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ABSTRACT

Speech processing systems currently do not support the vast ma-
jority of languages, in part due to the lack of data in low-resource
languages. Cross-lingual transfer offers a compelling way to help
bridge this digital divide by incorporating high-resource data into
low-resource systems. Current cross-lingual algorithms have shown
success in text-based tasks and speech-related tasks over some low-
resource languages. However, scaling up speech systems to sup-
port hundreds of low-resource languages remains unsolved. To help
bridge this gap, we propose a language similarity approach that can
efficiently identify acoustic cross-lingual transfer pairs across hun-
dreds of languages. We demonstrate the effectiveness of our ap-
proach in language family classification, speech recognition, and
speech synthesis tasks.

Index Terms— cross-lingual, zero-shot, ASR, TTS

1. INTRODUCTION

As speech assistants and other speech-based technologies become
more prevalent, it is important to make them accessible to everyone
around the world. While there are thousands of languages in the
world, these technologies currently only support a small subset of
these languages. Since state-of-the-art speech processing algorithms
typically require large training corpora, it is difficult, if not infeasi-
ble, to currently build them for low resource languages[1, 2].

Cross-lingual transfer is a promising direction that aims to
bridge this gap by incorporating high-resource data into low-
resource systems [3, 4]. For such approaches, choosing the data
to transfer from is an important step [5, 6, 7, 8]. While many solu-
tions for this step exist for text-based tasks, generalizable solutions
still do not exist for speech-based ones [9]. In this work, we help
bridge this gap by proposing language similarity metrics that pair
target languages with source languages suitable for acoustic cross-
lingual transfer. We find our approach effective in language family
classification, speech recognition, and speech synthesis. Thus, our
contributions are the following:

1. we introduce an acoustic language similarity approach,

2. we compare it with non-acoustic ones in downstream cross-
lingual speech recognition and speech synthesis tasks, and

3. we demonstrate the usefulness of our acoustic approach for
both language family classification and acoustic cross-lingual
transfer.

We proceed by discussing cross-lingual transfer techniques in
Section 2. In Section 3, we discuss current non-acoustic language
similarity approaches. Then, we describe our proposed acoustic lan-
guage similarity approaches and their distinction from non-acoustic

ones in Section 4. Sections 5, 6, and 7 contain our language family
classification, speech recognition, and speech synthesis experiments,
respectively. Finally, we summarize our results and propose future
directions in Section 8. All our code and other supplementary mate-
rial can be found at https://github.com/peter-yh-wu/cross-lingual.

2. CROSS-LINGUAL TRANSFER

2.1. Problem Statement

Given the set of all languages S, cross-lingual transfer generally
refers utilizing n source languages {s1, . . . , sn} ⊂ S to improve
task performance in target language t ∈ S, where t is typically low-
resource [9]. Assuming that we are using a data-driven approach,
data Di would need to be chosen for each source language si. This
definition reveals three challenging tasks: (1) choosing source lan-
guages {si} from S; (2) choosing data Di for each si; (3) transfer-
ring the information in {D1, . . . , Dn} to the task in target language
t. We focus on the first challenge in this work, and discuss its rela-
tion to other tasks below.

2.2. Cross-lingual Techniques

Many speech- and text-based works have approached the aforemen-
tioned third challenge of improving performance in target language
t using source data {Di} [3, 10, 11, 12, 4, 7, 13, 5, 14]. To handle
the second challenge of choosing theDi’s, many works select all the
source data from the same corpus [5, 13] or an arbitrary set [15, 12,
4]. Multiple works have approached the first challenge of choosing
source languages {si} in a similar manner [5, 13, 4, 15, 12]. These
algorithms that utilize vast amounts of source language data are gen-
erally pre-training ones, and thus can be used in conjunction with
our approach [3, 11, 12, 4, 16].

Many works have shown that certain subsets of source data are
more suitable than others for cross-lingual transfer [5, 8]. At the
dataset level, Li et al. [6] propose an approach to select suitable
corpora by iteratively sampling from each dataset and gradually at-
tending to less data using similarity scores. Since this work assumes
a given initial set of candidate languages and datasets, it addresses
the second challenge of selecting the data {Di}. The output of our
approach, which selects languages {si}, can thus be used as an input
to theirs.

