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ABSTRACT
Current dialogue systems typically lack a variation of audio-
visual feedback tokens. Either they do not encompass feed-
back tokens at all, or only support a limited set of stereo-
typical functions. However, this does not mirror the sub-
tleties of spontaneous conversations. If we want to be able
to build an artificial listener, as a first step towards building
an empathetic artificial agent, we also need to be able to
synthesize more subtle audio-visual feedback tokens. In this
study, we devised an array of monomodal and multimodal
binary comparison perception tests and experiments to un-
derstand how different realisations of verbal and visual feed-
back tokens influence third-party perception of the degree
of attentiveness. This allowed us to investigate i) which fea-
tures (amplitude, frequency, duration...) of the visual feed-
back influences attentiveness perception; ii) whether visual
or verbal backchannels are perceived to be more attentive iii)
whether the fusion of unimodal tokens with low perceived
attentiveness increases the degree of perceived attentiveness
compared to unimodal tokens with high perceived attentive-
ness taken alone; iv) the automatic ranking of audio-visual
feedback token in terms of conveyed degree of attentiveness.

CCS Concepts
•Human-centered computing → Gestural input; Au-
ditory feedback; Empirical studies in collaborative and social
computing;

Keywords
head nods; backchannels; virtual agent

1. INTRODUCTION
Conversational systems are becoming more and more a

part of our every–day life. We are opening the phone to ask
Siri what the weather will be like tomorrow or switch on our
in-car navigational system to tell us how to get from Aachen
to Berlin. What most of these systems have in common is
their design for fulfilling a task; they are not designed for
social interaction. Having a conversational system however,
which is able to engage in a social interaction with a human,
could open the door to many new applications. For instance,
in the educational sector such an application could be the
development of a study peer. In healthcare, this could be a
virtual therapy aider; a system soldiers suffering from post
traumatic stress disorder could talk to and which would not
be judgmental.

Requirements for such a system are manifolds. Apart
from the understanding and synthesis of content, the sys-
tem needs also to be able to understand and synthesise the
paralinguistic components. One paralinguistic component
which is very important in our every–day interactions is “at-
tention”. We are constantly searching our interlocutors for
their reactions and their level of attention. If we feel that
their level of attention is not very high, we will change our
behaviour accordingly. However, we also expect our inter-
locutors’ level of attention to fluctuate to a certain degree.
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Figure 1: Perception Test. An avatar is displayed
and listens to a carrier audio sentence. Given
two realizations differing by their backchannels (us-
ing resynthesized head nods and inserted audio
backchannels from real data), raters are asked to
indicate which one looks more attentive, if any.

We would find it very odd if a person would never vary in
the degree he or she is paying attention.

The variation in the level of attention in the state of the
listener is exactly where current dialogue systems are still
limited, however. They are limited in that, if they are in-
cluding feedback token at all, these are typically representing
only a very limited set. These feedback token are generally
based on a few recordings of a voice talent, who was told to
portray a given feedback function or emotion. It is often fair
to assume that these feedback token represent extremes or
stereotypes in terms of backchannel realisations. However,
the problem with only using such stereotypical backchannels
in a dialogue systems is that this is in fact rather atypical
of human-human conversations. In reality, people alter nu-
ances in their realisation of backchannels to convey their
reaction to the speaker’s speech rather than resorting to ex-
tremes. In other words, getting bored and consequently dis-
engaging from the conversation is not an instantaneous event
but rather a gradual process.

In the current paper we study the degree of attentiveness
conveyed by visual (nods), audio, and audio-visual backchan-
nels. The aim is to work towards enabling a dialogue sys-
tem to portray a listener’s level of attentiveness in a more
human-like manner. In order to accomplish this, it is essen-
tial to have a good understanding of, firstly, which features
are important for the perception of different degrees of at-
tentiveness in feedback token and, secondly, to understand
how attentiveness is expressed multimodally. For example,
should a dialogue system choose to give feedback by using a
headnod or should it use an audio-backchannel?

