
ASSIGNING PHRASE BREAKS FROM PART-OF-SPEECH SEQUENCES

Alan W Black and Paul Taylor

Centre for Speech Technology Research, University of Edinburgh,
80, South Bridge, Edinburgh, U.K. EH1 1HN

http://www.cstr.ed.ac.uk
email: awb@cstr.ed.ac.uk, Paul.Taylor@ed.ac.uk

1. BACKGROUND

One of the important stages in the process of turning un-
marked text into speech is the assignment of appropriate
phrase break boundaries. Phrase break boundaries are
important to later modules including accent assignment,
duration control and pause insertion.

A number of different algorithms have been proposed
for such a task, ranging from the simple to the com-
plex. These different algorithms require different in-
formation such as part of speech tags, syntax and even
semantic understanding of the text. Obviously these re-
quirements come at differing costs and it is important
to trade off difficulty in finding particular input features
versus accuracy of the model.

The simplest models are deterministic rules. A
model simply inserting phrase breaks after punctuation
is rarely wrong in assignment, but massively under-
predicts as it will allow overly long phrases when the
text contains no punctuation. More complex rule-
driven models such as [1] involve much more detailed
rules and require the input text to be parsed. On the
other hand statistically based models offer the advan-
tages of automatic training which make movement to
a new domain or language much easier. Simple direct
CART models using features such as punctuation, part
of speech, accent positions etc. can produce reason-
able results [5]. Other more complex stochastic meth-
ods optimising assignment over whole utterances (e.g.
[8]) have also been developed.

An important restriction that sometimes is ignored in
these algorithms is that the inputs to the phrase break as-
signment algorithm have to be available at phrase break
assignment time, and themselves be predictable from
raw text. For example, some algorithms require accent
assignment information but we believe accent assign-
ment can only take place after prosodic boundaries are
identified. A second example is the requirement of syn-
tactic parsing of the input without providing a syntac-
tic parser to achieve this. Thus we have ensured that
both our phrase break assignment algorithm is properly
placed within a full text to speech system and that the
prediction of any required inputs is included in our tests.

A second requirement for our algorithm was intro-

duced by our observation that many phrase break as-
signment algorithms attempt to estimate the probability
of a break at some point based only on local informa-
tion. However, what may locally appear as a reasonable
position for a break may in fact be less suitable than the
position after the next word. That is, assignment should
not be locally optimised but globally optimised over the
whole utterance. For example in the sentence

I wanted to go for a drive in the country.

a potential good place for assignment may locally ap-
pear to be between “drive” and “in” based on part of
speech information. However in the sentence

I wanted to go to a drive in.

such a position is unsuitable. Another example is a uni-
form list of nouns. Breaks between nouns are unusual
but given a long list of nouns (e.g. the numbers 1 to 10)
it then becomes reasonable to insert a phrase break.

Thus we wish our model to have reasonable input re-
quirements, use predicted values for the inputs as part
of the test and consider global optimisation of phrase
break assignment over the whole utterance.

2. BASIC MODEL

We formally define the problem as follows. Between
every pair of words is a juncture, which can take one of
a number of juncture types. In the simplest case the set
of juncture types consists of break and non-break (the
only case discussed here), but in principle any number
is possible. The task of the algorithm is to decide the
best sequence of juncture types for each sentence.

Our algorithm uses a Markov model where each state
represents one of the juncture types and emits probabil-
ities of part-of-speech (POS) sequences occurring. We
usually take two words before and one after the juncture
in questions to represent the POS sequence:

���������
	��
������������	�� �����

where
�

is the juncture in question and
� �

is the POS tag
immediately before it.

In the simplest case there are only two states in
the model, one for break and the other for non-break.



The transition probabilities are determined by the prior
probability of each juncture type occurring. Bayes’ rule
is used to combine the emission probability of each state
(
� � � � � �

) with the transition probability (
��� ���

), to find
the probability we are interested in,

��� � � � �
. This case

represents local information only, i.e. the basic proba-
bility of each juncture type at each point. To take more
context into account we use an n-gram of juncture se-
quences. The ngram gives the probability of a juncture
type given the previous � junctures, i.e.

��� � � � � ��� 	 � � ����� ��������� � ���	� ��	 �

For an ngram of size � , a Markov model is built with
 � �
	
nodes, each corresponding to a particular unique

sequence of juncture types. The transition probabilities
are taken from the ngram and give the likelihood of par-
ticular sequences occurring. All states of a particular
juncture type are tied, i.e. the emission probabilities of
all break states are equal regardless of position in the
network.