Within the text modality, Lin et al. explore using phyloge-
netic and typological features to select source languages [9]. Since
speech data contains a wealth of additional information, we propose
acoustic-based features and compare them with their features in
speech recognition and speech synthesis. As discussed in Sections
5, 6, and 7, we observe unique advantages of our features in speech
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processing tasks. We describe all of these features and how we
utilize them to measure language similarity below.

2.3. Language Similarity

In this work, we explore eight different language similarity ap-
proaches to select cross-lingual transfer languages for speech pro-
cessing tasks. Namely, we focus on addressing the first challenge
posed in Section 2.1 of choosing source languages {si}. All eight
approaches are dataset-independent. They can be used in any cross-
lingual transfer task as a compact look-up table without requiring
additional computation. We proceed by detailing non-acoustic sim-
ilarity approaches in Section 3 and our proposed acoustic ones in
Section 4.

3. NON-ACOUSTIC LANGUAGE SIMILARITY

3.1. Non-Acoustic Approaches

For our non-acoustic language similarity approaches, we use the six
distance metrics from Lin et al. [9, 17]: genetic, inventory, syntac-
tic, phonological, featural, and geographic. Sections 3.2 and 3.3 de-
scribe the background and details of the first five approaches. Since
we observed that their geographic distance method would sometimes
map languages to the same location, we utilize an additional geo-
graphic measure, as discussed in Section 3.4.

3.2. Language Family Trees

Multiple sources have devised ways to categorize languages into
families, using genealogical, typological, and other linguistic infor-
mation [18, 19, 20]. Several works categorize languages under a
hierarchy of language families, which we can visualize as a directed
acyclic graph where family nodes have languages and subfamilies
as children. Since categorization decisions differ between linguists,
these language family trees can vary noticeably between sources, as
shown in Figure 1. The large number of different linguistic attributes
thus offers us many different ways of defining language similarity,
which we discuss below.

(a) Ethnologue (b) Wikipedia

(c) Glottolog

Fig. 1. Top two levels of the Cariban language family tree based on
three different linguistics data sources [18, 21, 19].

3.3. Phylogenetic and Typological Distances

As in Lin et al. and the URIEL typological database [9, 17], our
five language distance metrics that incorporate phylogenetic and ty-
pological information are:

1. Genetic Distance: The distance between languages in Glot-
tolog’s world language family tree [19]. For reference, a sub-
set of this tree is depicted in Figure 1 above.

2. Inventory Distance: The cosine distance between binary
vectors extracted from the PHOIBLE database [22]. Each
vector dimension has phonetic information about the pres-
ence of sounds [17].

3. Syntactic Distance: The cosine distance between syntax
feature vectors utilizing information from the World Atlas
of Language Structures (WALS) and Syntactic Structures of
World Languages (SSWL) [20, 23].

4. Phonological Distance: The cosine distance between vec-
tors containing phonological information from Ethnologue
and WALS [18, 20].

5. Featural Distance: The cosine distance between vectors in-
corporating features from the above four [17].

For these five language similarity approaches, we use the pre-
computed lang2vec distances provided in URIEL [17]. The genetic
distance between any two languages is a real value in [0, 1], and
all the aforementioned vectors are element-wise non-negative with
norm greater than 0. Thus, since cosine distance is given by

dcos(x, y) = 1− x · y
‖x‖ ‖y‖ , (1)

the other four distance functions have range (0, 1].

3.4. Geographic Distance

The sixth non-acoustic language similarity approach that we use is
geographic distance, which we measure in two ways. Our first way
is via the orthodromic distance approach described in Lin et al. and
URIEL, using pre-computed lang2vec distances [9, 17]. We ob-
served that languages may be mapped to the same location, and thus
utilize an additional geographic distance measure. Namely, we ob-
tain language coordinates using Wilderness metadata and compute
the geodesic distance with the GeoPy library [24, 25].1 Unless stated
otherwise, we report results in this work using the first approach.