To this end, we rely on a set of perceptual experiments,
whose principles are illustrated in Fig. 1, and ultimately pro-
pose different models for ranking audio and visual feedback
token in terms of their attentiveness. The research questions
we aim at answering are:
• RQ1: Can third party observers differentiate headnods

in terms of attentiveness?
• RQ2: If yes, is it possible to identify visual cues which

can help quantify these differences?
• RQ3: Are headnods or audio backchannels perceived

to convey more attentiveness?
• RQ4: Does a fusion of headnods and audio backchan-

nels which are ranked low in terms of their perceived
attentiveness, increase the perceived level of attentive-
ness in comparison to high attentively ranked unimodal
backchannels.

The rest of the paper is organized as follows: Section II

provides background material and our contributions. Sec-
tion III introduces the backchannels used for the perceptual
experiments, which are described in Section IV. Section V
presents the results and discussions, while Section 7 con-
cludes the work.

2. BACKGROUND
Backchannels have been studied from both the visual, au-

dio, and multimodal perspective. We review these works
below and then provide our contributions.

2.1 Head Nods
As summarized by Malisz et al. in their overview paper

[24], there are only few studies over the last decades which
have been concerned with the classification and description
of head nods. From a backchannel perspective, the most rel-
evant one was carried out by Rosenfeld and Hadris [19] who
suggested that smaller, single nods often function as typical
backchannel. Moreover, more recently, according to Bous-
malis et al. [4], large amplitude repeated nods were found
to be characteristic of affirmative meanings. And in [11]
Malisz et al. found that distracted listeners, while also gen-
erally preferring simple gestures produce complex gestures
relatively more frequently than attentive listeners.

2.2 Audio Backchannels
There are only a few studies that investigated the prosodic

realisation of backchannel functions such as for instance [17,
12, 10]. Neiberg et al. [12] investigated how prosodic real-
ization influences the perceived function of feedback token
taken from dyadic conversations. They found that feedback
token often were multi–functional, and some conveyed both
understanding, agreement, certainty, and negative surprise.
The perceived functions were found to be correlated with
prosodic cues. For instance, token with a fast speaking rate
and a moderate F0 rise were found to convey understand-
ing and interest. A further study on the prosodic charac-
teristics of feedback expressions was done by Malisz et al.
[10]. They analysed the prosodic characteristics of (“ja”,
“m” and “mhm”) across their pragmatic functions, as well as
the differences in feedback produced by distracted vs. at-
tentive listeners. By decomposing and analysing feedback
signals, they investigated feedback function differences and
distractedness-related differences. They found that atten-
tive listeners tend to speak more loudly, energy is less vari-
able, and pitch variability measures are positively related
to attentiveness. They argue that prosodic features may
strongly depend on segmental structure e.g. nasality vs.
orality syllabic structure vs monosyllabic structure.

2.3 Multimodaly and Backchannel
One of the few studies which has focused on exploring

which feedback token should be used at which point in time
is the work of Poppe et al. [18]. They showed that not only
the timing of feedback has an effect on the perception of
third party observers, but also the modality of the backchan-
nel. In particular, they investigated whether a backchannel
(one head nod, or one audio backchannel, “continuer”), fits
better the context of a given sentence.

Truong et al. [23], in another related study, which focused
on analysing backchannel (BC) inviting cues in a face-to-
face setting, did not find rising/falling pitch to be a BC-
inviting cue, as is typical for telephone-style dialogs. In con-
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trast, they found gaze to play a more important role, in
that mutual gaze occurs significantly more often during vi-
sual backchannels. They found also that vocal backchannels
are more likely to be timed during pauses in the speaker’s
speech.Bevacqua et al. [2] investigated the use of multi-
modal backchannels in conversational agents. More pre-
cisely, they focused on the meaning (like agreement, accep-
tance, refusal) carried by monomodal and multimodal feed-
back tokens. They found that combined multimodal tokens
of the same meaning were not always conveying a stronger
attribution of that meaning. They also deduced that the
meaning of the multimodal backchannel could not always
by simply deduced from the meanings of the components.
Finally they found that fused backchannels, composed of
backchannels with strong opposite meanings, were rated by
third-party observers as being nonsense.

