups reviews into the categories
shown in the following table.

Category Explanation

Inheritance class inheritance problems, including public/private inconsistencies and class extensions of
base classes

Missing missing code elements, including missing method comments and missing dependent method

References improper references between code elements, including references to globals and references
outside the prerequisite chain

Style coding style, including code that could be cascaded and poorly named methods

System low-level system problems, including methods that send system messages and methods
that reimplement system methods

Unused unused code elements, including unused pool dictionaries and unused state variables

Table 3 — Review groupings.

To select specific reviews:

1. In the Code Critic Options dialog, select Settings..., or from the
Transcript, select Tool Settings Õ Review....

2. Select a category in the left list.

The list on the right shows a group of check boxes representing each
review in that category.

18 / Code Critic ENVY/QA User's Guide

3. Do one of the following:

Desired result Action

enable all reviews in a category click All

disable all reviews in a category click None

enable or disable specific reviews click individual check boxes

reset to their default values all reviews in all
categories

click Reset All

Table 4 — Enabling reviews.

4. Click OK to accept the selected reviews or Cancel to abort the
selection.

4.9 Configuration Map Reviews

This section describes the review that you can run on configuration
maps.

4.9.1 Missing Config Comment/Notes

Warns if a configuration map does not have a comment or notes.

Advice
Use configuration map comments and notes to provide a brief
description of the configuration map.

4.10 Application Reviews

This section describes the reviews that you can run on applications.

4.10.1 Missing WasRemovedCode

Warns if a subapplication has toBeLoadedCode but does not have
wasRemovedCode.

Advice
If a subapplication performs operations before it can be loaded, it
should probably also perform operations to clean up after it is
unloaded. Place the appropriate code into the application’s
wasRemovedCode inherited user field by using #wasRemovedCode:.

4.11 Class Reviews

This section describes the reviews that you can run on classes.

Code Critic Class Reviews / 19

4.11.1 Duplicate Pool Dictionaries

Warns if a class declares a pool dictionary already declared by one of
its superclasses.

Advice
Remove the pool dictionary from the subclass.

4.11.2 Extends Base Class

Warns if a class is an extension of a base class.

Advice
Avoid extending generic base classes. Extending base classes
introduces additional complexity when receiving new releases of the
base software. Also, multiple applications extending a base class can
potentially collide in the use of the method name. If an extension
becomes necessary, consult your project’s guidelines for conventions to
use when adding extensions to base classes.

4.11.3 Missing Class Comment

Warns if a class does not have a comment.

Advice
Class comments help to explain the class. Consult your project’s
guidelines to determine the format of a class comment.

4.11.4 Missing Dependent Method

Warns if a class implements a method but does not implement its
dependent method.

For example, if a class implements =, it should typically implement
#hash.

Advice
Add the missing dependent method.

4.11.5 Not Categorized Methods

Warns if a class has methods that are not categorized.

Advice
You can use method categorization to help organize the methods of a
class. Consult your project’s guidelines to determine the naming
conventions.

20 / Code Critic ENVY/QA User's Guide

4.11.6 Poorly Named State Variables

Warns if a class has state variables (instance, class, or class instance)
that are poorly named.

For example, temp1 is a poorly named instance variable.

Advice
Give state variables meaningful names.

4.11.7 Subclass Responsibility

Warns if a class does not override a superclass method that contains
#subclassResponsibility.

Advice
Failure to override a subclass responsibility method could result in a
walkback.

4.11.8 Subclasses Base Class

Warns if a class is a subclass of a base class.

Advice
Avoid subclassing generic system classes. You have no control over the
implementation of these classes. Make sure that you are subclassing
because the objects are logically related, rather than physically related.
For example, a telephone book is not a Dictionary but it might have
some of its state represented using a Dictionary.

4.11.9 Unreferenced Class

Warns if the class is not visibly referenced.

Advice
If the class is not an abstract superclass and is not used either directly
or indirectly, you should remove it.

4.11.10 Unused Pool Dictionaries

Warns if the class includes a pool dictionary whose variables are not
referenced by any of the methods in the class or in its subclasses.

Advice
If appropriate, remove the pool declaration.

4.11.11 Unused State Variables

Warns if a state variable defined by the class is not referenced by any
methods in the class or in its subclasses.

Code Critic Method Reviews / 21

Advice
Remove the state variable.

4.12 Method Reviews

This section describes reviews that you can run on methods.

4.12.1 Compiler Warnings

Warns if a method has code or temporaries that are:

• unused

• read before written

• written but not read

• not optimized

Advice
Unused variables waste execution space. Variables read before being
written could result in a walkback. Variables written but not read
either waste execution space or indicate a potential bug if the variable
was intended to be used. Move variables that are not optimized into the
context of a block within the method.

4.12.2 Could Be Cascaded

Warns if a method could use cascade messages instead of multiple
individual message sends.

Advice
Cascaded statements can be faster than individual message sends. Use:

self a; b.

instead of:

self a. self b.

In some situations, a cascaded message can reduce the readability of
your code. Before cascading your code, consider the effect the change
will have on readability.

4.12.3 Could Use Self

Warns if a method is sent to the superclass explicitly but the method is
not implemented in any of the superclasses.

Advice
Do not use the superclass if the subclass does not implement the
method being called. In this situation, use self. For example, the

22 / Code Critic ENVY/QA User's Guide

subclass calls super xxxx, where xxxx is not implemented in the subclass.
Instead, write it as self xxxx.

4.12.4 Defeats Compiler Optimization

Warns if an optimized method is misused.

Advice
This warning occurs with code of the form:

ifTrue: aVariableHoldingABlock.

The system recognizes special selectors (for example, ifTrue:[]) and their
blocks, and optimizes them. The above form defeats these compiler
optimizations. Review the code for an alternative approach; for
example, use:

ifTrue:[aVariableHoldingABlock value].

4.12.5 Direct State Variable Access

Warns if a method directly references a state variable (instance, class
or class instance variables).

Accessor methods are not flagged because they are expected to directly
reference state variables. Delayed initialization accessors are not pure
accessors (that is, they perform computation) and therefore are flagged.
Instance methods acting as class variable accessors are also flagged
because class-variable access is typically done using class methods.

Advice
Accessors can help preserve the encapsulation principle of object-
oriented programming. Direct accesses can also increase maintenance
or limit the ability of a subclass to extend or refine the class’s behavior.

4.12.6 Identical to Inherited Method

Warns if a method’s implementation is identical to that of its
superclass.

Advice
Before you remove the duplicate method from the subclass, make sure
the duplication did not occur because the subclass behavior was not
properly refined. In certain situations, you might be implementing a
class method that is identical to an inherited method from Class or
Behavior (for example, #initialize). When you browse the hierarchy of
your class, the development browsers might not display these classes’
superclasses (Class, Behavior).

Code Critic Method Reviews / 23

4.12.7 Inefficient Convenience Method

Warns if an inefficient convenience method is implemented.

Advice
Do not implement a convenience method that will prevent compiler
optimization.

4.12.8 Magic Values

Warns if the method contains hard-coded numeric constants.

Advice
A hard-coded number has little semantic value and may increase
maintenance problems. Carefully document hard-coded numbers. Place
them into methods that return them or place them into class pools.

4.12.9 Missing #yourself

Warns if an expression is missing #yourself.

Advice
In an assignment statement (:=), the message #yourself is often
forgotten at the end of an instance creation followed by several
cascaded messages. Use:

aCollection := OrderedCollection new add: a; add: b; yourself

and not:

aCollection := OrderedCollection new add: a; add: b

4.12.10 Missing Method Comment

Warns if a method does not have a comment at the beginning of the
method.

Advice
Comment methods to explain their purpose, arguments, and return
value. Consult your project’s guidelines for the format of method
comments.

4.12.11 Missing Primitive Fail Code

Warns if a primitive method does not have code to handle failures.

Advice
Add code to handle the failure.

24 / Code Critic ENVY/QA User's Guide

4.12.12 Not Implemented in Superclass

Warns if a message is sent to the superclass explicitly but the method
is not implemented in the superclass.

Advice
Do not use the superclass, because the method is not implemented in
any of the superclasses. Check the spelling of the method.

4.12.13 Poorly Named Method

Warns if a method is poorly named. For example, #selfLocation is a
poorly named method.

Advice
Use meaningful method names to increase the readability of your code.

4.12.14 Poorly Named Variables

Warns if an argument or temporary variable is poorly named.

Advice
Use meaningful variable names to increase the readability of your code.

4.12.15 Public/Private Inconsistency

Warns if a method is:

• public in its class and private in its superclass

or

• private in its class and public in its superclass

Advice
Review the methods and, if appropriate, make them consistent.

4.12.16 References Development Classes

Warns if a method references a development class.

Advice
Referencing a development class can cause problems when a product is
prepared for shipment. These references can cause unnecessary code
bulk. Also, some development classes (for example, Compiler) cannot be
used in a runtime application.

4.12.17 References Global Variables

Warns if a method references a global variable.

Code Critic Method Reviews / 25

Advice
If a class has too many references to global variables, the class may rely
on too much shared information, which may be a design problem.

4.12.18 References outside Prereq Chain

Warns if a method references a non-visible class. Visible classes are
those found in the method’s application, in its subapplications, or along
the application’s prerequisite chain.

Advice
Correct the application’s prerequisites to include the appropriate
application containing the referenced class.

4.12.19 References Own Class

Warns if a method references its own class.

Advice
Avoid referencing the receiver’s class directly. Use self class. Directly
referencing the receiver’s class can limit the ability of subclasses to
refine or extend behavior.

4.12.20 Reimplements System Method

Warns if a method implements a system (low-level) method.

Advice
Implementing methods, such, as #basicAt: and #basicNew can be
risky. Carefully review these implementors and use an alternative
approach if possible.

4.12.21 Sends System Method

Warns if a method sends any of the messages that should typically be
avoided (for example, #basicAt:).

Advice
Avoid using system (low-level) messages.

4.12.22 Sent But Not Implemented

Warns if any messages are sent but not implemented by a visible class.
Visible classes are those found in the method’s application, along its
prerequisite’s chain, and in its subapplications. You can configure this
review to search for implementors in the entire image instead of
searching only the visible classes. ENVY/Packager directives
(associated with applications) can also be taken into account to prevent
symbols being considered potential messages.

26 / Code Critic ENVY/QA User's Guide

Advice
Implement the required method or change the message send. If the
message is used only as a symbol, you can ignore it by using the
ENVY/Packager directive methods in your application.

4.12.23 Should Call Superclass

Warns if the checked method specializes selectors but does not call
their superclass implementation. For example, when developers
implement #initialize, they commonly call super initialize.

Advice
Review the method to ensure it does not need to call the #initialize
method in its superclass.

4.12.24 Should Not Be Implemented

Warns if a method overrides a superclass method that sends
#shouldNotImplement.

Advice
This warning indicates a potential problem with the design of the class
hierarchy.

4.12.25 Should Use IsEmpty

Warns if a method misuses #size; for example, as in:

object size > 0

instead of:

object notEmpty

Advice
Use #isEmpty and #notEmpty.

4.12.26 Too Many Consecutive Concatenations

Warns if the method contains statements with too many consecutive
concatenations; for example, as in:

'hello ',self firstName,' ',self lastName,'. How are you ',self weather printString,' today? '

Advice
Too many consecutive concatenations create unnecessary intermediate
collections, which could affect the performance of the code.

Code Critic Method Reviews / 27

4.12.27 Too Many Consecutive Messages

Warns if the method contains statements with too many consecutive
messages; for example, as in:

self values location positions maximum x

Advice
Too many consecutive messages indicate a design problem. This
condition can indicate poor encapsulation of behavior or the need for
additional API in other objects.

4.12.28 Unnecessary #isNil or #notNil

Warns if #isNil or #notNil is sent to the receiver by itself; for example,
self isNil is typically unnecessary.

Advice
The receiver should know whether it is nil or not without sending a
message to determine this. All objects, except the UndefinedObject,
return false for the #isNil message, and return true for the #notNil
message.

4.12.29 Unnecessary Parentheses

Warns if the method has unnecessary parentheses. The following are
detected:

• parentheses around a unary message

• parentheses around a bracketed expression

Advice
Remove the additional parentheses unless they improve readability
significantly.

4.12.30 Unsent Method

Warns if a method is implemented but not sent by any class in the
method’s application, in its subapplication, or by a class along the chain
of dependent applications. You can configure this review to search for
senders in the entire image instead of searching along the dependent
application chain. ENVY/Packager directives (associated with
applications) can also be taken into account to prevent symbols found in
code being considered potential messages.

Advice
This warning indicates a potentially obsolete method. If a sender is
found in the image but not along the dependency chain, a problem may
exist with the prerequisites of the method’s application.

28 / Code Critic ENVY/QA User's Guide

4.12.31 Unused Arguments

Warns if a method has unused arguments.

Advice
This warning indicates potentially obsolete behavior. However, a
method can support arguments but ignore them in order to provide a
common API among several objects.

4.13 Customizing the Reviews

Each review has properties that affect the way the review checks code
elements. Some properties are common to all reviews and others are
specific to a review.

4.13.1 Common Properties

All reviews have the property severity level. Severity level is a number
(greater than or equal to one) that indicates the severity of results
found by the review. All reviews have a default severity level that you
can modify to match your project’s guidelines.

The following table summarizes the default severity levels for each
review. (Severity level 1 is the most severe.)

Review Default severity

Compiler warnings 2

Could be cascaded 3

Could use self 2

Defeats compiler optimization 3

Direct state variable access 2

Duplicate pool dictionaries 3

Extends base class 2

Identical to inherited method 1

Inefficient convenience method 1

Magic values 3

Missing #yourself 3

Missing class comment 3

Missing config comment/notes 3

Missing dependent method 2

Missing method comment 3

Missing primitive fail code 1

Missing wasRemovedCode 2

Not categorized methods 3

Not implemented in superclass 3

Code Critic Customizing the Reviews / 29

Review Default severity

Poorly named method 2

Poorly named state variables 2

Poorly named variables 2

Public/private inconsistency 3

References development classes 2

References global variables 2

References outside prereq chain 2

References own class 2

Reimplements system method 1

Sends system method 1

Sent but not implemented 1

Should call superclass 1

Should not be implemented 2

Should use isEmpty 3

Subclass responsibility 1

Subclasses base class 2

Too many consecutive concatenations 2

Too many consecutive messages 2

Unnecessary #isNil or #notNil 3

Unnecessary parenthesis 3

Unreferenced class 1

Unsent method 2

Unused arguments 3

Unused pool dictionaries 3

Unused state variables 1

Table 5 — Default severity levels.

4.13.2 Specific Properties

Some reviews have properties specific to that review. The following
table summarizes the properties for those reviews and the default
value for the property. You can customize any of these property values
using the Advanced Settings dialog. The default values may be
different depending on your Smalltalk vendor; consult the Advanced
Settings dialog.

30 / Code Critic ENVY/QA User's Guide

Review Property Description Default value

Defeats compiler
optimization

Optimized
methods

methods that are optimized by the
compiler; the format is:

ifTrue: ifFalse:

#and: #ifFalse:...

Direct state variable
access

Ignore same
name accessors

if the property is set to true, the
review ignores any selectors that
have the same name as the state
variable

(You can use the property to
ignore selectors that perform lazy
initialization.)

false

Extends base class Base classes base classes #AdditiveSequenceableCollec...

Inefficient
convenience method

Inefficient
convenience
selectors

the names of inefficient
convenience methods

#ifNil: #ifNotNil:

Magic values Ignore values common values that are not
considered to be hard-coded
values

-1 0 1 2

Missing #yourself Instance creation
methods

methods that are optimized for
instance creation

#basicNew #basicNew: #new...