4. ACOUSTIC LANGUAGE SIMILARITY

4.1. Acoustic Approaches

We propose two acoustic-based approaches for measuring language
similarity. In contrast to the non-acoustic approaches in Section 3,
these methods are entirely data driven and thus do not rely on ex-
pert linguistic knowledge. Additionally, they leverage information
directly from speech data, offering opportunities to learn language
properties suitable for downstream speech tasks. Our acoustic-based
approaches are motivated by i-vector and x-vector language recog-
nition works [26, 27]. While these works study tens of languages,
we show that ours can successfully support hundreds. As far as we
are aware, this work is also the first to compare speech vectors with
other language similarity approaches and systematically study their
uses in downstream speech tasks.

Generally, both involve training a neural network to classify lan-
guages given multilingual speech data. We generate a vector embed-
ding for a language by averaging the outputs of a designated em-
bedding layer across speech samples from that language. Then, we
measure language distance as the distance between the language em-
beddings. The primary difference between our approaches is that
one aligns its speech representations with another space, as detailed
below.

1https://github.com/geopy/geopy
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Formally, our approaches are each defined by a model M and a
size-N dataset D = {(xn, yn)}Nn=1, where the x’s are model inputs
and the y’s are language labels. x is a speech representation in our
first approach and a (speech, text) pair in our second. Let Me(x) be
the output of the embedding layer, and Mc(Me(x)) be the output of
the language classification layer. In our first approach, we trainM on
a subset Dtrain ⊂ D using a classification loss fc(Mc(Me(x)), y).
Then, we generate an embedding el for language l using samples
Dl ⊂ {xn|yn = l ∧ (xn, yn) ∈ D}. We compute el as the mean
of the embedding layer outputs, or 1

|Dl|
∑

xn∈Dl
Me(xn). In this

work, we measure language similarity using cosine distance, given
in Equation 1. We refer to this approach as the speech-based ap-
proach.

For our second approach, we add a term to our loss function
and assume each xn is a pair (vn, wn) of speech and text data. Our
new loss is given by f(x, y) = fc(Mc(Me(v)), y) + fa(M,x, y),
where fa is an alignment loss. In this work, we train a text encoder
T jointly with M and define fa as

fa(M,x, y) = fc(Mc(T (w)), y) + αdcos(Me(v), T (w)), (2)

where dcos is the cosine distance function in Equation 1 and α is a
hyperparameter. We create language embeddings in a similar man-
ner as the first approach, feeding v into Me instead of x. We refer to
this approach as the multimodal-based approach and discuss spe-
cific architectures used for both approaches in Section 4.3.

4.2. Acoustic Dataset

We use the Wilderness dataset to train the neural models in our
acoustic similarity approaches from Section 4.1 [24]. This dataset is
suitable for our acoustic approaches since it contains parallel speech
and text data for over 700 languages. In this work, we focus on
using data that are considered as being good or very good quality
in Wilderness paper. Namely, we choose languages with data that
could train a random forest Clustergen speech synthesizer with Mel-
cepstral distortion (MCD) under a threshold c [28, 29, 30, 31]. We let
c = 5.5 since this is the middle value of the good quality range used
in the Wilderness work [24]. As discussed in that paper, MCD serves
as an objective measure of synthesis quality, which in turn has been
shown to correlate with alignment and dataset quality [24, 32, 33].
Among this subset of languages, we choose the low-resource ones,
which we define as those with limited amounts of public data outside
of Wilderness. This yields 195 languages, with 22.8± 5.9 hours of
speech per language. Figure 2 visualizes the location of these lan-
guages.

Fig. 2. Chosen Wilderness languages, colored by Ethnologue lan-
guage family [24, 18].