2.4 Backchannels in Virtual Agents and Dia-
logue Systems

The importance of using backchannels in artificial agents
and robots, has been shown in [5, 20, 8, 22, 25]. For instance,
[20] investigated the effect of head nod in human robot inter-
actions (HRI). They found that informing subjects that the
robot is able to recognize their head nods as well as having
the robot provide gestural feedback of its nod recognition is
an effective strategy in triggering further nods in the sub-
jects. Other examples include [8], who uses backchannels as
one strategy for establishing rapport between a human and
a virtual human, or [22], who used backchannels in their
dialogue system to study turn-taking in multi-party human
robot interactions.

2.5 Paper Contributions
The first contribution of this paper is an in depth uni-

modal analysis of feedback tokens in terms of their per-
ceived attentiveness. To our knowledge, [11] is the only
study which investigated this issue, but from an attentive-
ness and distractedness perspective. In this work, authors
distract a subject and compare the difference in realisation
of feedback token across conditions. A first person experi-
ence of distractedness is however very different from a third
party observer’s perception of attentiveness, and therefore
the results of the current study and [11] are only condi-
tionally comparable. Moreover, the focus of their paper
was a more global analysis of feedback token in terms of
distractedness/attentiveness also in relation to various feed-
back functions. In the current paper, however, we focus on
just one kind of audio and visual feedback token (agreement
conveying), but therefore analyse it in depth. In addition,
one important difference is that in the current study the
stimuli are being realised by an avatar, rather than by re-
playing videos of human–human interactions. This allows
to eliminate some other variables (esp. appearance, visual
expression) which may affect the perception.

The second contribution is the comparative analysis of
visual and audio backchannels and their ranking in terms
of attentiveness. To our knowledge, this has not been at-
tempted before.

A third contribution are the different attentiveness rank-
ing models. Not only can they be used to predict the atten-
tiveness of listeners, but they can also serve to rate natural
feedbacks like nods extracted from real conversations (thus
allowing to exploit a large diversity of feedback realisation)

Figure 2: Tilt angle sequence comprising a nod, with
a visual representation of the features representing
its dynamics.

and use them in attentiveness unit–selection feedback syn-
thesisers.

3. DATA
For this paper, we decided to use natural realisations of

audio and visual backchannels to synthesize the avatar’s lis-
tening behaviors, as shown in Fig. 1. To this end, we used
the multi-party group discussion KTH-Idiap corpus [15], in
which three PhD students have to convince a Post-Doc that
they were the best suited candidate for a prestigious schol-
arship. We chose this corpus as it is rich in conversational
dynamics, especially in terms of participants’ degree of at-
tentiveness.

3.1 Audio Backchannels
The set of audio backchannels used in the experiments

were selected according to [16]. More precisely, to deter-
mine syllable boundaries, syllables were manually annotated
in Praat [3]. We then calculated the syllable duration, in
milliseconds, from the corresponding TextGrid file and, in
a next step, extracted pitch and intensity values using Praat
[3]. The selected set contained 64 unique bisyllabic backchan-
nels token sampled across 9 speakers (5 male, 4 female).

3.2 Head Nods
Head nods samples have been selected from the corpus

amongst those automatically detected using the method of
[6], which relies on a 3D head fitting and pose tracking.
The frame rate of the recordings was 30 frames per second.
Detected nods have been validated, and those accompanied
with speech have been removed. This resulted in 77 nod
samples. For these samples, several features characterizing
the nod have been extracted, mainly from the head tilt se-
quence, as shown in Fig. 2.

• NodDur: nod duration (in number of frames).
• NbOsc: number of oscillations, where an oscillation

is defined as the segment between two extremas of the
smoothed tilt sequence.
• NodFreq: frequency of the nod, computed as NOsc

2∗NDur
.