Missing dependent
method

Dependent
methods

a list whose elements indicate a
method and its dependent method;
for example:
(= -> #hash)

= -> #hash #loaded ->...

Poorly named method Poor names the patterns for poor method
names

'*0' '*1' '*2' '*3' '*4'...

Poorly named state
variables

Poor names the patterns for poor state variable
names

'*0' '*1' '*2' '*3' '*4'...

Poorly named
variables

Poor names the patterns for poor variable
names

'*0' '*1' '*2' '*3' '*4'...

References
development classes

Development
classes

the names of development
classes that should not be
referenced

#CompilerError #EsAnd...

References global
variables

Acceptable
global variables

the names of global variables that
are commonly used and should
not be flagged as a problem

#Compiler #Processor...

Reimplements system
method

System (low-
level) selectors

the names of low-level system
methods

#allClassVarNames...

Sends system
method

System (low-
level) selectors

the names of low-level system
methods

#allClassVarNames...

Code Critic Customizing the Reviews / 31

Review Property Description Default value

Sent but not
implemented

Ignore
capitalized
literals

indicates if literals (symbols)
beginning with an uppercase letter
will not be considered as potential
messages

(This is useful if your application
uses symbols for state and by
convention your symbols start
with an uppercase letter.)

true

Scan entire
image

indicates whether the entire image
should be scanned instead of only
the visible classes scanned

false

Use packager
directives

indicates whether the
ENVY/Packager directives are
taken into account

(These directives can help ignore
symbols that might be mistaken
for potential selectors.)

true

Should call
superclass

Methods the names of methods that should
call super

#initialize

Subclasses base
class

Base classes base classes #AdditiveSequenceableCollec...

Too many
consecutive
concatenations

Maximum
allowed
consecutive
concatenations

the maximum number of allowed
concatenations

4

Maximum
allowed
consecutive
messages

the maximum number of allowed
consecutive messages

4

Too many
consecutive
messages

Maximum
allowed
consecutive
messages

the maximum number of allowed
consecutive messages

4

Unreferenced class Ignore
superclasses

if the class has subclasses, it is
ignored

False

Unsent method Scan entire
image

indicates whether the entire image
should be scanned instead of only
the visible classes scanned

False

Use packager
directives

indicates whether the
ENVY/Packager directives are
taken into account

(These directives can help ignore
symbols that might be mistaken
for potential selectors.)

True

Unused arguments Methods to
ignore

the patterns for selectors whose
arguments are often not used

'*clientData:callData:'

Table 6 — Specific review properties.

32 / Code Critic ENVY/QA User's Guide

4.13.3 Modifying Properties
To modify the default value of review properties:
• from a development browser, select Tool Õ Review and click

Settings...
• from the Transcript, select Tool Settings Õ Review...

Figure 3 — Code Critic Advanced Settings dialog.

Code Critic Saving and Loading Your Settings / 33

When the dialog opens, proceed as follows:

1. Click Advanced... to open the Advanced Settings (see Figure 3).

2. Select a review in the Reviews list.

The review’s properties appear in the Preferences list.

+ To access a review easily, you can sort the reviews in the
Reviews list either alphabetically or by code element type,
using By Label or By Type.

3. Select a property name in the Preferences list.

Its current value appears in the Preference Value text area.

4. Modify the text area to the desired value of the property according
to the following table.

Property Description

single-value property must be Boolean, Integer, String, or Symbol, depending on the
expected type of the property

multi-value property elements are separated by spaces

values for class property class names must be valid class names

Table 7 — Code Critic property values and their descriptions.

5. Click Save Value to save the new value of the property.

6. When you have made all modifications, click OK to accept the
changes or Cancel to abort the changes.

4.14 Saving and Loading Your Settings

The Code Critic Settings dialog lets you save and load settings. To
save the currently enabled reviews and their property values:

1. Open the Code Critic Settings dialog from any Tool Õ Review
menu item or select Tool Settings Õ Review... from the
Transcript.

2. Click Save To File....

3. Enter the name of the file to which to save the settings.

To load settings from a file:

1. Open the Code Critic Settings dialog from any Tool Õ Review
menu item or select Tool Settings Õ Review... from the
Transcript.

2. Click Load From File....

34 / Code Critic ENVY/QA User's Guide

3. Enter the name of the file containing your settings. The loaded
settings override any previous settings.

4.15 Using the Code Critic Results Browser

The Code Critic Results Browser lets you:

• view results

• view the source of the code element or the review description

• view all results or omit ignored results

• fix problems highlighted by the review

• save and load results from a file

• export the results as text or spreadsheet

• print the results

4.15.1 Layout of the Code Critic Results Browser

The following figure shows the Code Critic Results Browser.

Figure 4— Code Critic Results Browser.

The following table describes the elements of the Code Critic Results
Browser.

Element Description

menu bar provides access to browsing, results management, and viewing

Use Ignore Set... ignores any results in the browser that match results in the specified file

Save Ignore Set... saves the currently ignored results to a file

Applications Browser launches or brings to the front the Applications Browser associated with the
browser

(You can use this browser to select the same code element as in the results
browser.)

left list displays the list of reviews for which problems were found

Code Critic Using the Code Critic Results Browser / 35

Element Description

right list displays specific problems for a review selected in the left list

Sort By Type sorts reviews by their type (config map, application, class, method)

Sort By Severity sorts reviews by their severity; severity 1 is the most severe

Code shows the source code of the code element

Description shows the description of the selected review

label located directly above the source code, this area displays additional information
about the problem

text area displays the text of the code element, a summary of the results, or the
description of a review

Next advances to the next problem

(You can also select the method again to advance to the next problem.)

Previous returns to the previous problem

Table 8 — Elements of the Code Critic Results Browser.

4.15.2 Launching the Code Critic Results Browser

The Code Critic Results Browser lets you view the results of
running Code Critic or view results that have been previously saved to
a file.

To view the results of running Code Critic:

1. Select a code element from a development browser.

2. Select Tool Õ Review.

3. Run the review.

To view results saved to a file:

1. From the Transcript, select Tool Õ Review....

2. Enter a name of the results file to load.

4.15.3 Sorting by Type

To sort reviews according to the review type, select Sort By Type.

4.15.4 Sorting by Severity

To sort reviews according to problem severity, select Sort By
Severity. Severity 1 is the most severe type of problem.

36 / Code Critic ENVY/QA User's Guide

4.15.5 Viewing a Problem

Select a review from the left list and an item in the right list. The text
area displays the problem and the status area displays any additional
information about the problem.

To advance to the next problem, select the method again or click Next.
To return to the previous, click Previous.

4.15.6 Ignoring Result

Some results are not relevant and you can ignore them in subsequent
reviews.

To ignore specific review results:

1. In the right list, select the review results to be ignored.

2. Select Result Õ Ignore/Restore.

+ This menu item toggles the ignore state of results.

Results that have been ignored can be made visible or hidden in the
browser.

To show ignored results, select Result Õ Show All Results.

To hide ignored results, select Result Õ Hide Ignored Results.

+ If you have selected Show All Results, ignored results appear
with a minus sign (-) on the left to distinguish them from results
that are not ignored.

4.15.7 Removing Results

You can remove specific results and entire review types from the set of
results.

To remove specific review results:

1. In the right list, select the reviews to remove.

2. Select Result Õ Remove From List.

To remove all results of a given type:

1. In the left list, select a review type.

2. Select Review Õ Remove From List.

To remove all results of a specific review type and disable running this
review type again:

1. In the left list, select a review type.

2. Select Review Õ Turn Review Off.

Code Critic Using the Code Critic Results Browser / 37

4.15.8 Refreshing Results

If you modify code elements in the Code Critic Results Browser, the
selected code element is automatically refreshed; if the problem has
been fixed, the review result disappears from the browser.

However, if you make modifications outside the Code Critic Results
Browser, you may need to refresh results explicitly to reflect the
current state of the code elements, rather than their state when Code
Critic was run.

To refresh results:

1. In the right list, select the results to be refreshed.

2. Select Result Õ Refresh.

4.15.9 Saving and Loading Results

You can save to a file results collected during a code review and you
can review them later.

To save results to a file:

1. Select Review Õ Save....

2. Enter the name of the file into which to save the results.

To load previously saved results into the browser:

1. Select Review Õ Load....

2. Enter the name of the results file from which to load. The loaded
results override the current set of results.

4.15.10 Saving and Loading Ignore Sets

You can save ignored results to a file and use the file to ignore results
in subsequent code reviews.

To save ignored results to a file:

1. Click Save Ignore Set....

2. Enter the name of the file into which to save the ignored results.

To ignore results previously saved to a file:

1. Click Use Ignore Set....

2. Enter the name of the file from which to load the results. The
loaded ignore set overrides the current ignore set.

38 / Code Critic ENVY/QA User's Guide

4.15.11 Reporting Results

Code Critic results can be printed, exported as text, or exported as
spreadsheet format. You can customize the contents of a report to
produce either an in-depth report or a quick summary.

You can customize which parts of the report you want included. The
parts of a report comprise:

• header—user name, date and time, and comment

• list of reviews—the list of reviews that detected problems

• results—the list of results

• summary of results

4.15.12 Exporting Results to Text

To export results to a text file:

1. Select Review Õ Export Report Õ As Text....

2. Choose the sections to include (see Section 4.15.11) and click OK.

3. Enter the name of the text file to which to export the results.

4.15.13 Exporting to Spreadsheet

To export results to a spreadsheet file:

1. Select Review Õ Export Report Õ As Spreadsheet....

2. Choose the sections to include (see Section 4.15.11) and the type of
column delimiter to use. Click OK.

3. Enter the name of the spreadsheet file to which to export the
results.

+ Each field in the export file is separated by a comma or a tab. You
can modify the default setting in the Report Setup dialog that
appears when you create a report.

4.15.14 Printing Results

To print results:

1. Select Review Õ Print Report....

2. Choose the sections to include (see Section 4.15.11) and click OK.

4.15.15 Adding a Comment to the Results

In some cases, it is useful to annotate your Code Critic results with a
comment, especially if you are saving the results to examine later.

Code Critic Using the Code Critic Results Browser / 39

To add a comment to a code review:

1. Select Review Õ Summary Info....

The Summary Info dialog opens.

2. Enter a comment in the Comment text area.

3. Click OK to accept the comment or Cancel to abort.

4.15.16 Opening an Applications Browser

In some cases, you may want to switch quickly to a development
browser, where you can make more complex modifications to the code.
To facilitate the switch, the Code Critic Results Browser may have
an associated Applications Browser.

When you select a result in the right list, the associated Applications
Browser selects the code element corresponding to the result. You can
open an associated Applications Browser by:

• clicking the Applications Browser button

or

• double-clicking the selected review result in the right list

4.15.17 Opening Other Browsers

The Code Critic Results Browser provides the following options for
opening development browsers:

• Result Õ Browse Senders

• Result Õ Browse Implementors

• Result Õ Browse Messages

• Result Õ Browse Referenced Class...

• Result Õ Browse Class

• Result Õ Browse Hierarchy

The above browsing functions operate on the code element of the
selected review result. They function similarly to other development
browsers.

4.15.18 Menus

The following sections describe the menus of the Code Critic Results
Browser.

4.15.18.1 File Menu

This menu is the same as existing development browsers.

40 / Code Critic ENVY/QA User's Guide

4.15.18.2 Edit Menu

This menu is the same as existing development browsers.

4.15.18.3 Review Menu

Save...
Saves the current results to a file.

Load...
Loads results from a file.

Summary Info...
Displays summary information (user’s name, time and date, and
comment) for the review results.

Export Report
Exports the results to a file.

As Text...
Exports the results to a text file.

As Spreadsheet...
Exports the results to a spreadsheet file; fields are separated by
comma or tab.

Print Report...
Prints the results.

Remove From List
Removes all results of the selected review type.

Turn Review Off
Removes all results of the selected review type and turns off the
review for subsequent code reviews.

Settings...
Opens the Code Critic Settings dialog.

4.15.18.4 Result Menu

Remove From List
Removes the selected review results.

Refresh
Refreshes the selected review results to reflect the current state of
the code.

Browse Senders
Browses the senders of a selected method.

This is enabled only when the selected code element is a method.

Browse Implementors
Browses the implementors of a selected method.

This is enabled only when the selected code element is a method.

Code Critic Using the Code Critic Results Browser / 41

Browse Messages
Browses messages sent by the receiver.

Senders
Browses the senders of a message in a selected method.

Implementors
Browses the implementors of a message in a selected method.

This is enabled only when the selected code element is a
method.

Browse Referenced Classes...
Browses a class that is referenced directly in a selected method.

This is enabled only when the selected code element is a method.

Browse Class
Browses the selected class.

This is enabled only when the selected code element is a class or
method.

Browse Hierarchy
Browses the class hierarchy of a selected class.

This is enabled only when the selected code element is a class or
method.

Delete
Deletes the selected method from the image.

This is enabled only when a menu measure result is selected.

Ignore/Restore
Ignores or restores the selected review results.

This toggles the state of reviewed results.

Hide Ignored Results
Does not show the ignored results.

Show All Results
Shows all the results including the ignored results.

Ignored results have a minus sign (-) beside them to distinguish
them from results that are not ignored.

Change Public/Private
Changes the public or private status of the selected method.

4.15.18.5 Info Menu

This menu is the same as existing development browsers.

42 / Code Critic ENVY/QA User's Guide

4.16 Advanced Concepts

Code Critic provides an extensible framework for writing your own
project-specific reviews. This section describes how you can add your
own code reviews.

4.16.1 Framework Configuration Maps

The QA Code Critic configuration map contains the hierarchy of
reviews, the engine that runs the reviews (CcFramework application),
and the user interface including the Code Critic Results Browser
(CcUserInterface application).

To load the framework separately (without the UI) and run specific doIts
directly, load only the CcFramework application.

4.16.2 Code Critic Framework Classes

You can add a review through subclassing. The location of your class in
the hierarchy depends on what your review does and on what code
element it operates on. Use the following table to decide which
framework class to subclass.

Code element Must be loaded Subclass

configuration map Y | N CtConfigurationMapMeasure

application Y CtLoadedApplicationMeasure

application N CtApplicationMeasure

subapplication Y CtLoadedSubApplicationMeasure

subapplication N CtSubApplicationMeasure

entire class Y CtEntireClassMeasure

class Y CtLoadedClassMeasure

class extension Y CtClassExtensionMeasure

class definition Y CtLoadedClassDefinitionMeasure

class definition N CtClassDefinitionMeasure

method Y CtLoadedMethodMeasure

method N CtMethodMeasure

Table 9 — Subclassing CtMeasure.

4.16.3 Implementing Your Review Subclass

The work of a review is performed in the method #measure:. This
method takes the code element as a parameter and returns nil (if the
review found no problems) or an instance of CcComplaint.

Code Critic Advanced Concepts / 43

4.16.3.1 Mandatory Methods

CtMeasure defines a set of methods categorized as override mandatory.
These methods must be overridden in your subclass.

4.16.3.2 Optional Methods

CtMeasure defines a set of methods categorized as override optional.
These methods will often be overridden in your subclass; however,
failure to override them does not result in an error.

4.16.4 Example

The following example shows how to add a review that raises a warning
when classes are too deep in the hierarchy.

CcDeepHierarchy class

CtLoadedClassDefinitionMeasure subclass: #CcDeepHierarchy
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''

CcDeepHierarchy public class methods

44 / Code Critic ENVY/QA User's Guide

defaultProperties
"Answer the receiver's default properties.
PARAMETERS

None

RETURN VALUE
<OrderedCollection of SqaProperty>"

^super defaultProperties
add:(

SqaIntegerProperty new
label: 'Allowed number of superclasses';
name: #acceptableSuperclasses;
comment: 'The maximum number of allowed super classes';
value: 5;
yourself);

yourself

group
"Answer the functional group the receiver is in.
In addition to being grouped by the type of object they
apply to (Application, Class, etc.) measures are also organized
into functional groups. A measure belongs to one group.
Group names are also used when generating the user interface.