Training the network is straightforward: the emission
probabilities are calculated by collecting all the exam-
ples of breaks in the training data. For all the possible
unique POS sequences,

�
, counts are made from the

data of how many times each occurs. These are con-
verted to the probability

��� � � �
������� �
by dividing by the

total number of breaks.
��� � � ����������������� �

is calculated
the same way. The ngrams are calculated by counting
the number of times each unique sequence of length �
occurs in the training data.

At run time, this network is efficiently searched using
the Viterbi algorithm to find the most likely sequence of
junctures given the input POS tags for a sentence.

3. PART OF SPEECH TAGGING

The POS tags for our training and test data are de-
termined using a fully automatic POS tagger. Part of
speech tagging has become a quite mature field and we
simply follow the known technology. We use a stan-
dard HMM-based tagger (as in [4]) which estimates the
probability of a part of speech tag sequence given a se-
quence of words. For training our POS tagger we use
the WSJ corpus in the Penn Treebank [7], which con-
sists of around one million words. Their basic tagset
(after some simple reduction) consists of 37 tags. We
treat each punctuation symbol as a word with the tag
punc. Using a tri-gram model we achieved 94.03% ac-
curacy on a held out test set. Given our experiments
in tagset size described below, we also investigated the
accuracy of POS taggers using a reduced tagset. We dis-
covered that reducing the tagset, then building a model
gives better results (96.18%) than using the full 37
tags. Even better results were achieved by using the full
tagset to tag the data and then reducing to the smaller
set (97.04%). Hence we use a tri-gram model built us-
ing the full 37 tagset and reduce it as required.

4. TRAINING DATA

The MARSEC database of spoken British English [9]
is used for training and testing. It consists of stories
recorded from BBC Radio 4 including extracts from
talk shows, news and weather reports, and continuity
announcements. The corpus is labelled with part of
speech tags and two levels of break. For the following
tests we split the database into a training set of 30 sto-
ries consisting of 31,707 words containing 6,346 breaks
and a test set of 10 stories consisting of 7,662 words and
1,404 breaks.

Although this database has its own tagset, we did not
use it in our tests. The MARSEC tagset is different from
the WSJ Penn Treebank one and the mapping appears
non-trivial. Also there is not enough data in the MAR-
SEC database itself to train a POS tagger. The MAR-
SEC data was therefore re-tagged using our tagger with
the WSJ tagset.

5. PERFORMANCE CRITERIA

Unfortunately, it is not easily to judge the success of a
phrase break assignment algorithm. As there are typ-
ically more non-breaks than breaks (in our data about
4:1), failure to predict a break can be judged better than
over-predicting a break if a simple percentage overall
correct score is used. Counting just the correct breaks
is useful but only if some measure of over-prediction is
included (if you massively over predict, the percentage
breaks correct score will be high).

Another more serious problem is that there can be
different but valid ways for a speaker to phrase an ut-
terance. As the assigned results are compared against
actual examples they may differ in acceptable ways, as
well as unacceptable ways, and there is no easy way to
find out the type of error. Ostendorf and Veilleux [8]
deal with this problem by having five different speakers
read each test utterance. Assignment is considered cor-
rect if the whole utterance matches any of the five sam-
ples. Unfortunately, we did not have the resources to re-
record our database examples and hence could only do a
direct match to one example. However, the results in [8]
indicate that the best results when comparing with a sin-
gle speaker are likely to still be the best when compared
with multiple examples, even though some assignments
are judged incorrect by the measurement.

Here we present results with three figures, percent-
age breaks correct, overall (breaks and non-breaks) cor-
rect and percentage non-breaks incorrect (a measure of
break over prediction).

6. EXPERIMENTS AND RESULTS

This section reports results from some simple algo-
rithms and goes on to show experiments on our model,
investigating how variations in POS tagset size, ngram
size and smoothing affect performance.

6.1. Some simple algorithms
As with all models, there are trade-offs between com-
plexity, both in time and space, and ease of implemen-



tation. The table below gives results from some simple
algorithms tested on our data. The first inserts a phrase
break deterministically after all punctuation while the
second inserts a phrase break after all content words that
are succeeded by a function word (e.g. as suggested by
[10]).

Model B correct Overall NB incorrect
punc 54.27% 90.76% 0.85%
c/f 84.40% 71.29% 31.73%

We can see that the punctuation-model conservatively
assigns breaks at positions that are almost always cor-
rect, but misses many others. The content/function
model gets many more correct but at the cost of mas-
sive over insertion.

Within our basic model there are a number variables
to investigate, including POS tagset size, size of POS
window for POS sequence model, and size of n-gram
for phrase break model.