• FiDir: first oscillation direction (up or downward).
• FiAmp: absolute amplitude of this oscillation.
• MaxDownAmp and MaxUpAmp: maximum am-

plitude of the downward (resp upward) oscillations.
• MaxDownSpeed and MaxUpSpeed: maximum

downward (resp. upward) speed.
• MeanPan: absolute value of the mean pan (head left-

right rotation) during the first oscillation.
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Head nods synthesis. The extracted head pose sequences
contained some jittering, which, when resynthesised, looked
unnatural. To handle this, the six degrees of freedom of
the pose were smoothed using a simple moving average fil-
ter. A 7-frame smoothing was applied, except for the tilt
where shorter windows were used to avoid the elimination
of shorter amplitude head nods.

4. PERCEPTION TEST SETUP
We first describe below the overall experimental approach.

We then describe the different experiments we have con-
ducted.

4.1 Overall Methodology
Perception Stimuli: Experiments were conducted using
the Crowdflower crowdsourcing platform. It consisted in
comparisons of the attentiveness level of two feedback real-
isations, as shown in Fig. 1. In each case, a carrier sentence
from a real interaction was used, and backchannel data (au-
dio sample, pose sequence of nods, or combination of these,
see Section 3) were inserted at the same place in which a
backchannel had occurred in the original recording, and sent
into the IRISTK [21] toolkit to realize the virtual agent’s
listening behavior. Carrier sentences were selected to en-
compass a backchannel in the original recordings, and be
short in duration so as to ensure that the raters could still
remember the previous backchannel/head nod when doing
comparisons. We emphasize again here that each item of
a pair of feedback realizations to be compared was embed-
ded into the same carrier sentence so that it was possible
to ensure that backchannel tokens were rated in the same
interactional environment.

Ratings: Raters were recruited from the United States,
Netherlands, and Germany. They were instructed to watch
and listen the video pairs and determine in which video the
listener avatar sounded more attentive. An attentive lis-
tener had been described to raters as someone who a) pays
attention; listens carefully; is observant; b) is careful to ful-
fill the needs or wants of the speaker; is considerate about
the speaker. In a drop–down menu, raters could indicate in
which video they perceived the listener to be more atten-
tive or when they could not see any difference. Also, they
could report if the video files did not play correctly in their
browser. To ensure that we received the best quality ratings,
we chose a minimum time threshold of 160 seconds to com-
plete 10 ratings. If a rater was under this threshold (which
was based on the average annotation speed of one of the au-
thors), he was automatically discarded. Moreover, we set a
maximum of 20 judgments per rater so as to avoid any tired-
ness effects. Furthermore, we chose the crowdflower settings
as to prefer raters with high quality records. Each pair of
videos to be compared were annotated by 12 raters.

4.2 Experiment 1 - Head Nods
We were first interested into comparing the attentiveness

of different head nod realisations. Pairs of nods to be com-
pared were exhaustively obtained from the 77 unique nods
(see Section 3) obtained from 15 persons. Since we wanted to
be consistent with prior experiments with audio-only backchan-
nels [16], pairs were only created from nods from the same
person, resulting in 439 unique pairs and 5268 ratings.

4.3 Experiment 2 - Nods vs Backchannels
We then wanted to compare the perceived degree of atten-

tiveness of nods versus audio backchannels. Since an exhaus-
tive comparison was not possible, we adopted the following
approach. The 5 nods which were rated as most attentive
from the ratings according to the methodology described in
Section 4.5, as well as the 5 rated the least attentive, were
selected. The same was done with the audio backchannels.

From these samples, an exhaustive comparison of nods vs.
audio backchannels was conducted, as depicted in Fig. 3.
This comprised the 5 top nods vs. the 5 top backchan-
nels, the lowest nods vs.the lowest backchannels, and top vs
low audio and visual token comparison (top nods. vs low
backchannels, and low nods vs. top backchannels).