PARAMETERS
None

RETURN VALUE
<String>"

^'Inheritance'

descriptionText
"Answer the description text for the receiver.

PARAMETERS
None

RETURN VALUE
<String>"

^' Warn if a class is nested too deep in a class hierarchy.’

adviceText
"Answer the advice text for the receiver.

PARAMETERS
None

Code Critic Advanced Concepts / 45

RETURN VALUE
<String>"

^' A class that has too many superclasses may be difficult to maintain.
Review your class structure and check whether the class actually needs to inherit
behavior from its superclasses.'

isReview
"Answer true if the receiver is a review
otherwise answer false.
PARAMETERS

None
RETURN VALUE

<Boolean>"
^true

label
"Answer a single line label briefly describing the receiver.
PARAMETERS

None
RETURN VALUE

<String>"
^'Too deep in hierarchy'

loaded
“When the receiver has been loaded, execute the
 appropriate initialization.
PARAMETERS

None
RETURN VALUE

None”
CcDeepHierarchy resetProperties

CcDeepHierarchy public instance methods

measure: aClass
"Measure aClass for the number of superclasses.
Warn if the number of superclasses is higher than the
#acceptableSuperclasses property value.

RETURN VALUE
<nil | CcComplaint>"

| propertyValue |
(propertyValue := self propertyValueAt: #acceptableSuperclasses) isNil

ifTrue:[^nil].
aClass allSuperclasses size > propertyValue

ifTrue:[
^self

defaultReviewOf: aClass

46 / Code Critic ENVY/QA User's Guide

result: (
CcComplaint new

message: 'Too deep in hierarchy';
yourself)]

ifFalse:[^nil]

5 Code Metrics

5.1 Overview

Code Metrics lets you compute a set of static metrics for your code. It is
integrated fully with the existing development browsers and provides
an ideal environment for integrating software metrics directly into the
development process.

Code Metrics provides an extensible set of metrics. A metric is a
specific type of measure that executes over code elements and returns
a numerical result. A metric has an upper and a lower threshold.
Results between these thresholds are in range; other results are out of
range and need to be examined in more detail. Out-of-range results do
not necessarily indicate a problem. However, it is important to
understand why results are out of range.

Code Metrics results are viewed using the Code Metrics Results
Browser. You can modify code elements from this browser.

5.2 Who Should Use This Tool

Developers can use Code Metrics to:

• isolate areas of the system that are highly coupled

• identify and correct common problems

48 / Code Metrics ENVY/QA User's Guide

• focus on potential areas for detailed code inspections

• estimate the complexity of a component

Project managers can use Code Metrics to:

• determine whether the project is following the estimated effort

• improve project estimation skills

• check whether guidelines are followed consistently

Release engineers can use Code Metrics to:

• estimate component footprint

• identify areas that need more testing

5.3 Loading Code Metrics

Code Metrics is installed automatically as part of the complete
installation of ENVY/QA (see Chapter 3).

If you want to use only Code Metrics:

1. Open the Configuration Maps Browser.

2. Load the most recent edition of the QA Code Metrics configuration
map with required maps.

When Code Metrics is loaded:

• the system menu has new submenus:

• Tool Õ Metrics...

• Tool Settings Õ Metrics...

• newly opened development browsers have a Tool Õ Metrics menu

You are now ready to use Code Metrics.

5.4 Unloading Code Metrics

To unload Code Metrics:

1. Open the Configurations Maps Browser.

2. Unload the loaded edition of the QA Code Metrics configuration
map.

6 Before unloading Code Metrics, make sure that all Code
Metrics Results Browsers are closed.

3. If Code Metrics is the only ENVY/QA tool loaded, you can also
unload (in order) the following configuration maps:

(a) QA Code Tools (CC/CM) Framework

(b) QA Framework

Code Metrics Guided Tour / 49

5.5 Guided Tour

In this section, we guide you through the process of:

• creating a sample class

• running metrics

• browsing the results

5.5.1 Creating a Class to Measure

Create the following class and methods.

Person class

Object subclass: #Person
instanceVariableNames: 'name age '
classVariableNames: ''
poolDictionaries: ''

Person public class methods

named: aString age: anInteger
"Answer a new instance of the receiver whose name is aString
and age is anInteger."

^self new
name: aString;
age: anInteger

Person public instance methods

age

^age

happyBirthday
"The receiver has had a birthday.
Display a Happy Birthday message, and increment his/her age."

age := age + 1.
System message: ('Happy ', self age printString, ' Birthday, ', self name, '!').

name
"Answer the name (String) of the receiver."

^name

50 / Code Metrics ENVY/QA User's Guide

Person private instance methods

age: anInteger
"Set the age (Integer) of the receiver to anInteger."

age := anInteger

name: aString
"Set the name (String) of the receiver to aString."

name := aString

5.5.2 Running the Metrics

After you have added the Person class and its methods, run Code
Metrics as follows:

1. Open a Classes Browser and select the Person class.

2. Select Classes Õ Tool Õ MetricsÕ Class....

3. When the Code Metrics Options dialog opens, click OK.

Code Metrics runs all metrics on the Person class.

5.5.3 Browsing the Results

After the metrics run, the Code Metrics Results Browser displays
the results. To browse the results:

1. In the left list, select metric Lines of code.

The right list shows the results of that metric type. The text area
shows summary information for all methods.

2. Select Result Õ Hide In-Range Results.

Results inside the normal thresholds are hidden, letting you focus
on the problem results.

3. In the right list, select the method Person>>#happyBirthday.

Code Metrics displays the number of lines of code for this method.

5.6 Code Metrics and the Development Browsers

Code Metrics is integrated fully with the development browsers. You
can measure code elements using Tool Õ Metrics in applicable
development browsers.

Code Metrics Code Metrics and the Development Browsers / 51

Code Metrics measures your code’s compliance to project guidelines
and standard practices. You can measure the following types of code
elements:

• method

• class

• class fragment

• class hierarchy

• application

• application hierarchy

• configuration map

5.6.1 Measuring Configuration Maps

To measure a configuration map:

1. Open the Configuration Maps Browser.

2. Select a configuration map edition.

3. Select Editions Õ Tool Õ Metrics.

4. In the Code Metrics Options dialog, click OK to start the
measure.

5.6.2 Measuring Applications

You can measure applications from the following browsers:

• Configuration Maps Browser

• Application Manager

• Applications Browser

• Classes Browser

• Class Hierarchy Browser

• Visual Age Organizer

To measure an application:

1. Open one of the browsers mentioned above.

2. Select the applications to be reviewed.

52 / Code Metrics ENVY/QA User's Guide

3. Select a menu option:

Item to measure Menu option

applications Applications Õ Tool Õ Metrics Õ Application...

applications and their loaded
subapplications

Applications Õ Tool Õ Metrics Õ Include All Subapplications...

Table 10 — Measuring applications.

4. In the Code Metrics Options dialog, click OK to start the
measure.

5.6.3 Measuring Classes

You can measure classes from the following browsers:

• Application Manager

• Application Browser

• Applications Browser

• Classes Browser

• Class Hierarchy Browser

• Visual Age Organizer

To measure a class:

1. Open one of the browsers mentioned above.

2. Select the classes to be reviewed.

3. Select a menu option:

Item to measure Menu option

classes Classes Õ Tool Õ Metrics Õ Class...

classes and all their subclasses Classes Õ Tool Õ Metrics Õ Include All Subclasses...

class fragments Classes Õ Tool Õ Metrics Õ Class Fragment...

Table 11 — Measuring classes.

4. In the Code Metrics Options dialog, click OK to start the
measure.

5.6.4 Measuring Methods

You can measure methods from the following browsers:

• Application Browser

• Applications Browser

• Classes Browser

• Class Browser

Code Metrics Code Metrics Options Dialog / 53

• Class Hierarchy Browser

• Methods Browser

To measure a method:

1. Open one of the browsers mentioned above.

2. Select the methods to be reviewed.

3. Select Methods Õ Tool Õ Metrics.

4. In the Code Metrics Options dialog, click OK to start the
measure.

5.7 Code Metrics Options Dialog

When you select a Tool Õ Metric menu option, the Code Metrics
Options dialog opens. From this dialog you can run either all metrics
(by selecting All), or a specific set of metrics (by selecting Settings...).

Click OK to start the review.

Figure 5 — Code Metrics Options dialog.

5.8 Selecting Which Metrics to Run

When you are familiar with the different types of metrics, you may find
that some metrics are more useful than others at different stages of
development. In such cases, you may want to run only some of the
metrics.

You can select specific metrics in the Code Metrics Settings dialog
shown below.

54 / Code Metrics ENVY/QA User's Guide

Figure 6 — Code Metrics Settings dialog.

The Code Metrics Settings dialog groups metrics into the categories
shown in the following table.

Category Explanation

Complexity overall complexity of a code element—such as, cyclomatic complexity and Lorenz
method complexity

Coupling coupling and dependencies between code elements—such as, class coupling and
the number of dependent applications

Decomposition components of a code element—such as, the defined or extended classes of an
application

Inheritance class inheritance—such as, the total number of methods and depth of hierarchy

Interface public interface of a class—such as, the ratio of public to private methods

Size size of code elements—such as, the number of statements in a method and the
memory size of a class

Table 12 — Metrics groupings.

To select specific metrics:

1. In the Code Metrics Options dialog, select Settings..., or from the
Transcript, select Tool Settings Õ Metrics....

Code Metrics Application Metrics / 55

2. Select a category in the left list.

The list on the right shows check boxes for each metric in that
category.

3. Do one of the following:

Desired result Action

enable all metrics in a category click All

disable all metrics in a category click None

enable or disable specific metrics click individual check boxes

reset to their default values all metrics in all
categories

click Reset All

Table 13 — Enabling metrics.

4. Click OK to accept the selected metrics or Cancel to abort the
selection.

5.9 Application Metrics

This section describes metrics that you can run on applications.

5.9.1 All Defined Classes

Measures the number of defined classes in an application and all its
subapplications.

Advice
This metric helps measure the work required to develop an application
and its subapplications.

5.9.2 All Dependent Applications

Measures the total number of applications that are dependent on the
application.

Advice
This metric helps evaluate the dependence of other applications on the
application.

5.9.3 All Extended Classes

Measures the number of extended classes in an application and all its
subapplications.

Advice
This metric helps measure the work required to develop an application
and its subapplications, as well as its dependence on its prerequisites.

56 / Code Metrics ENVY/QA User's Guide

5.9.4 All Prerequisites

Measures the total number of prerequisites of the application.

Advice
This metric helps evaluate an application’s dependence on other
applications.

5.9.5 All Subapplications

Measures the total number of subapplications of an application.

Advice
This metric helps evaluate the decomposition of an application.

5.9.6 Defined Classes

Measures the number of defined classes in an application.

Advice
This metric helps measure the work required to develop an application.
It also helps evaluate the size of an application.

5.9.7 Dependent Applications

Measures the number of applications that have the application as an
immediate prerequisite.

Advice
This metric helps evaluate the dependence of other applications on the
application.

5.9.8 Extended Classes

Measures the number of extended classes in an application.

Advice
This metric helps measure the work required to develop an application.

5.9.9 Memory Size (Including Subapplications)

Measures the amount of memory used by the application and all its
subapplications. This is the sum of the memory size of:

• the application

• the subapplications of the application

• the classes contained in the application

• the classes contained in each subapplication of the application

Code Metrics Class Metrics / 57

Advice
This metric helps measure the work required to develop an application.

5.9.10 Memory Size for Applications

Measures the amount of memory used by an application. This is the
sum of the memory size of:

• the application

• the classes contained in the application

Advice
This metric helps measure the work required to develop an application.

5.9.11 Prerequisites

Measures the number of immediate prerequisites of an application.

Advice
This metric helps evaluate an application’s dependence on other
applications.

5.9.12 Subapplications

Measures the number of immediate subapplications of an application.

Advice
This metric helps evaluate the decomposition of an application.

5.10 Class Metrics

This section described metrics that you can run on classes.

5.10.1 Accessors

Measures the number of accessor methods of a class. An accessor
method contains only a get or set operation on a state variable.

Advice
Typically there are at most two accessors per state variable. A larger
number of accessors may indicate duplicate behavior. A smaller number
of accessors may indicate a large number of direct accesses, which in
turn can cause increased maintenance or limit the ability of a subclass
to extend or refine the class’s behavior.

58 / Code Metrics ENVY/QA User's Guide

5.10.2 All Class Methods

Measures the number of class methods defined by a class and its
superclasses.

Advice
This metric helps evaluate the complexity of the class. The number of
class methods is usually small compared to the number of instance
methods. A large number of class methods may indicate that many
services are handled by the class instead of by individual instances.

5.10.3 All Instance Methods

Measures the number of instance methods defined by a class and its
superclasses.

Advice
This metric helps evaluate the complexity of the class’s instances.
Large classes sometimes attempt too much work themselves, instead of
transferring responsibility to where it belongs. A large number of
instance methods may indicate an overloaded class.

5.10.4 All Instance Variables

Measures the number of instance variables declared by a class
(including those defined by its superclasses).

Advice
This metric helps evaluate the size of an instance of the class.

5.10.5 All Subclasses

Measures the total number of all subclasses of a class.

Advice
This metric helps evaluate the complexity of a class’s hierarchy. If a
class has a large number of subclasses, the methods that are inherited
may require extra testing.

5.10.6 Class Coupling

Measures the number of classes with which the class is coupled. Class
A is coupled with class B if A calls methods implemented in B.

Advice
A large coupling factor may indicate a design problem. A lower
coupling indicates a more independent object, which in turn means the
object may be easier to use.

Code Metrics Class Metrics / 59

5.10.7 Class Methods

Measures the number of class methods defined by a class.

Advice
This metric helps evaluate the complexity of the class. The number of
class methods is usually small compared to the number of instance
methods. A large number of class methods may indicate many services
are handled by the class instead of by individual instances. The number
of new methods decreases when you move down the inheritance tree.
Therefore, the deeper the class is in the class hierarchy, the lower
should be the ratio of class methods to all class methods. If this is not
the case, there may be design problems.

5.10.8 Class Response

Measures the number of messages sent by methods of a class.

Advice
A large response factor indicates a larger set of methods can be sent in
response to communications with the object. That is, when the object
receives a message, it has the potential to call many other methods in
response to the received message. This may in turn indicate an overly
complex class, requiring more testing.

5.10.9 Class Variables

Measures the number of class variables declared by a class.

Advice
A large number of class variables may indicate that the class does too
much work, instead of delegating work to other classes.

5.10.10 Cyclomatic Complexity

Measures the cyclomatic complexity of a class. Cyclomatic complexity is
defined by the formula:

sum-over-methods((number of exit points) - 1) + 2

Advice
A large value may indicate complex code with too much branching.

5.10.11 Depth of Hierarchy

Measures the depth of the class hierarchy of a class. Object has a depth
of 0.

Advice
This metric helps evaluate the complexity of a class hierarchy. A large

60 / Code Metrics ENVY/QA User's Guide

depth may indicate a complex inheritance tree and a potential design
problem.

5.10.12 Direct Variable Accesses

Measures the number of methods that reference an instance, class, or
class instance variable (excluding basic accessors).

Advice
This metric helps determine how variables are used in a class.
Accessors can help preserve the encapsulation principle of object-
oriented programming. Direct accesses can also cause increased
maintenance or limit the ability of a subclass to extend or refine the
behavior of the class.

5.10.13 Global/Pool References

Measures the number of references to pool variables or global variables
from a class’s methods.

Advice
If a class has too many references, the class may rely too much on
shared information.