4.3. Models for Acoustic Approaches

For both acoustic approaches proposed in Section 4.1, we use a con-
volutional network based on VGGVox as our speech encoder Me,
with an output dimension of 512 [34] and two-dimensional adaptive
max pooling. Each input to the speech encoder is an 80-channel nor-
malized Mel-scaled spectrogram with an FFT window length of 800,

hop size of 200, window size of 800, and sampling rate of 16000 Hz.
For all experiments, we use normalized embeddings as in Khosla et
al. [35], Adam optimization with learning rate 10−3, and batch size
128. We explore two classification losses for our speech-based ap-
proach: cross-entropy and SupCon [35], referred to as CE and SC
in Tables 3, 4, and 5. Classifier Mc is a ReLU activation followed
by a fully connected (FC) layer with output dimension 195 in the
former, and an FC layer with 128 outputs in the latter. We replace
the original SupCon augmentations with SpecAugment [36].

For the multimodal-based approach described in Section 4.1, we
use an LSTM-based model as our text encoder T . Specifically, we
feed each input into an embedding matrix with embedding dimen-
sion of 256, followed by an LSTM with hidden dimension 128. We
then apply max pooling across the sequence dimension and feed
the resulting vector into an FC layer with output dimension 128.
We chose max pooling instead of a more complex approach like
attention, since the latter did not improve performance in the lan-
guage family classification task in Section 5. To standardize text
inputs across languages, we romanize them using UniTran, as de-
scribed in the Wilderness paper [24, 37]. For all experiments with
the multimodal-based approach, we set the alignment hyperparame-
ter α to 3 ∗ 10−2. Each model takes a few GPU days to train and a
few GPU hours to extract all the language embeddings on an RTX
2080 Ti.

To check whether our language embeddings are interpretable,
we compare their k-means clustering assignments with their geo-
graphic locations. Here, we train the classifier for the speech-based
approach described in Section 4.1 on a random 80%-10%-10%
train-val-test split of our 195-language Wilderness subset using
cross-entropy. For each language, we make an embedding using
all of the test data in that language. Figure 3 colors the locations
of these languages based on their k-means clustering assignments.
Since assignments to the same cluster generally seem close on the
map, it appears that our embeddings contain some degree of geo-
graphical information. Additionally, Figure 2 and Figure 3 share
many boundaries where language colorings change, suggesting that
our embeddings capture some language family information as well.

Fig. 3. k-means assignments of language embeddings extracted
from speech data, where k = 5. More details are in Section 4.3.

5. LANGUAGE FAMILY CLASSIFICATION

In addition to computing language similarity, our acoustic ap-
proaches can also be used for classifying language families from
speech. We explore this through a zero-shot task using our 195-
language Wilderness subset from Section 4.2 and our two neural
classifiers from Section 4.3. More specifically, we separate the
languages into a random 80%-10%-10% train-validation-test split,
yielding 156, 19, and 20 languages. Then, we train our models
to classify the 156 training languages. During evaluation, we map
the predicted language to its Ethnologue language family and com-
pare whether the family matches that of the ground truth language.
Validation and test accuracy are calculated over the 24 Ethnologue
language families containing our 195 languages [18], and we select
the best models based on validation accuracy. We also evaluate an
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Table 1. Language family classification from speech on unseen lan-
guages. More details are in Section 5.

Approach\Split Val Test

Random 0.00 0.00
Multimodal 0.29 0.22
Speech 0.25 0.20

untrained version of our Section 4.3 speech-based classifier, called
the random baseline in Table 1.

The two trained models have noticeably higher test set accura-
cies than the random baseline, indicating that the models learned
to perform zero-shot language family classification. Also, the
multimodal-based approach outperforms the speech-based one,
suggesting that the former encoded more linguistic content into its
embedding space by aligning with textual representations. While
speech-based classification has been widely explored [38, 39], we
believe that this is the first work to indicate its potential for classify-
ing language families.