4.4 Experiment 3: Bimodal Backchannels
To test whether a bimodal backchannel (a backchannel

and a headnod produced at the same time) is perceived to
be more attentive than a unimodal backchannel, we adopted
the following design. We fused head nods and backchannels
taken from the 3 lowest rankings (9 samples in total), and
compared them to unimodal backchannels (nods or audio)
which were ranked higher than them, as depicted in Fig. 3.
We were interested to find whether the resulting bimodal
backchannels were perceived to be more attentive than their
monomodal components and if yes, to what degree. We hy-
pothesised that the fusion of modalities should increase the
perception of the degree of attentiveness. Therefore, we put
the bimodal backchannels deliberately at a disadvantage;
if bimodal backchannels combined out of low ranking uni-
modal backchannels are already perceived as more attentive
than unimodal ones, then a fusion of higher ranking uni-
modal backchannel token should be perceived as even more
attentive.

4.5 Top-Lesser Tokens Selection
Our experimental approach required to identify within the

set of tokens X = {xi}Ni=1 the subset that was annotated as
more or less attentive from the pairwise crowdsourcing com-
parisons. Let Λ = {xi,xj , vi, vj}i,j be the pairwise compar-
isons, where, vi and vj indicate the amount of votes (more
attentive) received by the samples xi and xj respectively. To
sort the tokens in terms of attentiveness, we take a simple
approach:

A(xi) =
∑
j

h(vi > vj), (1)

where, A(xi) is our attentiveness measure and h is a function
returning 1 for values equal or above zero, and returning 0
otherwise. In other words, we count the amount of times xi

is labelled as more attentive.
Nevertheless, to take into account that not all samples

were compared to each other, before evaluating Eq. 1, we
generated virtual comparisons for the missing pairs as fol-
lows: we first defined a directed graph GA = {X,Ω}, where
the samples (X) are the nodes in the graph and Ω = {ωi,j}{i,j}
are the set of directed edges, whose weight from node i to
j is equal to ωi,j = vi − vj . For a given pair i, j whose
comparison was not made, we first find the shortest path
Pi,j(Ω̂) (the path with the lowest cumulative weight) in the

equivalent graph ĜA = {X, Ω̂}, whose weights Ω̂ are equal
to 1 if the comparison was made, and∞, if not. The weight
then assigned to the given pair is equal to the cumulative
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weight across the path: ωi,j =
∑

l,k∈Pi,j
ωl,k. Although this

approach is an approximation, we believe this to be suffi-
cient for our purposes, e.g. to identify the top 5 tokens in
terms of attentiveness.

5. RESULTS
In this Section we report results from the perception ex-

periments described in the previous section. Here, a sample
is said to win a comparison if it is labeled as more attentive
than the other “losing” sample by 2/3 of the raters. If no
2/3 majority is obtained, the comparison is said to end up
in a tie.

5.1 Head Nods Analysis
Given the results from Section 4.2 we here report the

impact of head nod dynamics, embedded by the features
described in Section 3.2, over attentiveness. To this end,
we defined two groups of head nods: “Wi” (Winners) and
“Lo” (Losers). Then, for each pairwise comparison, the win-
ning head nod (higher rated), is assigned to the “Wi” group,
whereas the other sample is assigned to the “Lo” group. We
excluded all the head nod pairs for which no 2/3 majority on
preference was observed. Note that samples can be repeated
within the previously mentioned groups.

The results across the head nods Wi/Lo groups over head
nod features can be observed in Figure 4.

Figure 3: A blue line represents a comparison of,
for Experiment 2: (cf. Sec. 4.3)a given head nod
and audio backchannel. Experiment 3 :(cf. Sec. 4.4).
A fused head nod and audio backchannel (bimodal
token) and a monomodal token (head nod or audio
backchannel).

Table 1: The relationship between ”Wi” and ”Lo”
and Head Nod features (ns= non significant).