5.10.14 Instance Methods

Measures the number of instance methods defined by a class.

Advice
This metric helps evaluate the complexity of the class’s instances.
Large classes sometimes attempt too much work themselves instead of
transferring responsibility to where it belongs. A large number of
instance methods may indicate an overloaded class. The number of new
methods typically decreases when you move down the inheritance tree.
Therefore, the deeper the class is in the class hierarchy, the lower the
ratio. If this is not the case, there may be design problems.

5.10.15 Memory Size for Classes

Measures the amount of memory (in bytes) used by a class and its
methods.

Advice
This metric helps measure the work required to develop a class.

5.10.16 New Methods

Measures the number of new methods defined by a class. New methods
are those not inherited from a superclass.

Code Metrics Class Metrics / 61

Advice
The number of new methods should decrease when you move down the
class hierarchy.

5.10.17 Pool Dictionaries

Measures the number of pool dictionaries declared by a class.

Advice
A class with too many pool dictionaries may be too tightly coupled to
other classes.

5.10.18 Ratio API/Internal

Measures the ratio of a class’s API methods to internal methods. This is
based on a method’s category and not on its public or private status.

Advice
A low ratio (many internal methods and few API methods) may indicate
that the class is simple to use but its internal processing may be
complex (hard to maintain). A high ratio (many API methods and few
internal methods) may indicate that the class is doing too much work,
because API methods represent services that other classes can use.

5.10.19 Ratio Public/Private

Measures the ratio of a class’s public methods to private methods.

Advice
A low ratio (few public methods and many private methods) may
indicate that the class is simple to use but its internal processing may
be complex (hard to maintain). A high ratio (many public methods and
few private methods) may indicate that the class is doing too much
work, because public methods represent services that other classes can
use.

5.10.20 Refined Methods

Measures the number of refined methods defined by a class. A refined
method is a method that overrides a subclass implementation.

Advice
A large number of refined methods may indicate a design problem. As a
specialization of its superclass, a subclass should primarily extend the
services of its superclasses. Therefore, a large number of refined
methods should occur only when the superclass is an abstract class.

5.10.21 Specialization Index

Measures the ratio:

62 / Code Metrics ENVY/QA User's Guide

refined instance methods * superclasses / all instance methods

Advice
This metric helps evaluate the quality of a subclass. A good subclass is
usually an extension of the capabilities of its superclasses. An
undesirable subclass is one that overrides the methods of its
superclasses if the superclasses are not abstract classes. A high ratio
may indicate a poor subclass and design problems.

5.10.22 Subclasses

Measures the number of immediate subclasses of a class.

Advice
This metric helps evaluate the complexity of a class hierarchy. If a class
has a large number of subclasses, the methods that are inherited may
require extra testing.

5.11 Method Metrics

This section describes metrics that you can run on methods.

5.11.1 Lines of Code

Measures the number of lines of code (LOC) in a method. Comments at
the top of the method and blank lines are ignored.

Advice
Larger values may indicate overly complex methods. You should
refactor the method.

5.11.2 Lorenz Complexity

Measures the Lorenz complexity2 of a method. The Lorenz complexity
adds weighted attributes of each method.

Advice
A larger value may indicate an overly complex method.

5.11.3 Memory Size for Methods

Measures the amount of memory used by a method.

Advice
This metric helps measure the work required to develop a method.

2 Mark Lorenz and Jeff Kidd, Object-Oriented Software Metrics, Prentice Hall, 1994.

Code Metrics Customizing the Metrics / 63

5.11.4 Method Density

Measures the density of a method. Method density is the number of
statements (as defined by the compiler) divided by the lines of code
(LOC). Comments at the top of the method and blank lines are ignored.

Advice
Large values may indicate less-readable methods.

5.11.5 Statements

Measures the number of statements. A statement is defined as any
sequence of expressions that ends in a period.

Advice
Larger values may indicate overly complex methods. You should
refactor the method.

5.12 Customizing the Metrics

Each metric has properties that affect the way the metric checks code
elements. Some properties are common to all metrics, while others are
specific to a metric.

5.12.1 Common Properties

All metrics have the properties lower threshold and upper threshold.
These properties define the acceptable range of values for the metric.
You should examine carefully results that fall outside the acceptable
range. You can modify the default thresholds to match your project’s
guidelines.

The following table summarizes the default thresholds for each metric.

Metric Default lower
threshold

Default upper
threshold

Accessors 0 12

All class methods 0 45

All defined classes 1 40

All dependent applications 0 20

All extended classes 0 26

All instance methods 0 250

All instance variables 0 8

All prerequisites 1 20

All subapplications 0 4

All subclasses 0 12

Class coupling 0 15

64 / Code Metrics ENVY/QA User's Guide

Metric Default lower
threshold

Default upper
threshold

Class methods 0 6

Class response 0 60

Class variables 0 2

Cyclomatic complexity 0 6

Defined classes 1 20

Dependent applications 0 4

Depth of hierarchy 1 4

Direct variable accesses 0 0

Extended classes 0 15

Global/Pool references 0 7

Instance methods 0 25

Lines of code 1 10

Lorenz complexity 0 65

Memory size (incl. subapps) 0 75000

Memory size for applications 0 5500

Memory size for classes 0 5500

Memory size for methods 68 400

Method Density 1 8

New methods 0 15

Pool dictionaries 0 2

Prerequisites 1 3

Ratio API/internal 0 2

Ratio public/private 0 2

Refined methods 0 5

Specialization index 0 0.1

Statements 1 16

Subapplications 0 4

Subclasses 0 3

Table 14 — Default lower and upper thresholds.

5.12.2 Specific Properties

Some metrics have properties specific to that metric. The following
table summarizes the properties for those metrics and the default value
for the property. You can customize any of these property values.

Code Metrics Customizing the Metrics / 65

Metric Property Description Default value

Class coupling Classes to ignore classes that should not be
considered as coupled

#AdditiveSequenceableCollec...

Lorenz complexity API calls weight the weight given to the number
of API calls

(API calls are calls to platform
functions.)

5.0

Assignments weight the weight given to the number
of assignments

0.5

Binary expressions
weight

the weight given to the number
of binary expressions

2.0

Keyword
expressions weight

the weight given to the number
of keyword expressions

3.0

Nested expressions
weight

the weight given to the number
of nested expressions

0.5

Parameters weight the weight given to the number
of method arguments

0.3

Primitive calls
weight

the weight given to the number
of primitive calls

(Primitive calls are methods
that call virtual-machine
primitives.)

7.0

Temporaries weight the weight given to the number
of temporary variables

0.5

Unary expressions
weight

the weight given to the number
of unary expressions

1.0

Ratio API/internal API categories the patterns of API categories '*API*'

Internal categories the patterns of internal
categories

'*Internal*'

Table 15 — Specific metric properties.

5.12.3 Modifying Properties

To modify the default value of metric properties:

• from a development browser, select Tool Õ Metrics and click
Settings...

or

• from the Transcript, select Tool Settings Õ Metrics...

66 / Code Metrics ENVY/QA User's Guide

Figure 7 — Code Metrics Advanced Settings dialog.

When the dialog opens, proceed as follows:

1. Click Advanced... to open the Advanced Settings dialog (see
Figure 7).

2. Select a metric in the Metrics list.

The metric’s properties appear in the Preferences list.

+ To access a metric easily, you can sort the metrics in the
Metrics list either alphabetically or by code element type,
using By Label or By Type.

3. Select a property name in the Preferences list.

Its current value appears in the Preference Value text area.

4. Modify the text area to the desired value of the property, according
to the following table.

Property Description

single-value property must be Boolean, Integer, String, or Symbol, depending on
the expected type of the property

multi-value property elements are separated by spaces

values for class property class names must be valid class names

Table 16 — Code Metrics property values and their descriptions.

5. Click Save Value to save the new value of the property.

6. When you have made all modifications, click OK to accept the
changes or Cancel to abort the changes.

Code Metrics Saving and Loading Your Settings / 67

5.13 Saving and Loading Your Settings

The Code Metrics Settings dialog lets you save and load settings. To
save the currently enabled metrics and their property values:

1. Open the Code Metrics Settings dialog from any Tool Õ Metrics
menu item, or select Tool Settings Õ Metrics... from the
Transcript.

2. Click Save To File....

3. Enter the name of the file to which to save the settings.

To load settings from a file:

1. Open the Code Metrics Settings Dialog from any Tool Õ Metrics
menu item or select Tool Settings Õ Metrics... from the
Transcript.

2. Click Load From File....

3. Enter the name of the file containing your settings. The loaded
settings override any previous settings.

5.14 Using the Code Metrics Results Browser

The Code Metrics Results Browser lets you:

• view results

• view the source of the code element or the metric description

• view all results or focus on those out of range

• fix problems highlighted by the review

• export the results as text or spreadsheet

• print the results

5.14.1 Layout of the Code Metrics Results Browser

The following figure shows the Code Metrics Results Browser.

68 / Code Metrics ENVY/QA User's Guide

Figure 8 — Code Metrics Results Browser.

The following table describes the elements of the Code Metrics
Results Browser.

Element Description

menu bar provides access to browsing, results management, and viewing

Applications
Browser

launches or brings to the front the Applications Browser associated with the
browser

(You can use the Applications Browser to select the same code element as in
the results browser.)

left list display by metric mode—displays the metric labels that have some results

display by object mode—displays the hierarchy of code elements that have results

right list displays specific metric results

Result shows the source code of the code element

Description shows the description of the selected metric type

label located directly above the source code, this area displays additional information
about the result

text area displays the text of the code element, a summary of the results, or the description
of a metric

Table 17 — Elements of the Code Metrics Results Browser.

5.14.2 Launching the Code Metrics Results Browser

The Code Metrics Results Browser lets you view the results of
running Code Metrics or view results that have been previously saved
to a file.

To view the results of running Code Metrics:

1. Select a code element from a development browser.

2. Select Tool Õ Metrics.

3. Run the metrics.

Code Metrics Using the Code Metrics Results Browser / 69

To view results saved to a file:

1. From the Transcript, select Tool Õ Metrics....

2. Enter the name of a results file to load.

5.14.3 Hiding In-Range Results

To focus on abnormal results, you can hide results that are within the
normal threshold values.

To hide in-range results, select Result Õ Hide In-Range Results.

To show all results, select Result Õ Show All Results.

+ Metrics results above the upper threshold are displayed with a
plus sign (+); metrics results below the lower threshold are
displayed with a minus sign (-).

5.14.4 Removing Results

You can remove specific results and entire metric types from the set of
results.

To remove specific metrics results:

1. In the right list, select the results to remove.

2. Select Result Õ Remove From List.

To remove all results of a given type:

1. In the left list, select a metric type.

2. Select Metric Õ Remove From List.

To remove all results of a specific metric type and disable running this
metric type again:

1. In the left list, select a metric type.

2. Select Metric Õ Turn Metric Off.

5.14.5 Refreshing Results

If you modify code elements in the Code Metrics Results Browser,
the selected code element is refreshed automatically. If the problem
has been fixed, the metrics result disappears from the browser.

However, if you make modifications outside the Code Metrics Results
Browser, you may need to refresh results explicitly to reflect the
current state of the code elements, rather than their state when the
metrics were collected.

To refresh results:

1. In the right list, select the results to be refreshed.

70 / Code Metrics ENVY/QA User's Guide

2. Select Result Õ Refresh.

5.14.6 Saving and Loading Results

You can save to a file results collected by Code Metrics and review the
results later.

To save results to a file:

1. Select Metric Õ Save....

2. Enter the name of the file to which to save the results.

To load previously saved results into the browser:

1. Select Metric Õ Load....

2. Enter the name of the results file from which to load. The loaded
results override the current set of results.

5.14.7 Reporting Results

Code Metrics results can be printed, exported as text, or exported as
spreadsheet format. You can customize the contents of a report to
produce either an in-depth report or a quick summary.

You can customize which parts of the report you want included. The
parts of a report comprise:

• header—user name, date and time, and comment

• list of metrics—the list of all metrics that collected results

• results—the list of results

• summary of results

5.14.8 Exporting Reports to Text

To export results to a text file:

1. Select Metric Õ Export Report Õ As Text....

2. Select the sections to include (see Section 5.14.7) and click OK.

3. Enter the name of the file to which to export the results.

5.14.9 Exporting to Spreadsheet

To export results to a spreadsheet file:

1. Select Metric Õ Export Report Õ As Spreadsheet....

2. Select the sections to include (see Section 5.14.7) and the type of
column delimiter to use. Click OK.

Code Metrics Using the Code Metrics Results Browser / 71

3. Enter the name of the file to which to export the results.

+ Each field in the export file is separated by a comma or a tab. You
can modify the default setting in the Report Setup dialog that
appears when you create a report.

5.14.10 Printing Results

To print results:

1. Select Metric Õ Print Report....

2. Select the sections to include (see Section 5.14.7) and click OK.

5.14.11 Adding a Comment to the Results

In some cases, it is useful to annotate your Code Metrics results with a
comment, especially if you are saving the results to examine later.

To add a comment to your Code Metrics results:

1. Select Metric Õ Summary Info....

The Summary Info dialog opens.

2. Enter a comment in the Comment text area.

3. Click OK to accept the comment or Cancel to abort.

5.14.12 Opening an Applications Browser

In some cases you may want to switch quickly to a development
browser, where you can make more complex modifications to the code.
To facilitate the switch, the Code Metrics Results Browser may have
an associated Applications Browser.

When you select a result in the right list, the associated Applications
Browser selects the code element corresponding to the result. You can
open an associated Applications Browser by:

• clicking the Applications Browser button

or

• double-clicking the selected metrics result in the right list

5.14.13 Opening Other Browsers

The Code Metrics Results Browser provides the following options
for opening development browsers:

• Result Õ Browse Senders

• Result Õ Browse Implementors

72 / Code Metrics ENVY/QA User's Guide

• Result Õ Browse Messages

• Result Õ Browse Referenced Class...

• Result Õ Browse Class

• Result Õ Browse Hierarchy

The above browsing functions operate on the code element of the
selected metric result. They function similarly to other development
browsers.

5.14.14 Menus

This section describes the menus of the Code Critic Results
Browser.

5.14.14.1 File Menu

This menu is the same as existing development browsers.

5.14.14.2 Edit Menu

This menu is the same as existing development browsers.

5.14.14.3 Metric Menu

Save...
Saves the current results to a file.

Load...
Loads results from a file.

Summary Info...
Displays summary information (user’s name, time and date, and
comment) for the metrics results.

Export Report
Exports the results to a file.

As Text...
Exports the results to a text file.

As Spreadsheet...
Exports the results to a spreadsheet file; fields are separated by
comma or tab.

Print Report...
Prints the results.

Remove From List
Removes all results of the selected metric type.

Turn Metric Off
Removes all results of the selected metric type and turns off the
metric for subsequent code metrics.

Code Metrics Using the Code Metrics Results Browser / 73

Settings...
Opens the Code Critic Settings dialog.

5.14.14.4 Result Menu

Remove From List
Removes the selected metric results.

Refresh
Refreshes the selected metric results to reflect the current state of
the code.

Browse Senders
Browses the senders of a selected method.

This is enabled only when the selected code element is a method.

Browse Implementors
Browses the implementors of a selected method.

This is enabled only when the selected code element is a method.

Browse Messages
Browses messages sent by the receiver.

Senders
Browses the senders of a message in a selected method.

Implementors
Browses the implementors of a message in a selected method.

This is enabled only when the selected code element is a
method.

Browse References Classes...
Browses a class that is referenced directly in a selected method.

This is enabled only when the selected code element is a method.

Browse Class
Browses the selected class.

This is enabled only when the selected code element is a class or
method.

Browse Hierarchy
Browses the class hierarchy of a selected class.

This is enabled only when the selected code element is a class or
method.