6. SPEECH RECOGNITION

6.1. ASR Task

We also analyze the performance of our language similarity ap-
proaches in a cross-lingual speech recognition (ASR) task. Namely,
we train monolingual ASR models on a set of source languages and
evaluate them on a set of target languages. Thus, experiments using
source languages different from target ones are zero-shot. For all
ASR experiments, we romanize text using Unidecode2 and evalu-
ate performance using character error rate (CER). We note that the
transliteration helps to make zero-shot ASR possible. To measure
the suitability of each language similarity approach for cross-lingual
ASR, we calculate the Spearman correlation between the language
similarities and the CERs. Details on the specific sets of source-
target language pairs used are described below. As mentioned in
Section 2.1, we focus here on how to choose the source languages
rather than how to improve the subsequent steps in the cross-lingual
transfer procedure.

Unless mentioned otherwise, we use an ESPNet Transformer
ASR model comprised of a 12-block Transformer encoder, a 6-block
Transformer decoder, and a CTC module [40, 41]. Additionally, we
use a byte pair encoding vocabulary size of 1000, decoding beam
size of 10, and an optimization procedure similar to that of Vaswani
et al. [42]. Further details for reproducibility are provided in the
accompanying code.

In addition to data from Wilderness [24], we also conduct ASR
experiments using other public datasets. Namely, we use Javanese
and Sundanese data from Kjartansson et al. [43], Iban data from Juan
et al. [44], and Indonesian, Hindi, Vietnamese, and Hakha Chin data
from Common Voice Corpus 6.1 [45]. We chose these datasets since
they are all public, their languages are relatively near each other,
and most of these languages are low-resource. Train-validation-test
splits follow those defined in the respective works [43, 44, 45]. We
train our cross-lingual models using the source language training and
validation sets and evaluate them on the target language test sets.
Further details on how we use these datasets are described below.

2https://pypi.org/project/Unidecode

6.2. Motivation for Cross-lingual ASR

Our first ASR experiment compares cross-lingual models with
monolingual and multilingual ones, all evaluated on the Indonesian
and Iban test sets described in Section 6.1. We train each mono-
lingual model using data from the same dataset as the respective
test set. Each cross-lingual model trains on a monolingual dataset
in a language different from the test ones. Here, these monolin-
gual datasets are the Javanese dataset by Kjartansson et al. [43],
LibriSpeech [46], and GigaSpeech [47]. Our two multilingual mod-
els are trained on the 8-language MLS [48] and the 52-language
version of Hou et al. [4, 40]. The training data for all models are
the same as those defined by the original works. The monolingual
and Javanese models are described in Section 6.1, and the rest are
Conformers and ESPnet Transformers detailed in the ESPnet Model
Zoo [49, 40, 41].3 Table 2 contains the CERs of all models on the
two test sets.

By leveraging more training data, multiple models outperform
the monolingual ones, which train on the training sets in the tar-
get datasets. Also, despite using less training data than multilingual
and other cross-lingual approaches, Javanese performs the best on
both test sets. Since Javanese is closer to the target languages than
the other sources, these results suggest the usefulness of leveraging
data from similar languages to build ASR systems for low-resource
languages. The language similarity approaches in Sections 3 and
4 offer ways to automatically identify such similar languages. For
example, Javanese is closer to Indonesian than English for both our
acoustic measures and the majority of the non-acoustic ones. Thus,
we proceed to study the correlation between language similarity and
performance in downstream speech tasks.

Table 2. ASR performance (CER) of monolingual, cross-lingual,
and multilingual models evaluated on Indonesian and Iban test sets
[45, 44]. Row 1 contains the monolingual ASR CERs. For reference,
we provide the amount of training data for each model. More details
are in Section 6.2.

Training Data Hrs. Indo. Iban

Original Set [45, 44] < 10 54.7 75.7
Javanese [43] 300 35.4 50.4
LibriSpeech [46] 1, 000 74.2 56.3
GigaSpeech [47] 10, 000 55.3 59.8
MLS [48] 50, 000 70.5 62.0
OpenLI52 [4] 5, 000 41.8 50.5