Winning Losing p-vlaue
MaxUpAmp – – ns

MaxDownAmp
M=4.66
SD=2.54

M=3.26
SD=2.60 <0.001

MaxUpSpeed – – ns

MaxDownSpeed
M= 1.17
SD=0.46

M= 0.92
SD=0.51 <0.001

NodDur
M=23.50
SD=16.39

M=16.17
SD=7.16 <0.001

NbOsc
M=4.30
SD=3.57

M=2.94
SD=1.44 <0.001

MeanPan – – ns

FiAmp
M=4.48
SD=3.31

M=3.71
SD=3.14 <0.001

Figure 4: Head nod features distributions within the
Winning (Wi) and Losing (Lo) sets.

5.1.1 Statistical Analysis on Head Nods Features
Two Sample t-test were conducted to compare NodDur,

MaxUpAmp, MaxDownAmp, MaxUpSpeed and MaxDown-
Speed, NbOsc, FiAmp and MeanPan between ”Wi”and ”Lo”
stimuli. For these evaluations, 104 pairwise comparisons
were available with 2/3 majority.

Results are depicted in Table 1. It can be summarised
that the ”Wi” head nods have a higher MaxDownAmp, a
quicker MaxDownSpeed, a longer NodDur a higher average
number of NbOsc as well as a higher FiAmp.

5.2 Head Nod vs. Backchannel Analysis
From the results obtained from the perception experiment

described in Section 4.3, a chi-square test was performed
to examine the relation between the head nods and audio
backchannel modalities and perceived attentiveness. The
relation between these variables was significant, X2 (1, N
= 90) =88.2 , p <.01. Head nods were more likely to be
perceived as more attentive than backchannels.

Further analysis revealed that, out of the 13 comparisons
in which the backchannels won over the head nods, 11 con-
tained backchannels ranked in the top 5 of all investigated
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backchannels, and only 2 were ranked in the bottom 5. Sim-
ilarly, out of the 77 comparisons in which head nods won
over backchannels, 53 contained head nods ranked in the
bottom 5 and 24 in the top 5. These results are depicted in
Figure 5. Finally, out of a total number of 200 comparisons
between the modalities, 110 ended with a tie.

5.3 Multimodal-Monomodal Comparison
We here present the results for the experiment described

on Section 4.4. In order to avoid increasing the number of
comparisons times nine, we restricted the analysis to the
comparison of two backchannels giver/ listeners. In order to
balance for gender, we chose a male and a female participant.
Both results are depicted in Figure 6. The results for the
female participant will be presented first and will then be
followed by the results for the male participant.

A chi-square test was performed to examine the relation
between monomodal to multimodal backchannels in terms
of perceived attentiveness. To this end, the fused tokens de-
scribed in Section 4.4 (multimodal samples combining a low
ranking backchannel and a low ranking head nod) were com-
pared against two sets of monomodal backchannels: a mid
ranked and a top ranked set. The top ranked set consisted
of samples labeled with high attentiveness from the pairwise
human perception experiments whereas the mid ranked set
consisted of samples labeled in the middle of the scale of
attentiveness according to the pairwise human perception
comparisons. Nevertheless, in both cases, the top five high-
est ranked samples were not used. The same protocol was
repeated comparing the fused tokens vs. a set of monomodal
head nods distributed in similar mid/top ranked sets.

For the female participant, the relationship between these
variables, when comparing against the mid ranked set, was
significant for both nods X2 (1, N = 81) = 35.65 , p <0.001
as well as backchannels X2 (1, N = 81) = 68.48 , p < 0.01.
In both cases, the multimodal backchannels won over the
monomodal backchannels significantly more often. For the
case of comparing against the top ranked set of monomodal
samples, even if the obtained difference was not as pro-
nounced, a similar effect could be observed for head nods
X2 (1, N =45) = 8.7111, p <0.001. However, the difference
to the top ranked set of monomodal audio backchannels, was
not significant.

For the male participant, when comparing against the mid

Figure 5: Winning counts obtained for the com-
parisons between the head nods and backchannel
modalities.