Delete
Deletes the selected method from the image.

This is enabled only when a menu measure result is selected.

Hide In-Range results
Does not show the results that are within the normal range.

74 / Code Metrics ENVY/QA User's Guide

Show All Results
Shows all the results.

Results below the lower threshold have a minus sign (-) beside
them. Results above the upper threshold have a plus sign (+) beside
them.

5.14.14.5 Info Menu

This menu is the same as existing development browsers.

5.15 Advanced Concepts

Code Metrics provides an extensible framework for writing your own
project-specific metrics. This section describes how you can add your
own code metrics.

5.15.1 Framework Configuration Maps

The QA Code Metrics configuration map contains the hierarchy of
metrics, the engine that runs them (CmFramework application), and
the user interface including the Code Metrics Results Browser
(CmUserInterface application).

To load the framework separately (without the UI) and run specific doIts
directly, load only the CmFramework application.

5.15.2 Code Metrics Framework Classes

You add a metric through subclassing. The location of your class in the
hierarchy depends on what your metric does and on what code element
it operates on. Use the following table to decide which framework class
to subclass.

Code element Must be loaded Subclass

configuration map Y | N CtConfigurationMapMeasure

application Y CtLoadedApplicationMeasure

application N CtApplicationMeasure

subapplication Y CtLoadedSubApplicationMeasure

subapplication N CtSubApplicationMeasure

entire class Y CtEntireClassMeasure

class Y CtLoadedClassMeasure

class extension Y CtClassExtensionMeasure

class definition Y CtLoadedClassDefinitionMeasure

Code Metrics Advanced Concepts / 75

Code element Must be loaded Subclass

class definition N CtClassDefinitionMeasure

method Y CtLoadedMethodMeasure

method N CtMethodMeasure

Table 18 — Subclassing CtMeasure.

5.15.3 Implementing Your Metric Subclass

The work of a metric is performed in the method #measure:. This
method takes the code element as a parameter and returns a
CtMeasurement with a numerical value.

5.15.3.1 Mandatory Methods

CtMeasure defines a set of methods categorized as override mandatory.
These methods must be overridden in your subclass.

5.15.3.2 Optional Methods

CtMeasure defines a set of methods categorized as override optional.
These methods will often be overridden in your subclass; however,
failure to override them does not result in an error.

5.15.4 Example

The following example shows how to add a metric that measures the
number of applications in a configuration map edition.

76 / Code Metrics ENVY/QA User's Guide

CmApplications class

CtConfigurationMapMeasure subclass: #CmApplications
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''

CmApplications public class methods

defaultUpperThreshold
"Answer the default upper threshold for the receiver.
The thresholds are affected by many factors (ex. prototype,
first release, UI...) and the user has to tailor the thresholds
to his own needs and experience.

PARAMETERS
None

RETURN VALUE
<Number>"

^10

group
"Answer the functional group the receiver is in.
In addition to being grouped by the type of object they
apply to (Application, Class etc.) measures are also organized
into functional groups. A measure belongs to one group.
Group names are also used when generating the user interface.

PARAMETERS
None

RETURN VALUE
<String>"

^'Decomposition'

descriptionText
"Answer the information text about the receiver.

PARAMETERS
None

RETURN VALUE
<String>"

^' Measure the number of applications contained in a
configuration map'

adviceText
"Answer the advice text about the receiver..

Code Metrics Advanced Concepts / 77

PARAMETERS
None

RETURN VALUE
<String>"

^' Helps estimate the packaging effort.

isMetric
"Answer true if the receiver is a metric
otherwise answer false.

PARAMETERS
None

RETURN VALUE
<Boolean>"

^true

label
"Answer a single line label briefly describing the receiver.

PARAMETERS
None

RETURN VALUE
<String>"

^'Applications'

CmApplications public instance methods

measure: aConfigurationMap
"Measure aConfigurationMap for the number of applications
it contains.

PARAMETERS
aConfigurationMap <EmConfigurationMap>

RETURN VALUE
<CtMeasurement>"

^self
defaultMeasurementOf: aConfigurationMap
result:aConfigurationMap applicationNames size

6 Code Coverage

6.1 Overview

Code Coverage helps you determine whether test cases that were
developed to test your applications provide you with complete test
coverage. It is integrated fully with the existing development browsers
and lets you evaluate your test cases as you develop the software.

Code Coverage lets you focus on testing your applications by
presenting a view of what is left to be tested of your application. It does
this by hiding components as they become tested, showing the
remaining untested components.

6.2 Who Should Use This Tool

Developers can use Code Coverage to:

• design test cases that maximize the test coverage of their
applications

• find deficiencies in application test suites

• set up reusable test coverage configurations

Project managers and release engineers can use Code Coverage to:

• verify the amount of coverage obtained by regression test suites

80 / Code Coverage ENVY/QA User's Guide

• produce summary reports detailing test coverage statistics

6.3 Loading Code Coverage

Code Coverage is installed automatically as part of the complete
installation of ENVY/QA (see Chapter 3).

If you want to use only Code Coverage:

1. Open the Configuration Maps Browser.

2. Load the most recent edition of the QA Code Coverage
configuration map with required maps.

When Code Coverage is loaded:

• the system menu has a new submenu Tool Õ Coverage

• newly opened development browsers have a Tool Õ Coverage
menu

You are now ready to use Code Coverage.

6.4 Unloading Code Coverage

To unload Code Coverage:

1. Open the Configurations Maps Browser.

2. Unload the loaded edition of the QA Code Coverage configuration
map.

6 Before unloading Code Coverage, make sure that all Code
Coverage Browsers are closed.

3. If Code Coverage is the only ENVY/QA tool loaded, you can also
unload QA Framework.

6.5 Guided Tour

In this section, we guide you through the process of:

• creating an application that you will watch using Code Coverage

• selecting the application to watch

• ignoring methods that are not to be tested

6.5.1 Creating an Application

Create the application SampleApplication and add the following class
and methods.

Code Coverage Guided Tour / 81

Person class

Object subclass: #Person
nstanceVariableNames: 'name age '
classVariableNames: ''
poolDictionaries: ''

Person public class methods

named: aString age: anInteger
"Answer a new instance of the receiver whose name is aString
and age is anInteger."
^self new

name: aString;
age: anInteger

initialize
"Initialize the receiver. This should only be done when it is first loaded
into the image."

Transcript cr; show: 'Initializing the receiver.'

Person public instance methods

happyBirthday
"The receiver has had a birthday.
Display a Happy Birthday message."
System message: ('Happy ', self age printString, ' Birthday, ', self name, '!').

name
"Answer the name (String) of the receiver."

^name

age
“Answer the age (Integer) of the receiver.”
^age

Person private instance methods

age: anInteger
"Set the age (Integer) of the receiver to anInteger."
age := anInteger

name: aString
"Set the name (String) of the receiver to aString."
name := aString

82 / Code Coverage ENVY/QA User's Guide

6.5.2 Selecting the Applications to Watch

After you have added the application SampleApplication, run Code
Coverage as follows:

1. Open an Application Manager and select the application
SampleApplication.

2. Select Applications Õ Tool Õ Coverage Õ Application.

The Code Coverage Browser opens, containing your application.
At the top of the browser, the status line shows the number of
remaining untested methods.

3. Select your application (SampleApplication).

Classes and methods that remain to be tested are shown in the right
two lists.3

6.5.3 Watching Your Application

In the Code Coverage Browser, click watch. Your application is now
being watched, and Code Coverage detects automatically which
methods you execute. Proceed as follows:

1. From the Transcript, evaluate:

Person named: 'Joe' age: 30.

2. Return to the Code Coverage Browser and select your
application.

The #named:age: method has been executed (tested) and
automatically disappears from the Code Coverage Browser.

3. To see methods hidden by Code Coverage, select Methods Õ Show
All. (This is the default. The toggle for this is Methods Õ Hide
Ignored.)

6.5.4 Ignoring Methods

In some situations, there are methods that you do not intend your test
suites to execute. To ignore these methods:

1. Select the class method #initialize.

2. Select Methods Õ Ignore/Restore.

3 On VisualAge for Smalltalk Professional, accessor and primitive methods are not shown.

These methods are handled specially by the virtual machine and cannot be monitored by
Code Coverage.

Code Coverage Code Coverage and the Development Browsers / 83

The method disappears and the status line at the top of the Code
Coverage Browser is updated.

6.6 Code Coverage and the Development Browsers

Code Coverage is integrated fully with the development browsers. You
can run Code Coverage using Tool Õ Coverage in applicable
development browsers and in the Transcript.

6.6.1 Coverage on Configuration Maps

To run Code Coverage on configuration maps:

1. Open the Configuration Maps Browser.

2. Select a configuration map edition.

3. Select Editions Õ Tools Õ Coverage.

6.6.2 Coverage on Applications

You can run Code Coverage on applications from the following
browsers:

• Configuration Maps Browser

• Application Manager

• Applications Browser

• Classes Browser

• Class Hierarchy Browser

• Visual Age Organizer

To run Code Coverage on an application:

1. Open one of the browsers mentioned above.

2. Select the applications to be watched.

3. Select a menu option:

Item to watch Menu option

applications Applications Õ Tool Õ Coverage Õ Application...

applications and their loaded
subapplications

Applications Õ Tool Õ Coverage Õ Include Subapplications...4

Table 19 — Watching applications.

4 In the Configuration Maps Browser, select Tools Õ Coverage.

84 / Code Coverage ENVY/QA User's Guide

6.7 Using the Code Coverage Browser

The Code Coverage Browser lets you:

• add components to be observed for coverage testing

• ignore components to focus coverage testing

• start, stop, and pause coverage testing

• view the percentage completion of testing

• export the results as text or as spreadsheet

• print the results

6.7.1 Layout of the Code Coverage Browser

The following figure shows the Code Coverage Browser.

Figure 9 — Code Coverage Browser.

The following table describes the elements of the Code Coverage
Browser.

Element Description

menu bar provides access to component management and allows applications to be
added and selected components to be ignored

control buttons controls whether coverage testing is one of:
— active (watch)
— inactive (stop)
— active, but momentarily paused (pause)

status area shows the number of tested methods in the selected applications as a:
— fraction (tested over total)
— percentage

applications list displays the applications and subapplications added for coverage testing

classes list displays classes of the selected application

Code Coverage Using the Code Coverage Browser / 85

Element Description

methods list displays methods of the selected class

text area displays the text of the code element

information label displays the status of the selected method

Table 20 — Elements of the Code Coverage Browser.

6.7.2 Launching the Code Coverage Browser

The Code Coverage Browser lets you watch a set of applications
while they are being tested. To open the Code Coverage Browser,
select Tool Õ Coverage from a development browser or from the
Transcript.

6.7.3 Status Area

The status area gives a brief summary of the number of methods that
are still untested in the selected application. The status area shows
the:

• number of tested methods

• number of untested methods

• percentage of tested methods for the selected applications

For example:

17/435 (3.91%)

indicates that out of a total of 435 testable methods, 17 have executed,
which represents 3.91% of the total.

The total testable methods do not include ignored methods or methods
that cannot be monitored by Code Coverage.5 If the selected application
is displayed with points of ellipsis (...), the status area displays the
totals for the entire application hierarchy. If the points of ellipsis are
not present, the totals are shown for only the specific applications.
When an application is fully tested, the status label indicates No
methods.

6.7.4 The Control Buttons

The buttons watch, stop, and pause control the operation of the Code
Coverage Browser.

5 On VisualAge for Smalltalk Professional, accessor and primitive methods cannot be

monitored by Code Coverage.

86 / Code Coverage ENVY/QA User's Guide

watch
Sets the Code Coverage Browser to watching mode.

When a method executes, the Code Coverage Browser records
the fact that the method has been tested. Click watch before you
start your test suites.

stop
Causes the browser to stop watching your methods.

Click stop only when you have completed running your test suites.

pause
Temporarily suspends the Code Coverage Browser watching the
methods.

If you click pause, the button label changes to resume. If you click
the button again, the browser continues to watch the execution of
your methods.

6.7.5 Refreshing the Browser

As you test your application, you may need to explicitly refresh the
Code Coverage Browser to reflect the current state of the
applications being tested. Select Applications Õ Refresh to refresh
the browser.

6.7.6 Ignoring Components

It is possible that some of your methods are never executed during the
course of running your test suites. For example, test cases validating
API for adding and removing from a collection might not test the
initialization of the class itself. Class initialization might be tested as
part of a test suite to verify the correct installation and removal of a
class from the image.

The Code Coverage Browser lets you ignore methods, classes, or
applications that your test cases are not intended to test. This lets you
reduce the amount of information presented in the browser and lets
you focus on the main problem of identifying the incomplete areas of
your test suites.

To ignore the methods in a component, select the component
(application, class, or method) and select a menu option:

Ignore all methods in Menu option

an application ensure the application’s hierarchy is expanded (that is, ... does not follow the
application name) and select:
ApplicationsÕ Ignore Application

an application and its
subapplications

ensure the application’s hierarchy is collapsed (that is, ... follows the
application name) and select:
Applications Õ Ignore Application...

Code Coverage Using the Code Coverage Browser / 87

Ignore all methods in Menu option

a class Classes Õ Ignore Õ Class...

a class hierarchy Classes Õ Ignore Õ Class Hierarchy...

methods Methods Õ Ignore/Restore

all implementors of a method Methods Õ Ignore All Implementors...

Table 21 — Ignoring methods in a component.

To view all methods (including those that have been ignored), select
Methods Õ Show All. Ignored methods are prefixed with a minus sign
(-).

To view only those methods that need to be tested, select Methods Õ
Hide Ignored. Ignored methods are hidden. Classes and applications
that do not have any remaining methods are also removed, unless they
have subclasses or subapplications that still contain untested methods.

6.7.7 Restoring Components

To remove the ignore status from your methods:

1. Select the component (application, class, or method) whose ignore
status you want to reverse. If the component is not visible, you must
first select Methods Õ Show All.

2. Select a menu option:

Restore all methods in Menu option

an application ensure the application’s hierarchy is expanded (that is, ... does not follow
the application name) and select:
ApplicationsÕ Restore Application...

applications and its
subapplications

ensure the application’s hierarchy is collapsed (that is, ... follows the
application name) and select:
Applications Õ Restore Application...

a class Classes Õ Restore Õ Class...

a class hierarchy Classes Õ Restore Õ Class Hierarchy...

methods Methods Õ Ignore/Restore

all implementors of a method Methods Õ Restore All Implementors...

Table 22 — Restoring all methods in a component.

6.7.8 Saving and Loading Your Coverage Setup

You can save to a file the set of applications and ignored methods. You
can later use the file to retest your application with minimal setup
time.

88 / Code Coverage ENVY/QA User's Guide

To save the Code Coverage setup to a file:

1. Select Applications Õ Save Setup... or Applications Õ Save
Setup As....

2. Enter the name of the file to which to save the setup.

To load the setup information from a file:

1. Select Applications Õ Load Setup....

2. Enter the name of the file containing your setup. The loaded setup
overrides any applications previously added to the Code Coverage
Browser.

6.7.9 Reporting Results

Code Coverage results can be printed, exported as text, or exported as
spreadsheet format. You can customize the contents of a report to
produce either an in-depth report or a quick summary.

You can customize which parts of the report you want included. The
parts of a report comprise:

• header—user’s name, date and time, and comment

• summary of all applications—a summary of the number of testable,
untestable, and ignored methods in all applications

• summary by application—a summary of the number of testable,
untestable, and ignored methods for each application

• method details by application—a detailed summary of the testable,
untestable, and ignored methods in all applications, grouped by
application

6.7.10 Exporting Reports to Text

To export results to a text file:

1. Select Applications Õ Export Report Õ As Text....

2. Select the sections to include (see Section 6.7.9) and click OK.

3. Enter the name of the text file to which to export the results.

6.7.11 Exporting to Spreadsheet

To export results to a spreadsheet file:

1. Select Applications Õ Export Report Õ As Spreadsheet....

2. Select the sections to include (see Section 6.7.9) and the type of
column delimiter. Click OK.

Code Coverage Using the Code Coverage Browser / 89

3. Enter the name of the spreadsheet file to which to export the
results.

+ Each field in the export file is separated by a comma or a tab. You
can modify the default setting in the Report Setup dialog that
appears when you create a report.