6.3. Wilderness Zero-Shot ASR

To compare the language similarity methods in Sections 3 and 4, we
first perform zero-shot ASR using Javanese and Sundanese as our
source languages and Wilderness languages as our targets. Here, we
randomly select ten languages from our 195-language Wilderness
subset and evaluate each language using all of its data.4 Table 3 con-
tains the Spearman correlations between ASR performance (CER)
and different similarity measures, where each number uses a sin-
gle source language and all the targets. Our multimodal-based sim-
ilarity approach performs the best overall, followed by the genetic,
speech-based, and geographic measures. Also, our speech-based ap-
proaches perform about the same. This suggests that cross-entropy

3https://github.com/espnet/espnet model zoo
4Wilderness ASR 6-letter codes are ACCIBS, AGUNVS, BOATBL,

CSOTBL, FRDWBT, JACWBT, NODWBT, POHPOC, STNBSP, and
VUNBST.
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Table 3. Spearman correlations between language similarity mea-
sures and cross-lingual ASR performance (CER), using Javanese
and Sundanese as source languages. More details about Wilderness
(Wild.) and non-Wilderness (Non-W.) experiments are in Sections
6.3 and 6.4.

Javanese Sundanese
Similarity Wild. Non-W. Wild. Non-W.

Syntactic −0.70 0.52 0.12 0.14
Geographic 0.65 0.68 0.29 0.72
Phonological 0.00 0.04 −0.08 0.31
Genetic 0.70 0.81 0.52 0.45
Inventory −0.25 0.43 0.04 0.39
Featural −0.35 0.54 0.12 0.22
Multimodal 0.85 0.43 0.44 0.29
Speech (SC) 0.71 0.36 0.25 0.64
Speech (CE) 0.73 0.64 0.27 0.79

Ensemble 0.93 0.79 0.50 0.75

may be sufficient to train our acoustic measure, potentially since its
training dataset is large and consists of non-noisy labels. Another
benefit of cross-entropy is its low computational costs during train-
ing relative to objectives like contrastive loss. To explore the effects
of ensembling, we combined the best linguistic language similar-
ity measure for each source language with our best acoustic one by
rescaling their language similarities to [0, 1] and then averaging the
rescaled values. This combination performs the best overall, sug-
gesting the usefulness of leveraging both non-acoustic and acoustic
information. We note that both our speech-based approach and the
target languages here use the 195-language Wilderness subset de-
scribed in Section 4.2. Thus, in the next section, we study how well
our similarity measure generalizes to cases where both the source
and target language data are not from Wilderness.

6.4. Non-Wilderness Zero-Shot ASR

To study the generalizability of our speech-based similarity mea-
sure, we perform cross-lingual ASR using source and target lan-
guage data that are both not from Wilderness. Namely, our source
languages are Javanese and Sundanese, and our target languages are
these two plus Iban, Indonesian, Hindi, Vietnamese, and Hakha Chin
[43, 44, 45]. Section 6.1 provides more information about these
data. Table 3 contains the Spearman correlations between ASR per-
formance (CER) and different language similarity measures, where
each number uses a single source language and all the targets. The
cross-entropy speech-based approach performs the best overall, fol-
lowed by the geographic, genetic, and SupCon speech-based mea-
sures. These approaches also performed well in the Wilderness ASR
task discussed in Section 6.3. Moreover, ensembling in the same
manner as that task also yields the highest average correlation, sug-
gesting that these trends may hold even in non-Wilderness data set-
tings.

6.5. ASR with Fine-tuning

We also explore the performance of our similarity measures with
fine-tuned ASR models. For each source-target pair in our zero-
shot experiments above, we fine-tuned the ASR model on a ran-
dom ten-minute subset of the target language dataset that is disjoint
from the evaluation data. We again observe that the speech-based,
multimodal-based, geographic, and genetic measures perform the
best, as well as the ensemble having the highest mean correlation.

Table 4. Spearman correlations between language similarity mea-
sures and fine-tuned cross-lingual ASR performance (CER), using
Javanese and Sundanese as source languages. More details are in
Section 6.5.

Javanese Sundanese
Similarity Wild. Non-W. Wild. Non-W.