Figure 6: Winning counts for comparisons between
multimodal samples and a) mid ranked unimodal
samples (male participant); b) top ranked unimodal
samples (male participant); c) mid ranked unimodal
samples (female participant) and; d)top ranked uni-
modal samples (female participant)

ranked set, the difference in terms of number of wins and
loses for nods X2 (1, N =45 ) = 21.511 , p <0.001 as well
as backchannel was significant X2 (1, N = 54) = 50.704 ,
p <0.001. In both cases, the multimodal backchannels won
over the monomodal backchannels significantly more often.
While the same trend can be observed for the comparison
to the top-ranked monomodal backchannels, the trend is not
as pronounced for nods X2 (1, N = 45 )= 11.378, p <0.001
and for audio backchannel X2 (1, N = 45)=4.4444, p <0.05.

5.4 RankSVM Classification
In this Section, we evaluated whether it is possible to ob-

tain an automatic assessment on attentiveness. In order to
avoid defining an explicit attentiveness scale and stating it
as a regression problem, we instead formulated this task as a
ranking problem, where two samples are compared accord-
ing to relative attentiveness. To this end, we employed a
Ranking SVM algorithm, in which, for a given pair xi and
xj , their difference (xi−xj) is classified into +1 (if i is more
attentive than j) or -1 (if j is more attentive than i), thus
turning the problem into a binary classification. To assign
such target label (relative attentiveness) to a given pairwise
comparison, we used the majority vote from the crowdsourc-
ing experiments.In our experiments we used a Support Vec-
tor Machine (SVM) classifier based on the linear kernel. We
applied a grid-search with 10-fold cross validation to identify
the hyper-parameters.

5.4.1 RankSVM Headnod Results
All cases in which no two-third majority vote by the raters

for a comparison was reached, were excluded from the anal-
ysis. This reduced the set to 101 tokens. For the classi-
fication we used all features which were previously deter-
mined to have a significant effect on perceived attentiveness
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namely “maximum downward amplitude”, “frame duration”,
“number of oscillations”, and first amplitude. As a result of
unimodal head nod experiment, we obtained an accuracy of
74.3%.

5.4.2 RankSVM Backchannel Results
To compare to the head nod results of the current paper,

we also briefly state the rank SVM results for the backchan-
nels as reported in [16]. All cases in which the majority
of raters indicated that there was no perceivable difference
in attentiveness, was excluded from the data set. This re-
duced the size of the data set to 205 pairs. For classification
we used all features which were previously determined to
have a significant effect on perceived attentiveness except
for f0–slope, as this feature reduced the performance of the
classifier. The remaining features thus were rms–intensity
of first and second syllable as well as the duration of the
second syllable. As a result of the unimodal backchannel
experiment, we obtained an accuracy of 83%

6. DISCUSSION

6.1 Head Nods
This paper investigated the perception of attentiveness in

an array of mono-, bi-, as well as multimodal perception
tests. We also investigated which visual features are related
to the perception of attentiveness, and investigated whether
automatic ranking of visual feedback token was possible. We
found that head nods which were perceived as more attentive
had a larger maximum downward amplitude. This finding
could in part be explained by the findings of [4] et al. who
found that a large amplitude is characteristic of affirmative
meanings. If someone is perceived to be affirmative it might
be reasonable that he is also perceived to be attentive. How-
ever, our findings contrast the findings by [11] who found
that attentive listeners produce complex head-gestures less
frequently than distracted listeners. This difference in find-
ings, however, might simply be due to the difference in study
design. While [11] investigate the effects of distracting a
participant on his/her realisations of headnods, we inves-
tigate the third-party observer perception of attentiveness
on different head nod realisations in pairwise comparisons.
The kind of nods which [19] describe as typical backchan-
nels seem in our study to be best characterised by the group
of backchannels which is perceived to convey less attentive-
ness. We could not find further studies which investigated
perceived attentiveness in headnods. However, for audio
backchannels we know that the rms-intensity(loudness) as
well as duration are important cues for perceived attentive-
ness. The louder and the longer the audio backchannel, the
more attentive the backchannel is perceived. One might
argue that the amplitude is the visual equivalent of the rms-
intensity and frame duration and number of oscillations are
the visual equivalents of duration. Therefore, the fact that
particularly these features have a significant effect on the
perceived attentiveness in head nods might make sense when
observed from a multimodal perspective.