6.7.12 Printing Results

To print results:

1. Select Applications Õ Print Report....

2. Select the sections to include (see Section 6.7.9) and click OK.

6.7.13 Adding a Comment to the Results

In some cases, it is useful to annotate your Code Coverage report with
comments, especially if you are saving the report to examine later.

To add a comment for a coverage report:

1. Select Applications Õ Summary Info....

The Summary Info dialog opens.

2. Enter a comment in the Comment text area.

3. Click OK to accept the comment or Cancel to abort.

6.7.14 Menus

This section describes the menus of the Code Coverage Browser.

6.7.14.1 File Menu

This menu is the same as existing development browsers.

6.7.14.2 Edit Menu

This menu is the same as existing development browsers.

6.7.14.3 Applications Menu

Save Setup...
Saves to the previous file the set of loaded applications and the set
of ignored methods. If this is the first save operation, this option
prompts for a filename.

This option is enabled when changes made to the browser have not
been saved.

90 / Code Coverage ENVY/QA User's Guide

Save Setup As...
Saves to a new file the set of loaded applications and the set of
ignored methods.

Load Setup...
Loads a previously saved Code Coverage setup file.

Summary Info...
Displays summary information (user’s name, time and date, and
comment) for the coverage results.

Export Report
Exports the results to a file.

As Text...
Exports the results to a text file.

As Spreadsheet...
Exports the results to a spreadsheet file; fields are separated by
comma or tab.

Print Report...
Prints the results.

Browse Application
Opens an Application Browser on the selected application.

Browse Methods
Displays a submenu with the following options. After one of the
options is selected, a Methods Browser opens that contains a
filtered set (see below) of all methods from all applications loaded
in the Code Coverage Browser.

Tested
Opens a Methods Browser with all methods that have been
executed (tested).

Untested
Opens a Methods Browser with all methods that have not been
executed (untested).

Ignored
Opens a Methods Browser with all methods that have been
ignored.

Add
Displays a submenu of options to add components.

Application...
Adds one or more applications to the Code Coverage Browser.

Application Hierarchy...
Adds one or more applications and their subapplications to the
Code Coverage Browser.

SubApplication...
Adds one or more subapplications to the Code Coverage
Browser.

Code Coverage Using the Code Coverage Browser / 91

Configuration Map...
Adds to the Code Coverage Browser the applications of a
chosen configuration map.

Remove
Displays a submenu with options to remove selected applications.

Application...
Removes the selected applications and their subapplications
from the Code Coverage Browser.

Configuration Map...
Removes from the Code Coverage Browser the applications
and subapplications of the selected configuration map.

Ignore Application...
Ignores all methods in the selected applications.

Restore Application...
Restores all ignored methods in the selected applications.

Reset
Displays a submenu with options to reset methods to the untested
state.

Application...
Resets to the untested state all methods in the selected
applications.

All Applications...
Resets to the untested state all methods in all applications.

Verbose Dialogs
Toggles whether dialogs are verbose or terse. You should use
verbose dialogs initially; when you become familiar with Code
Coverage, you can switch to terse dialogs.

Refresh
Updates the browser to reflect changes made to its applications,
classes, and methods.

92 / Code Coverage ENVY/QA User's Guide

6.7.14.4 Classes Menu

Find

Browse References

Browse Messages

Browse Class

Browse Hierarchy
These menu options are the same as existing development
browsers.

Ignore
Ignores methods in the selected classes.

Class...
Ignores all methods in the selected classes.

Class Hierarchy...
Ignores all methods in the selected classes and their subclasses.

Restore
Displays a submenu with the options to restore methods to the
untested state.

Class...
Restores to the untested state all methods in the selected
classes.

Class Hierarchy...
Restores to the untested state all methods in the selected
classes and their subclasses.

Reset
Displays a submenu with options to reset methods.

Class...
Resets all methods in the selected classes.

Class Hierarchy...
Resets all methods in the selected classes and their subclasses.

6.7.14.5 Methods Menu

Browse Senders

Browse Implementors

Browse Messages

Browse References Classes...
These menu options are the same as existing development
browsers.

Code Coverage Using the Code Coverage Browser / 93

Ignore/Restore
Toggles the selected methods between ignored and restored.

Ignore All Implementors...
Ignores all implementors of the selected methods in all applications
being viewed by the Code Coverage Browser.

Restore All Implementors...
Restores all implementors of the selected methods in all
applications being viewed by the Code Coverage Browser.

Hide Ignored
Hides ignored methods.

If all methods of a class are ignored, the class is hidden. If all
methods in an application are ignored, the application is hidden.

Show All
Shows all methods including ignored methods.

Ignored methods are prefixed with a minus sign (-).

6.7.14.6 Info Menu

This menu is the same as existing development browsers.

7 Code Publisher

7.1 Overview

Code Publisher produces typeset-quality manuals from applications,
classes, and methods. The report structure is highly customizable. You
can easily create documents that include only the API methods and
their comments. You can produce in-depth manuals containing code,
cross-reference tables, and quick look-up indexes to be used during
code reviews.

Code Publisher can export to these formats:

• LaTeX

• RTF

• MIF

• HTML

• OTIML

HTML manuals are hyperlinked internally to let you navigate easily on
line. To further improve readability, embedded GIFs are included in
the HTML output.

96 / Code Publisher ENVY/QA User's Guide

7.2 Who Should Use This Tool

Developers can use Code Publisher to create:

• code documents for use in code inspections

Project managers can use Code Publisher to create:

• API documentation for delivery to customers

• HTML documentation suitable for the World Wide Web

Release engineers can use Code Publisher to create:

• high-level summaries of their software components

7.3 Loading Code Publisher

Code Publisher is installed automatically as part of the complete
installation of ENVY/QA (see Chapter 3).

If you want to use only Code Publisher:

1. Open the Configuration Maps Browser.

2. Load the most recent edition of the QA Code Publisher
configuration map with required maps.

3. If you plan to use Code Publisher to publish Microsoft Word
manuals, copy OTIMLRTF.DOT to the directory containing your
Microsoft Word user templates. (For the appropriate directory,
refer to the Microsoft Word documentation.)

+ To determine the file location of the user templates, in
Microsoft Word select Tool Õ Options....

4. If you plan to use Code Publisher to publish LaTeX manuals, copy
SYSPUB.STY and SYSPUBF.STY to the directory containing your
LaTeX style files. (For appropriate directory, refer to the LaTeX
documentation.)

When Code Publisher is loaded:

• the system menu has a new submenu Tool Settings Õ Publish...

• newly opened development browsers have a Tool Õ Publish menu

You are now ready to use Code Publisher.

7.4 Unloading Code Publisher

To unload Code Publisher:

1. Open the Configurations Maps Browser.

Code Publisher Guided Tour / 97

2. Unload (in order) the loaded edition of the following configuration
maps:

(a) QA Code Publisher

(b) OTIML System Publisher

(c) OTIML Publishing Backend

3. If Code Publisher is the only ENVY/QA tool loaded, you can also
unload QA Framework.

7.5 Guided Tour

In this section, we guide you through the process of publishing the API
of the application SqaEtBrowserExtensions.

1. Open an Application Manager.

2. Select the application SqaEtBrowserExtensions.

3. Select Applications Õ Tool Õ Publish Õ Applications....

4. When the Code Publisher Output Options dialog opens, change
the Document Title to be SQA API.

5. Select the RTF radio button.

6. Select Categories to Publish... and ensure SQA-API is the only
included category. Click OK.

7. Select Settings....

8. When the Code Publisher Settings dialog opens, select
Application in the left list.

(a) Click None.

(b) Click the check boxes for Application class and Public classes.

The output contains the application class and the public classes
of the application.

(c) Select Class in the left list.

(d) Click None.

(e) Click the check boxes for Class comment and Public methods.

The output contains class comments and the public methods of
the published classes.

(f) Select Method in the left list.

(g) Click None.

(h) Click the check box for Method header comment (from top of
method).

98 / Code Publisher ENVY/QA User's Guide

The output contains only the comment from the start of each
method. The code for each method is omitted.

(i) Click OK.

9. Click OK.

Code Publisher creates your document.

10. When the document is created, you can open it in Microsoft Word.

When the document opens, a macro automatically adjusts the tables,
figures, and pagination.

7.5.1 Publishing Configuration Maps

To publish a configuration map:

1. Open the Configuration Maps Browser.

2. Select a configuration map edition.

3. Select Editions Õ Tool Õ Publish.

4. In the Code Publisher Options dialog, click OK to start
publishing.

7.5.2 Publishing Applications

You can publish applications from the following browsers:

• Configuration Maps Browser

• Application Manager

• Applications Browser

• Classes Browser

• Class Hierarchy Browser

• Visual Age Organizer

To publish an application:

1. Open one of the browsers mentioned above.

2. Select the applications to be published.

Code Publisher Guided Tour / 99

3. Select a menu option:

Item to publish Menu option

applications Applications Õ Tool Õ Publish Õ Application...

applications and their loaded
subapplications

Applications Õ Tool Õ Publish Õ Include All
Subapplications...6

Table 23 — Publishing applications.

4. In the Code Publisher Options dialog, click OK to start
publishing.

7.5.3 Publishing Classes

You can publish classes from the following browsers:

• Application Manager

• Application Browser

• Applications Browser

• Classes Browser

• Class Hierarchy Browser

To publish a class:

1. Open one of the browsers mentioned above.

2. Select the classes to be published.

3. Select a menu option:

Item to publish Menu option

classes Classes Õ Tool Õ Publish Õ Class...

classes and all their subclasses Classes Õ Tool Õ Publish Õ Include All
Subapplications...

class fragments Classes Õ Tool Õ Publish Õ Class Fragment...

Table 24 — Publishing classes.

4. In the Code Publisher Output Options dialog, click OK to start
publishing.

A class fragment is a part of a class within a single application, rather
than an entire class (which may span many class extensions as well as
the class definition).

6 In the Configuration Maps Browser, select Applications Õ Tool Õ Publish.

100 / Code Publisher ENVY/QA User's Guide

7.5.4 Code Publisher Output Options Dialog

The following figure shows the Code Publisher Output Options
dialog. You use this dialog to specify the name and format of your
output file.

Figure 10 — Code Publisher Output Options dialog.

The following table describes the elements of the Code Publisher
Output Options dialog.

Element Description

Document Title specifies the title for the document

(The title appears on the front cover of the document.)

Output specifies the name and format of the file to create

Browse... lets you select a specific file and directory

(Some output formats—for example, HTML—create multiple files,
whose names are based on the entered name.)

Categories to Publish... lets you include or exclude specific method categories from your
document

Settings... opens the Code Publisher Settings dialog

Table 25 — Elements of the Code Publisher Output Options dialog.

Code Publisher Output Formats / 101

7.6 Output Formats

This section describes the output formats supported by Code Publisher.
You can specify the output using the Code Publisher Output Options
dialog.

6 If you do not install the style files properly or do not correctly
associate the template files specified for each output type, the
pages will not format correctly. You will see problems, such as,
table columns that are too narrow and incorrect font selections and
sizes.

7.6.1 HTML—Hypertext Markup Language

HTML is the popular minimalist SGML7 markup language used to
prepare Web pages on the Internet. HTML markup tags are
continuously evolving.

Code Publisher creates several files for HTML output: one file for each
entry in the table of contents. In the Code Publisher Output Options
dialog, you can specify the name of the main document file. For
example, if you enter FILE, Code Publisher creates FILE.HTM.
Additional files are created by adding a unique number to your
filename (for example, FILE1.HTM). If the filename is too long for the
file system, the filename is modified.

To improve the readability of the HTML document, Code Publisher
creates and uses the following two GIF files:

• GOTO.GIF

• RED-BALL.GIF

+ Numerous small files are created instead of one large file, because
small files improve Web-based navigation of your HTML
document.

7.6.2 LaTeX—A Document Preparation System

LaTeX8 is a collection of macros that makes Donald Knuth’s TeX9

typesetting system easy to use. Code Publisher creates one file for
LaTeX output. The name of the file corresponds to the name you enter

7 Charles F. Goldfarb, The SGML Handbook, Oxford University Press, 1994.

8 Leslie Lamport, LaTeX: A Document Preparation System, Addison-Wesley Publishing,
1986.

9 Donald E. Knuth, The TeXbook, Addison-Wesley Publishing, 1986.

102 / Code Publisher ENVY/QA User's Guide

in the Code Publisher Output Options dialog. If you enter FILE,
Code Publisher creates FILE.TEX.

The generated LaTeX file also requires two style files:

• SYSPUB.STY

• SYSPUBF.STY

7.6.3 MIF—Maker Interchange Format

The MIF file format is used by the FrameMaker electronic publishing
product to provide an import and export mechanism. Code Publisher
creates several files for MIF output. If you enter FILE in the Code
Publisher Output Options dialog, Code Publisher creates the files
shown in the following table.

Filename Contents

FILE.BK book file (the main document file)

FILE.COV cover page

FILE.TOC table of contents

FILE.MIF document body

FILE.IX index

Table 26 — MIF output files.

The book file is the main document and contains links to the other
document files.

To view the document in FrameMaker, open the book file (FILE.BK).
Create a new table of contents and index by updating the files:

• FILE.TOC

• FILE.IX

7.6.4 OTIML—OTI Markup Language

OTIML is an example SGML markup language that provides document
styling elements similar to those provided with the LaTeX *.STY files
described in Section 7.6.2. Code Publisher creates one file for OTIML
output. The name of the file corresponds to the name you enter in the
Code Publisher Output Options dialog. If you enter FILE, Code
Publisher creates FILE.OML.

The OTIML.DTD uses standard SGML DTD specifications to define the
structure of the created document.

7.6.5 RTF—Rich Text Format

The RTF file format provides an import and export facility for
Microsoft Word documents. Code Publisher creates one file for RTF

Code Publisher Code Publisher Settings Dialog / 103

output. The name of the file corresponds to the name you enter in the
Code Publisher Output Options dialog. If you enter FILE, Code
Publisher creates FILE.RTF.

The generated RTF file also requires the Word template file
OTIMLRTF.DOT. The template automatically adjusts the RTF document
as it is opened. To skip the adjustments, press SHIFT while the
document is opening.

7.7 Code Publisher Settings Dialog

You can customize the contents of your document using the Code
Publisher Settings dialog shown below.

Figure 11 — Code Publisher Settings dialog.

The Code Publisher Settings dialog groups publishing options into
the categories shown in the following table.

Category Options defining

Application which application elements to include

Class which class elements to include

Method which method elements to include

Cross reference which cross-references to include

General general options that apply to the entire document

Table 27 — Groupings of publisher options.

To select specific publishing options:

1. In the Code Publisher Output Options dialog, select Settings...,
or from the Transcript, select Tool Settings Õ Publish....

104 / Code Publisher ENVY/QA User's Guide

2. Select a category in the left list.

The list on the right shows check boxes for each publishing option in
that category.

3. Do one of the following:

Desired result Action

enable all options in a category click All

disable all options in a category click None

enable/disable specific options click individual check boxes

reset to their default values all options in all
categories

click Reset All

Table 28 — Enabling publisher options.

4. Click OK to accept the selected publisher options or Cancel to
abort the selection.

7.8 Application Publishing Options

The following table describes the application publishing options.