Syntactic −0.45 0.48 0.26 −0.04
Geographic 0.77 0.42 0.65 0.72
Phonological −0.53 0.34 −0.17 0.11
Genetic 0.66 0.58 0.65 0.34
Inventory −0.60 0.21 −0.07 0.29
Featural −0.67 0.42 −0.32 0.04
Multimodal 0.93 0.64 0.77 0.18
Speech (SC) 0.84 0.50 0.54 0.61
Speech (CE) 0.84 0.43 0.43 0.75

Ensemble 0.90 0.64 0.77 0.71

7. SPEECH SYNTHESIS

7.1. TTS Task

We also analyze our similarity measures in cross-lingual text-to-
speech (TTS) tasks. Namely, we train monolingual TTS models on
a set on source languages and evaluate them on a set of target lan-
guages. Thus, experiments using source languages different from
target ones are zero-shot. Section 7.2 describes our experiments
using a statistical model with Wilderness data, and Section 7.3 de-
scribes our experiments using a neural model with non-Wilderness
data. Similarly to our ASR experiments in Section 6, we roman-
ize text using Unidecode, which helps make zero-shot TTS possible.
Details on evaluation metrics and the specific sets of source-target
language pairs used are described below. As mentioned in Section
2.1, we focus here on how to choose the source languages rather
than how to improve the subsequent steps in the cross-lingual trans-
fer procedure.

Table 5. Spearman correlations between language similarity meth-
ods and TTS performance, measured with MCD for the Wilderness
experiment and MOS for the non-Wilderness one. A more positive
correlation with MCD is better, and a more negative correlation with
MOS is better. More details are in Sections 7.2 and 7.3.

Sim. vs. MCD ↑ Sim. vs. MOS ↓
Similarity Hindi Telugu

Syntactic 0.32 −0.76 −0.30
Geographic 0.27 −0.82 −0.50
Phonological −0.03 −0.65 −0.95
Genetic 0.40 −0.80 −0.53
Inventory 0.12 −0.67 −0.70
Featural 0.33 −0.65 −0.71
Multimodal 0.50 −0.87 −1.0
Speech (SC) 0.53 −0.87 −1.0
Speech (CE) 0.47 −0.87 −0.90

Ensemble 0.52 −0.97 −1.0

7.2. Wilderness Statistical Speech Synthesis

We first check the suitability of our similarity measures for cross-
lingual TTS with Wilderness data [24]. Namely, we randomly select
15 languages from our 195-language Wilderness subset described
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Table 6. MOS ratings of cross-lingual Indic TTS models, where Hindi and Telugu are our target languages. We also provide the distances
calculated by our top six language similarity measures from Table 5. More details are in Section 7.3.

Hindi Telugu
Source MOS SC Mul. CE Pho. Inv. Fea. MOS SC Mul. CE Pho. Inv. Fea.

Hindi 4.8± 0.4 0.00 0.00 0.00 0.00 0.00 0.00 3.4± 0.9 0.43 0.57 0.33 0.30 0.31 0.40
Kannada 2.8± 1.1 0.05 0.10 0.07 0.30 0.44 0.40 4.2± 0.7 0.42 0.56 0.28 0.00 0.36 0.40
Marathi 2.8± 1.5 0.12 0.11 0.14 0.59 0.40 0.50 2.9± 0.9 0.55 0.65 0.33 0.64 0.36 0.40
Tamil 1.5± 0.5 0.15 0.24 0.23 0.59 0.47 0.50 1.9± 0.3 0.58 0.83 0.41 0.64 0.43 0.40
Telugu 2.1± 1.2 0.43 0.57 0.33 0.30 0.31 0.40 4.8± 0.4 0.00 0.00 0.00 0.00 0.00 0.00

in Section 4.2 and use all 15 as both sources and targets, yielding
225 source-target language pairs.5 We found that the data in each
language was insufficient to build a neural TTS model [1], and thus
instead used the random forest Clustergen speech synthesizer as our
TTS model [28, 29]. Our training steps are the same as those in
the Wilderness paper, and we evaluate models on the first chapter
texts in each target language [24]. As discussed in Section 4.2, we
measure TTS performance objectively using Mel-cepstral distortion
(MCD).