6.2 Bimodal Comparisons
The fact that nearly all backchannels lost the comparisons

to the head nods might partly explained by diverse findings
from the literature: For example, [12] found that tokens
with a fast speaking rate and a moderate F0-rise were found

to convey understanding and interest; also, [9] came to a
similar conclusion that a high or rising pitch is perceived
as more engaged than a flat pitch. In fact, however, this
kind of backchannel is very rare or even not existent in the
backchannels produced by the speakers in this corpus. While
we found significant differences in the perception of atten-
tiveness, in audio backchannels in this corpus, these differ-
ences were found in duration, rms-intensity, and F0-slope of
the first syllable.

Therefore, it might be argued that the audio backchannels
of this corpus are situated in the lower ends of attentiveness
and the participants in the corpus recordings chose to ex-
press their attentiveness maybe by means of visual rather
than verbal means. Moreover, the timing of backchannels
plays of course an important role. We tried to control for it
by using the backchannels’ timings of the original corpus. In
case of the bimodal comparisons dicussed here, we used the
timings of the audio backchannel which potentially might
have put the visual backchannel at a disadvantage. How-
ever, results show that despite this disadvantage, the visual
backchannels perform better. This can either indicate that
the visual modality is the more dominant one in terms of
perceived attentiveness or/and that the speaker sentences
were too short for the different timings to play a role.

6.3 Multimodal-Monomodal Comparison
The study design of the current multimodal-monomodal

comparison experiment is, in many ways, comparable to Be-
vacqua et al.’s study [2]. Similar to [2], we also investi-
gated the effect the fusion of monomodal backchannels into
multimodal backchannel tokens has on the perception of
third-party observers. While Bevacqua et al. focused on
the conveyance of a given meaning, however, we focused
on the perception of attentiveness. The authors found that
the strongest attribution of meaning is not always the mul-
timodal one. In the current paper the fusion of modali-
ties similarily did not always lead to the highest percep-
tion of attentiveness. However, except for one compari-
son condition, fused backchannels vs. the top-five-ranked
monomodal audio backchannels, the number of times the
multimodal backchannel won over the monomodal backchan-
nel was significant. It has to be noted as well, that the
comparisons were biased towards favouring the mono-modal
audio-visual back-channel. We only fused the backchannel
tokens which were perceived lowest in terms of attentiveness
and compared them to higher ranked mono-modal tokens; if
we had fused higher ranked backchannel tokens, the multi-
modal backchannel tokens might have won even more often
over the mono-modal ones.

7. CONCLUSION
In this paper, we have shown that “maximum downward

amplitude”,“frame duration, “number of oscillations”, “first
amplitude”and“maximum downward speed”can distinguish
between as more, and as less attentively perceived head
nods. We found that head nods were generally perceived
to convey more attentiveness than audio backchannels. We
could furthermore show, that the fusion of modalities in-
creases the degree of perceived attentiveness. We were able
to automatically rank head-nods with an average accuracy
of 74.3%. All in all it can be concluded that participants of
a conversational corpus convey different levels of attentive-
ness through their audio-visual feedback. By using kinect
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data from actual head nods, we are able to convey different
degrees of attentiveness in a virtual agent. In future work
we aim at using the here proposed multimodal synthesis of
audio visual backchannels to better model the variation we
observe in human-human conversations also in human–agent
and human–robot interactions. For instance, we could focus
on the behavioural synthesis of different listener categories,
combining the results of this study with the results described
in [14] and [13], or further exploit attention cues extracted
from gaze [7] and multimodal attention [1] models to study
the combination of attention and backchannels (nods, audio)
on the degree of attentiveness.
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