Property Includes

Application all prerequisites list the list of all prerequisite applications

Application class the class of an application

Application class hierarchy the class hierarchy for all published classes in the application

Application immediate
prerequisites list

the list of immediate prerequisite applications

Extended classes extended classes

Private classes private classes

Public classes public classes

Table 29 — Application publishing options.

7.9 Class Publishing Options

The following table describes the class publishing options.

Property Includes

Class comment the class comment field

Class definition the class definition of each class

Class hierarchy the class hierarchy at the start of each class’s section

(The hierarchy shows superclasses of the class.)

Class notes the class notes field

Code Publisher Method Publishing Options / 105

Property Includes

List of private inherited methods the table that maps inherited private methods to the implementing
superclass

List of public inherited methods the table that maps inherited public methods to the implementing
superclass

Private methods private class and instance methods

Public methods public class and instance methods

Table 30 — Class publishing options.

7.10 Method Publishing Options

The following table describes the method publishing options.

Property Includes

Method application name the name of the application in which the method is defined

Method categories list the list of categories in which the method is defined

Method comment field the method comment field

Method header comment (from
top of method)

the comment that appears at the start of a method

Method notes field the method notes field

Private method body the code body of private methods

Public method body the code body of public methods

Table 31 — Method publishing options.

7.11 Cross-Reference Publishing Options

The following table describes the cross-reference publishing options.

Property Includes the table that maps

Class to application classes to the applications containing them

Class to referencing selectors classes to the methods referencing them

Global to referencing selectors global variables to the methods referencing them

Selector to implementing classes selector to the classes implementing it

Table 32 — Cross-reference publishing options.

7.12 General Publishing Options

The following table describes the general publishing options.

106 / Code Publisher ENVY/QA User's Guide

Property Description

Empty classes includes classes that would be empty in the published document

Index includes an index of classes and methods

Skip empty sections omits sections that would be empty in the published document

Table 33 — General publishing options.

7.13 Saving and Loading Your Settings

The Code Publisher Settings dialog lets you save and load settings.

To save the currently enabled publisher settings:

1. Open the Code Publisher Settings dialog from any Tool Õ
Publish menu item or select Tool Settings Õ Publish... from the
Transcript.

2. Click Save To File....

3. Enter the name of the file to which to save the settings.

To load settings from a file:

1. Open the Code Publisher Settings dialog from any Tool Õ
Publisher menu item or select Tool Settings Õ Publish... from
the Transcript.

2. Click Load From File....

3. Enter the name of the file containing your settings. The loaded
settings override any previous settings.

8 Code Formatter

8.1 Overview

Code Formatter lets you format Smalltalk source code. You can format:

• entire classes

• class hierarchies

• applications

• configuration maps

• method source while you are editing it

Custom controls let you define your preferred formatting style and a
preview mechanism lets you determine quickly how the code will look.

8.2 Who Should Use This Tool

Developers can use Code Formatter to:

• standardize coding styles and improve the consistency of code
among team members

• quickly check the syntax of methods without saving the methods

• reduce time spent understanding the style of other developers

108 / Code Formatter ENVY/QA User's Guide

Release engineers can use Code Formatter to:

• standardize coding styles and improve the consistency of code
among team members

8.3 Loading Code Formatter

Code Formatter is installed automatically as part of the complete
installation of ENVY/QA (see Chapter 3).

If you want to use only Code Formatter:

1. Open the Configuration Maps Browser.

2. Load the most recent edition of the QA Code Formatter
configuration map with required maps.

When Code Formatter is loaded:

• the system menu has a new submenu Tool Settings Õ Format...

• newly opened development browsers have a Tool Õ Format menu

• development browsers showing method source have these menu
options:

• Edit Õ Format

• Edit Õ Format Settings...

You are now ready to use Code Formatter.

8.4 Unloading Code Formatter

To unload Code Formatter:

1. Open the Configurations Maps Browser.

2. Unload the loaded edition of the QA Code Formatter
configuration map.

3. If Code Formatter is the only ENVY/QA tool loaded, you can also
unload QA Framework.

8.5 Guided Tour

In this section, we guide you through the process of:

• setting up a style

• formatting a method

8.5.1 Creating a Class and Method

Create the following class and method.

Code Formatter Code Formatter and the Development Browsers / 109

Person class

Object subclass: #Person
instanceVariableNames: 'name age '
classVariableNames: ''
poolDictionaries: ''

Person public class methods

named: aString age: anInteger
"Answer a new instance of the receiver whose name is aString
and age is anInteger."

^self new name: aString; age: anInteger

1. Open a Class Browser on the Person class.

2. Select the method #named:age:.

3. Select Edit Õ Format Settings....

4. When the Code Formatter Settings dialog opens, select
Keywords from the left list.

5. In the right list, enable option Always split keywords.

6. Click Preview.

The code shown in the Class Browser is formatted.

7. Experiment with the other settings options by enabling or disabling
them and clicking Preview.

8. When you have finished, either click Cancel to restore the text to
its original form (prior to opening the dialog) or click OK to keep
the changes.

8.6 Code Formatter and the Development Browsers

Code Formatter is integrated fully with the development browsers.
You can format code elements using the Tool Õ Format or Edit Õ
Format menu items in applicable development browsers.

Code Formatter lets you format the following types of code elements:

• source shown in a browser

• method

• class

• class fragment

• class hierarchy

• application

• application hierarchy

110 / Code Formatter ENVY/QA User's Guide

• loaded applications of a configuration map edition

8.6.1 Formatting Configuration Maps

To format a configuration map:

1. Open the Configuration Maps Browser.

2. Select a configuration map edition.

3. Select Editions Õ Tool Õ Format.

4. In the confirmation dialog, click OK to start formatting.

8.6.2 Formatting Applications

You can format applications from the following browsers:

• Configuration Maps Browser

• Application Manager

• Applications Browser

• Classes Browser

• Class Hierarchy Browser

• Visual Age Organizer

To format an application:

1. Open one of the browsers mentioned above.

2. Select the applications to be formatted.

3. Select a menu option:

Item to format Menu option

applications Applications Õ Tool Õ Format Õ Application....

applications and their loaded
subapplications

Applications Õ Tool Õ Format Õ Include All
Subapplications...10

Table 34 — Formatting applications.

4. In the confirmation dialog, click OK to start formatting.

8.6.3 Formatting Classes

You can format classes from the following browsers:

• Application Manager

10 In the Configuration Maps Browser, select Applications Õ Tool Õ Format.

Code Formatter Formatting Source / 111

• Application Browser

• Applications Browser

• Classes Browser

• Class Hierarchy Browser

• Visual Age Organizer

To format a class:

1. Open one of the browsers mentioned above.

2. Select the classes to be formatted.

3. Select a menu option:

Item to format Menu option

classes Classes Õ Tool Õ Format Õ Class...

classes and all their subclasses Classes Õ Tool Õ Format Õ Include All Subclasses...

class fragments Classes Õ Tool Õ Format Õ Class Fragment...

Table 35 — Formatting classes.

4. In the confirmation dialog, click OK to start formatting.

8.6.4 Formatting Methods

You can format methods from the following browsers:

• Application Browser

• Applications Browser

• Classes Browser

• Class Browser

• Class Hierarchy Browser

• Methods Browser

To format a method:

1. Open one of the browsers mentioned above.

2. Select the methods to be formatted.

3. Select Methods Õ Tool Õ Format.

4. In the confirmation dialog, click OK to start formatting.

8.7 Formatting Source

You can format source code shown in the text area of the following
browsers:

• Application Browser

112 / Code Formatter ENVY/QA User's Guide

• Applications Browser

• Classes Browser

• Class Browser

• Class Hierarchy Browser

• Methods Browser

• Debugger

To format source code from the text area:

1. Open one of the browsers mentioned above.

2. Select a method or begin a new method.

3. Select Edit Õ Format or press CTRL+W.

8.8 Code Formatter Settings Dialog

You can customize the way your source code is formatted by using the
Code Formatter Settings dialog, shown below. To open the dialog:

• from the Transcript, select Tool Settings Õ Formatter...

or

• from a development browser, select Edit Õ Format Settings...

Code Formatter Code Formatter Settings Dialog / 113

You can use the formatting options currently selected in the
Formatter Settings Dialog to preview the code that is displayed in
the text pane from which the dialog was opened. To do this, click
Preview. If you click Cancel, the dialog closes and the formatting is
reset.

To select specific formatting options:

1. Select a category in the left list.

The list on the right shows check boxes representing each
formatting option in the selected category.

Figure 12 — Code Formatter Settings dialog.

The Code Formatter Settings dialog groups options into the
categories shown in the following table.

Category Options defining

Blocks how blocks are formatted

Parentheses the positioning of parentheses

Comments how comments are formatted

Conditional Statements how conditionals are formatted

Indent indentation

Keywords how keyword selectors are formatted

Line breaks when to introduce line breaks

General general formatting

Table 36 — Categories of formatter options.

114 / Code Formatter ENVY/QA User's Guide

2. Do one of the following:

Desired result Action

enable all options in a category click All

disable all options in a category click None

enable or disable specific options click individual check boxes

reset to their default values all options in
all categories

click Reset All

Table 37 — Enabling formatter options.

3. Click OK to accept the selected formatter options or Cancel to
abort the selection.

8.9 Formatting Blocks

This section describes the options for formatting blocks.

8.9.1 Block Arguments on the Start Line

If this option is enabled, block arguments are kept on the same line as
the open square bracket.

OFF
(do not keep the arguments on the start line)

self verify: [
:a |
temp := a.
a]

ON
(keep the arguments on the start line)

self verify: [:a |
temp := a.
a]

8.9.2 Block Variables on a New Line

If this option is enabled, block variables are placed on a new line.

Code Formatter Formatting Blocks / 115

OFF
(do not place the variables on a new line)

self verify: [| var1 |
var1 := 2.
var1 + 4]

ON
(place the variables on a new line)

self verify: [
| var1 |
var1 := 2.
var1 + 4]

8.9.3 Line up Brackets

If this option is enabled, brackets are lined up. They are lined up only if
the expression does not fit on one line.

OFF
(do not line up brackets)

aBlock :=
[

self sizeOf: myCollection.
self enable]

ON
(line up brackets)

aBlock := [
self sizeOf: myCollection.
self enable

]

8.9.4 Space between Square Brackets

If this option is enabled, a space is inserted after opening square
brackets and before closing square brackets.

116 / Code Formatter ENVY/QA User's Guide

OFF
(do not insert spaces)

[self sizeOf: myCollection]

ON
(insert spaces)

[self sizeOf: myCollection]

8.9.5 Start Open Brackets on the Same Line

If this option is enabled, opening brackets follow the selector.

OFF
(brackets do not follow the selector)

self myCollection do:
[:element|
...]

ON
(brackets follow the selector)

self myCollection do:[:element|
...]

8.10 Formatting Comments

This section describes the options for formatting comments.

8.10.1 Format Comments in the Body of the Code

If this option is enabled, comments in the body of the code are
formatted.

Code Formatter Formatting Conditional Statements / 117

OFF
(do not format comments in the body of the code)

sample
self location: 2 "this is a lengthy comment that should be formatted"

ON
(format comments in the body of the code)

sample
self location: 2 "this is a lengthy comment that should be

formatted"

8.10.2 Format Method Header Comment

If this option is enabled, the main method comment is formatted.

OFF
(do not format the method header comment)

sample
"This is a very, very long comment about the sample method and it should be

reformatted."
^self

ON
(format the method header comment)

sample
"This is a very, very long comment about the sample method and it
 should be reformatted."
^self

8.11 Formatting Conditional Statements

This section describes the options for formatting conditional
statements.

8.11.1 Apply Rule (Line up #ifTrue:ifFalse:) to All

If this option is enabled, the Line up #ifTrue:ifFalse: selection is
always applied to short or long statements.

If the Line up #ifTrue:ifFalse: option is on, ifTrue: is always on a
new line.

If the Line up #ifTrue:ifFalse: option is off, ifTrue: is always on the
same line.

118 / Code Formatter ENVY/QA User's Guide

Several related options help you obtain your preferred formatting of
#ifTrue:ifFalse:. These include:

• line up #ifTrue:ifFalse: (in the Conditional Statements category)

• indent #ifFalse: (when not lined up) (in the Conditional Statements
category)

• start square brackets on the same line (in the Brackets category)

OFF
(do not apply the lineup option to short statements)

^self isEnabled ifTrue: [self] ifFalse: [nil]

ON
(and the lineup option is ON)

^self isEnabled
ifTrue: [self]
ifFalse: [nil]

ON (and the lineup option is OFF)

^self isEnabled ifTrue: [
self]

ifFalse: [
nil]

8.11.2 Indent #ifFalse: (When Not Lined Up)

If this option is enabled and ifTrue:ifFalse: is not lined up, ifFalse: is
indented.

Several related options help you obtain your preferred formatting of
#ifTrue:ifFalse:. These include:

• line up #ifTrue:ifFalse: (in the category Conditional Statements)

• apply rule (line up #ifTrue:ifFalse:) to all (in the Conditional
Statements category)

• start square brackets on the same line (in the Brackets category)

Code Formatter Formatting Indentation / 119

OFF
(do not indent)

self isEnabled ifTrue: [
self setPositionTo: 12 usingGlobalFactorOf: 15]

ifFalse: [
self setPositionTo: 10 usingGlobalFactorOf: 10]

ON
(indent)

self isEnabled ifTrue: [
self setPositionTo: 12 usingGlobalFactorOf: 15]

ifFalse: [
self setPositionTo: 10 usingGlobalFactorOf: 10]

8.11.3 Line up #ifTrue:ifFalse:

If this option is enabled, ifTrue:ifFalse: is lined up.

Several related options that help you obtain your preferred formatting
of #ifTrue:ifFalse:. These include:

• indent #ifFalse: (when not lined up) (in the Conditional Statements
category)

• apply the rule (line up #ifTrue:ifFalse:) to all (in the Conditional
Statements category)

• start square brackets on the same line (in the Brackets category)

OFF
(do not line up)

self isEnabled ifTrue: [
self setPositionTo: 12 usingGlobalFactorOf: 15]

ifFalse: [
self setPositionTo: 10 usingGlobalFactorOf: 10]

ON
(line up)

self isEnabled
ifTrue: [self setPositionTo: 12 usingGlobalFactorOf: 15]
ifFalse: [self setPositionTo: 10 usingGlobalFactorOf: 10]

8.12 Formatting Indentation

This section describes the options for formatting indentation.

120 / Code Formatter ENVY/QA User's Guide

8.12.1 Indent Long Keywords in Cascades

If this option is enabled, long keywords are indented if they are
cascaded.

OFF
(do not indent long keywords in cascades)

self
setPositionTo: 12
usingGlobalFactorOf: 15
refreshDisplayOnCompletion: true;
setPositionTo: 13
usingGlobalFactorOf: 15
refreshDisplayOnCompletion: true

ON
(indent long keywords in cascades)

self
setPositionTo: 12

usingGlobalFactorOf: 15
refreshDisplayOnCompletion: true;

setPositionTo: 13
usingGlobalFactorOf: 15
refreshDisplayOnCompletion: true

8.12.2 Indent Nested Receivers

If this option is enabled, messages to nested receiver are indented.

OFF
(do not indent messages to nested receivers)

self sampleMethodWhichIsLong
anotherMessage
yetAnotherLengthyMessage

ON
(indent messages to nested receivers)

self sampleMethodWhichIsLong
anotherMessage

yetAnotherLengthyMessage

8.13 Formatting Keywords

This section describes the options for formatting keywords.

Code Formatter Formatting Keywords / 121

8.13.1 Always Put a Single Keyword on the Same Line

If this option is enabled, keywords with only one selector and one
argument are kept on the same line as the receiver.