Table 5 shows the Spearman correlations between TTS perfor-
mance (MCD) and the language similarity measures. For each lan-
guage similarity approach, we calculate the mean of 15 Spearman
correlations, each using one source and all the targets as in Section 6.
Our acoustic approaches described in Section 4.1 perform the best,
followed by the genetic distance measure. We note that the trends
observed here are similar to those from our ASR tasks in Section 6.

7.3. Non-Wilderness Neural Speech Synthesis

Non-Wilderness TTS Data: In Section 7.2 above, both our speech-
based approach and the TTS data use our 195-language Wilderness
subset described in Section 4.2. Thus, we also study how well our
similarity measure generalizes to cases where the TTS data are not
from Wilderness. Namely, we train five monolingual neural TTS
models on different Indic source languages and evaluate them on two
Indic target languages. Our source languages are Hindi, Kannada,
Marathi, Tamil, and Telugu, and our target languages are Hindi and
Telugu, all from the CMU INDIC corpus [50]. For each language,
we sort the utterances by file name and let the last 100 be the test
set, the 100 before that be the validation set, and the remaining be
the training set.
Non-Wilderness TTS Model: Our models all use the same Transformer-
TTS architecture, initialized using pre-trained weights from an En-
glish TTS model [51, 52]. Namely, we use 4 attention heads, 6
layers and 1536 units in both our encoder and decoder, and an opti-
mization procedure similar to that of Vaswani et al. [42]. We train
models using the train and validation sets of source languages and
evaluate synthesized texts in the target languages’ test sets. TTS
samples and further details for reproducibility are provided in the
accompanying GitHub.
Non-Wilderness TTS Evaluation: For each target language, we
measure TTS performance using a MOS naturalness test performed
by four listeners who are native speakers of that language. Namely,
we ask evaluators to rate from 1 to 5 how much each sample sounds
like natural speech in the target language, where 5 is the highest. Our
MOS evaluation data contains two samples from each source-target
pair, randomly chosen from the synthesized test set samples. Listen-

5Wilderness TTS 6-letter codes are APRWBT, JACWBT, KEKSBG,
KJBSBG, MAKLAI, MOPWBT, NASPNG, NPLWYI, POHPOC, QEJLLB,
QULSBB, QWHLLB, TZBSBM, TZCSBM, and VUNBST.

ers rate all the samples that have their target languages, yielding 40
total MOS ratings per target.

Table 6 summarizes these MOS test results, including the dis-
tances calculated by our top six language similarity measures from
Table 3. Evaluators rated TTS samples with the same source and tar-
get the highest, as expected. Our proposed speech-based language
similarity approach correctly identified the top two similar but dif-
ferent source languages for both targets. We compare this approach
with others below.
Non-Wilderness TTS Correlations: Table 5 contains the Spearman
correlations between the MOS values and different similarity mea-
sures, where each number uses a single target language and all the
sources. Since the first geographic similarity measure from Section
3.4 considers these languages to be the same location, we use the
second one instead. We observe that our acoustic approaches yield
the strongest correlations, as with our Wilderness TTS experiment
in Section 7.2. Compared to our previous tasks, the ensemble again
performs the best overall, but the genetic and geographic measures
did not rank as high. This further suggests that language similarity
measures grounded in speech are suitable for acoustic cross-lingual
transfer.

8. CONCLUSION AND FUTURE DIRECTIONS

In this work, we study how to choose source languages for acous-
tic cross-lingual transfer tasks through exploring eight different lan-
guage similarity measures. Our proposed acoustic approaches often
outperform other techniques in downstream tasks like speech recog-
nition and text-to-speech tasks. This same approach can also be used
to classify the families of unseen languages. Moving forward, we
plan to train our acoustic approaches on all of the Wilderness data in
order to strengthen their performance on languages outside our 195-
language subset [24]. Our work can also be extended to a range of
new acoustic cross-lingual transfer directions. These include lever-
aging language similarity in tasks like speech translation [53] and
voice conversion [54], as well as integrating cross-domain [6, 55]
and multimodal learning [56, 57] insights into our methods.
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