OFF
(do not keep on the same line)

theReceiverIsAVeryLongVariableName
setPositionTo: 12

ON
(keep on the same line)

theReceiverIsAVeryLongVariableName setPositionTo: 12

8.13.2 Always Split Keywords

If this option is enabled, keywords are always split into multiple lines.

OFF
(do not split keywords)

self setPositionTo: 12 usingGlobalFactorOf: 15

ON
(split keywords)

self
setPositionTo: 12
usingGlobalFactorOf: 15

8.13.3 First Selector of Long Keywords on the Same Line

If this option is enabled, the first part of a long keyword is kept on the
same line as the receiver.

122 / Code Formatter ENVY/QA User's Guide

OFF
(do not keep on the same line)

self
setPositionTo: 12
usingGlobalFactorOf: 15
refreshDisplayOnCompletion: true

ON
(keep on the same line)

self setPositionTo: 12
usingGlobalFactorOf: 15
refreshDisplayOnCompletion: true

8.13.4 Keep #to:do: on the Same Line

If this option is enabled, #to:do: is kept on the same line. This option
overrides the Always split keywords option for #to:do:.

Several related options help you obtain your preferred formatting of
#to:do. These include:

• block arguments on the same line (in the Blocks category)

• start square brackets on the same line (in the Brackets category)

OFF
(do not keep on the same line)

1
to: 30
do: [:index |

Transcript
cr;
show: myCollection at: index]

ON
(keep on the same line)

1 to: 30 do: [:index |
Transcript

cr;
show: myCollection at: index]

8.13.5 Keep Right-Hand Side of an Assignment (:=) on the
Same Line

If this option is enabled, the right-hand side of an assignment is kept on
the same line as the assignment.

Code Formatter Formatting Line Breaks / 123

OFF
(do not keep on the same line)

a :=
self

setPositionTo: 12
usingGlobalFactorOf: 15
refreshDisplayOnCompletion: true

ON
(keep on the same line)

a := self
setPositionTo: 12
usingGlobalFactorOf: 15
refreshDisplayOnCompletion: true

8.14 Formatting Line Breaks

This section describes the options for formatting line breaks.

8.14.1 Blank Line between Comments and Temps

If this option is enabled, a blank line is inserted between the method
comment and the temporary variables.

OFF
(do not insert a blank line)

sample
"A sample method"
| sampleVariable |
^self size

ON
(insert a blank line)

sample
"A sample method"

| sampleVariable |
^self size

8.14.2 Blank Line between Selector and Comments

If this option is enabled, a blank line is inserted between the method
selector and the main comment for the method.

124 / Code Formatter ENVY/QA User's Guide

OFF
(do not insert a blank line)

sample
"A sample method"
| sampleVariable |
^self size

ON
(insert a blank line)

sample

"A sample method"
| sampleVariable |
^self size

8.14.3 Blank Line between Temps and the Body of the
Method

If this option is enabled, a blank line is inserted between the temporary
variables and the method body.

OFF
(do not insert a blank line)

sample
"A sample method"
| sampleVariable |
^self size

ON
(insert a blank line)

sample
"A sample method"
| sampleVariable |

^self size

8.14.4 Retain Blank Lines

If this option is enabled, blank lines are retained.

Code Formatter Formatting Parentheses / 125

OFF
(do not retain blank lines)

sample
self location: 2.
^self size

ON
(retain blank lines)

sample
self location: 2.

^self size

8.15 Formatting Parentheses

This section describes the options for formatting parentheses.

8.15.1 Line up Array Parentheses

If this option is enabled, array parentheses are lined up. They are lined
up only if the array does not fit on one line.

OFF
(do not line up parentheses)

self testArray:
(AAAAA BBBB CCCCC DDDD
EEEE FFFF)

ON
(line up parentheses)

self testArray:
(AAAAA BBBB CCCCC DDDD
EEEE FFFF
)

8.15.2 Line up Parentheses

If this option is enabled, parentheses are lined up. They are lined up
only if the expression does not fit on one line.

126 / Code Formatter ENVY/QA User's Guide

OFF
(do not line up parentheses)

^self location:
(self

sizeOf: myCollection
afterRemoving: otherCollection
includingDuplicates: true)

ON
(line up parentheses)

^self location:
(self

sizeOf: myCollection
afterRemoving: otherCollection
includingDuplicates: true

)

8.15.3 Space between Parentheses

If this option is enabled, a space is inserted after an opening
parenthesis and before a closing parenthesis.

OFF
(do not insert spaces)

2 + (self sizeOf: myCollection)

ON
(insert spaces)

2 + (self sizeOf: myCollection)

8.15.4 Start Open Array Parentheses on the Same Line

If this option is enabled, opening array parentheses are placed on the
same line as the selector.

Code Formatter General Formatting / 127

OFF
(parenthesis does not follow the selector)

self testArray:
(AAAAA BBBB CCCCC DDDD
EEEEE)

ON
(parenthesis follows the selector)

self testArray: (AAAAA BBBB CCCCC DDDD
EEEEE)

8.15.5 Start Open Parentheses on the Same Line

If this option is enabled, opening parentheses follow the selector.

OFF
(parenthesis does not follow the selector)

^self location:
(self

sizeOf: myCollection
afterRemoving: otherCollection
includingDuplicates: true)

ON
(parenthesis follows the selector)

^self location: (
self

sizeOf: myCollection
afterRemoving: otherCollection
includingDuplicates: true)

8.16 General Formatting

This section describes the options for the formatting general category.

8.16.1 Add Optional Periods

If this option is enabled, optional periods are added.

128 / Code Formatter ENVY/QA User's Guide

OFF
(do not add optional periods)

^[:a | a + self size]

ON
(add optional periods)

^[:a | a + self size.]

8.16.2 Add a Space after Return (^)

If this option is enabled, a space is inserted after return (^)

OFF
(do not insert a space)

sample
^self

ON
(insert a space)

sample
^ self

8.16.3 Use the Maximum Width (Ignore the Window Width)

If this option is enabled, the maximum width is used and the width of
the current window is ignored. The following examples use a very
narrow window.

OFF
(use window width)

sample
^Transcript

cr;
show:

self location
printString

ON
(use maximum width)

sample
^Transcript

cr;
show: self location printString

Code Formatter Advanced Options / 129

8.17 Advanced Options

Code Formatter provides advanced options that let you control the
maximum line width and the amount of space used when indenting
code and comments. To change the values of these advanced options,
click Advanced... from the Code Formatter Settings dialog.

Figure 13 — Formatter Advanced Settings dialog.

When the dialog opens, proceed as follows:

1. Select a group name in the left list and a property from the right
list.

The current value of the property appears in the Preference Value
text area.

2. Modify the text area to the desired value of the property, according
to the following table.

Property Description

single-value property must be Boolean, Integer, String, or Symbol, depending on
the expected type of the property

multi-value property elements are separated by spaces

values for class property class names must be valid class names

Table 38 — Property values and their descriptions.

3. Click Save Value to save the new value of the property.

4. When you have made all modifications, click OK to accept the
changes or Cancel to abort the changes.

8.17.1 Formatting Code Indentation

This section describes the options for formatting code indentation.

130 / Code Formatter ENVY/QA User's Guide

8.17.1.1 Code

This option specifies the number of spaces to indent code in addition to
the current indentation level. If it is possible, spaces are automatically
replaced by the appropriate number of tabs.

VALUE= 4

^(self
setPositionTo: 12
usingGlobalFactorOf: 15
refreshDisplayOnCompletion: true) + 2

VALUE= 8

^(self
setPositionTo: 12
usingGlobalFactorOf: 15
refreshDisplayOnCompletion: true) + 2

8.17.1.2 Code Continuation

This option specifies the number of spaces to indent a code
continuation in addition to the current indentation level. If it is
possible, spaces are automatically replaced by the appropriate number
of tabs.

VALUE= 0

^(self
setPositionTo: 12
usingGlobalFactorOf: 15
refreshDisplayOnCompletion: true) + 2

VALUE= 4

^(self
setPositionTo: 12
usingGlobalFactorOf: 15
refreshDisplayOnCompletion: true) + 2

8.17.2 Formatting Comment Indentation

This section describes the options for formatting comment indentation.

8.17.2.1 Beside Line of Code

This option specifies the number of spaces to indent a comment beside
a line of code. The number of spaces is in addition to the current
indentation level. If it is possible, spaces are automatically replaced by
the appropriate number of tabs.

Code Formatter Advanced Options / 131

VALUE= 0

sample

^self"A sample method comment that
is not very lengthy but does not
say anything."

VALUE = 4

sample

^self "A sample method comment that
 is not very lengthy but does not
 say anything."

8.17.2.2 Comment

This option specifies the number of spaces to indent a comment in
addition to the current indentation level. If it is possible, spaces are
automatically replaced by the appropriate number of tabs.

VALUE= 0

sample
"A sample method comment that
is not very lengthy but does not
say anything."
^self

VALUE = 4

sample
"A sample method comment that
is not very lengthy but does not
say anything."

^self

8.17.2.3 Comment Continuation

This option specifies the number of spaces to indent a comment
continuation in addition to the current indentation level. If it is
possible, spaces are automatically replaced by the appropriate number
of tabs.

132 / Code Formatter ENVY/QA User's Guide

VALUE= 1

sample
"A sample method comment that is not very lengthy but does
 not say anything . It does however show indentation."
^self

VALUE = 4

sample
"A sample method comment that is not very lengthy but does

 not say anything . It does however show indentation."
^self

8.17.3 Formatting Margins

This section describes the options for formatting margins.

8.17.3.1 Maximum Width

This option specifies the maximum width (in characters) of a line. See
also the related option Use maximum width in the General category.

8.17.3.2 Minimum Width for Comments

This option specifies the minimum width (in characters) to print
comments at the end of a line of code. If necessary, the margin
(maximum width) is extended to fit the given number of characters of
comments.

VALUE= 10
(Maximum width = 20)

sample
^self "A sample

comment
at the
end of a
line of
code
that is
not very
lengthy
but does
not say
anything."

Code Formatter Saving and Loading Your Settings / 133

VALUE = 20
(Maximum width = 20)

sample
^self "A sample comment at

the end of a line
of code that is
not very lengthy
but does not say
anything."

8.18 Saving and Loading Your Settings

The Code Formatter Settings dialog lets you save and load settings.

To save the currently enabled formatter settings:

1. Open the Code Formatter Settings dialog from any Edit Õ
Format Settings... menu item or select Tool Settings Õ
Formatter... from the Transcript.

2. Click Save To File....

3. Enter the name of the file to which to save the settings.

To load settings from a file:

1. Open the Code Formatter Settings dialog from any Edit Õ
Format Settings... menu item or select Tool Settings Õ
Formatter... from the Transcript.

2. Click Load From File....

3. Enter the name of the file that contains your settings. The loaded
settings override any previous settings.

9 Troubleshooting

This chapter describes solutions to some of the problems you may
encounter when you are using ENVY/QA.

Published RTF documents are incorrectly formatted
(for example, tables are too narrow)

Verify that OTIMLRTF.DOT is installed in your Microsoft Word user
templates directory. (To find the file location of the user templates,
from Microsoft Word select Tool Õ Options.)

Some anti-virus software for the Microsoft Word Concept virus
overrides the auto-open macros. For the purpose of publishing your
code, you may need to use a NORMAL.DOT that does not have the anti-
virus software installed.

Formatting rules do not always seem to work

Some formatting rules are applied only when lines become too wide.

Some of the browsers do not have a Tool menu

Only newly opened browsers will have the menu option.

136 / Troubleshooting ENVY/QA User's Guide

Code Coverage report percentages do not add up to 100%

The numbers shown in the output are approximations, and some round-
off may occur.

Code Critic or Code Metric cannot be unloaded

Close all open results browsers.

Code Coverage cannot be unloaded

Close all open coverage browsers.

Bibliography

Charles F. Goldfarb, The SGML Handbook, Oxford University Press,
1994.

Donald E. Knuth, The TeXbook, Addison-Wesley Publishing, 1986.

Leslie Lamport, LaTeX: A Document Preparation System, Addison-
Wesley Publishing, 1986.

Mark Lorenz and Jeff Kidd, Object-Oriented Software Metrics, Prentice
Hall, 1994.

Suzanne Skublics, Edward J. Klimas, and David A. Thomas, Smalltalk
with Style, Prentice Hall, 1996.

Index

A
adding a comment

Code Coverage, 89
Code Critic, 37
Code Metrics, 71

adding metrics, 74
adding reviews, 41
advanced settings dialog, 66
application metrics, 63
Applications Browser, 38, 71
applications menu, 89

C
classes menu, 92
Code Coverage browser, 82, 84, 85, 86, 89
code coverage percentages, 134
Code Critic advanced settings dialog, 29
Code Critic options dialog, 12, 16
Code Critic results browser, 12, 33, 36, 38
Code Critic settings dialog, 16, 32
Code Formatter settings dialog, 109, 112, 131
Code Metrics options dialog, 50, 52, 53
Code Metrics results browser, 50, 67, 68, 71
Code Metrics settings dialog, 53
Code Publisher output options dialog, 99, 103
Code Publisher settings dialog, 102
coverage menu, 83, 85
coverage menus, 89
coverage setup, 88
customizing metrics, 63
customizing reviews, 28

E
export results to spreadsheet

Code Coverage, 88
exporting results to text

Code Coverage, 88
exporting to spreadsheet

Code Critic, 37
Code Metrics, 71

exporting to text

Code Critic, 37
Code Metrics, 70

F
format menu, 109
formatting

applications, 110
classes, 110
methods, 111
source, 111

formatting options, 127

H
hide ignored, 87
hiding in-range results, 69
HTML, 100, 101

I
ignore sets, 16, 35, 36
ignoring components, 86
ignoring results, 35, 40

L
LaTeX, 100, 101
loading

Code Coverage, 80
Code Critic, 10
Code Formatter, 108
Code Metrics, 48
Code Publisher, 96

loading coverage setup, 88
loading ignore sets, 36
loading results

Code Critic, 36
Code Metrics, 70

loading settings
Code Critic, 32
Code Formatter, 131
Code Metrics, 67
Code Publisher, 106

lower threshold, 63

Index / 139

M
measuring

applications, 51
classes, 52
configuration maps, 51
methods, 52

menus
Code Critic, 38

methods menu, 92
metrics menu, 50, 72
metrics menus, 72
metrics properties, 64
MIF, 100, 101
missing tool menu, 133
modifying properties, 31, 65

O
OTIML, 100, 102
output formats, 100

P
pause button, 86
printing results

Code Coverage, 89
Code Critic, 37

problems unloading, 134
problems with tool menu, 133
publishing

applications, 98
classes, 99
configuration maps, 98

publishing options, 104, 105

R
refreshing coverage browser, 86
refreshing results, 36, 69
reporting results, 37, 70, 88
restoring components, 87
result menu

Code Critic, 39
Code Metrics, 73

review menu, 39
review properties, 29
reviewing

applications, 14
classes, 15

configuration maps, 14
methods, 15

RTF, 100, 102, 133
RTF table problems, 133
running reviews, 12, 16

S
save value, 32, 66, 127
saving coverage setup, 88
saving ignore sets, 36
saving results

Code Critic, 36
Code Metrics, 70

saving settings
Code Critic, 32
Code Formatter, 131
Code Metrics, 67
Code Publisher, 106

selecting applications to watch, 81
severity level, 28
SGML, 100
show all, 87
status area, 85
summary info dialog

Code Coverage, 90
Code Critic, 38

system menu, 10, 34, 48, 80, 96, 108

T
tool menu problems, 133
troubleshooting, 133

U
unloading

Code Coverage, 80
Code Critic, 10
Code Formatter, 108
Code Metrics, 48
Code Publisher, 96

upper threshold, 63

W
watch button, 86
watching

applications, 83
configuration maps, 83