6.2. Tagset size
The full tagset of 37 is too large to esimate all mod-
els reliably, so we investigated using smaller tagsets.
To find the optimal tagset size we tested a progression
of tagset sizes starting from 37 down to 2. We used
a greedy algorithm finding the best tag combination at
each stage. We found that a tagset size of 23 (formed
by collapsing the sub-categories of the four major cat-
egories in the original) gave the best results. The fol-
lowing results show the results comparing the original,
the 23 size set and sets of size 3 and 2. �����



only

distinguishes words from punctuation, and ����� distin-
guishes content words, function words and punctuation.
A ngram of length 6 was used throughout (see below).

Model B correct Overall NB incorrect
��� ��� 74.22% 90.26% 6.04
���
�
� 79.48% 91.60% 5.57

��� � 68.30% 89.36% 5.91
���
�

58.55% 88.01% 5.38

In general our experiments showed that the optimal
tagset size is between 15 and 25. Our standard tagset
of 23 could be reduced slightly with a small improve-
ment by combining rare tags (e.g. fw, foreign word)
into the major categories.

6.3. Ngram model size
Next we investigated various ngram models, given the
likelihood of all sequences of break and non-break up
to length N. The following table shows the effect on
performance of varying � .

n-gram B correct Overall NB incorrect
1 68.38% 91.46% 3.23
2 77.42% 91.18% 5.65
3 78.13% 90.97% 6.08
4 79.63% 91.34% 5.96
5 79.49% 91.34% 5.93
6 79.27% 91.60% 5.57
7 78.49% 91.53% 5.47
8 78.42% 91.44% 5.57

It appears that from these experiments, the value of � is
not critical so long as it is above



, i.e. so long a some

context is used. We used a variety of standard ngram
smoothing techniques but none had any significant ef-
fect on performance.

6.4. Smoothing the models
Because our training does not contain all possible com-
binations, our models are especially poor when there
are only zero or one occurrences of a POS sequence. To
combat this we experimented with smoothing the POS
sequence frequencies. We used two forms of smooth-
ing. First Good-Turing smoothing [3] to ensure there
were no contexts with zero occurrences, and then a
form of back-off smoothing [6], i.e. using progressively
smaller contexts to estimate the frequency of a context
when only a few actually existed in the training set.

The results of smoothing slightly improved our re-
sults. Again given tagset 23, and a 6-gram, and POS
sequence model of two before and one following gives
results of:

Model B correct Overall NB incorrect
unsmoothed 77.07% 91.49% 5.27
smoothed 79.27% 91.60% 5.57

7. COMPARISONS WITH OTHERS

As a final test we applied our best model to the test set
given in [8] and got better results than they got with
their own model. Our model gives 72.72% Bs correct,
4.27% NB incorrect, while their best gives 70% Bs cor-
rect, with 5% NB incorrect. To be fair we cannot claim
that this improvement is due solely to our model as our
model was trained on a significantly larger training set,
but it does show that our model is not specific to our
particular test set.

8. DISCUSSION

We feel our model is adequate as a phrase break assign-
ment algorithm as it is simple, performs well and does
not have unrealistic input requirements. Both the model
and the POS tagger have been fully implemented and
are used as the standard phrase break assignment model
in the distributed version of the Festival Speech Synthe-
sis System [2].

Although we feel we have thoroughly tested this
model and investigated the varying of its basic parame-
ters to find the (near) optimum values, we feel that there
is ultimate limit to how well such a model can perform
with only part of speech information. It has been shown
that some decisions about phrase break assignment can
only reasonably be made with additional syntactic in-
formation. For example, identification of the use of
prepositions as verb particles is an identifiable mistake
in our (and other’s) algorithms. Also the verb balancing
rule as described in [1] is a valid phenomena which our
current algorithm cannot capture without the addition of
some form of syntactic information. There is of course
a trade-off between time to run a reliable parser and the
possible improvement in results, but we still feel such



investigation is worthwhile, if only to find out the ben-
efits it would give in improving on our current results.

9. ACKNOWLEDGEMENTS

We gratefully acknowledge the support of the UK En-
gineering and Physical Science Research Council (EP-
SRC grant GR/K54229).

REFERENCES

[1] J. Bachenko and E. Fitzpatrick. A computational
grammar of discourse-neutral prosodic phrasing in
English. Computational Linguistics, 16(3):155–
170, 1990.

[2] A. W. Black and P. Taylor. The Festival Speech
Synthesis System: system documentation. Tech-
nical Report HCRC/TR-83, Human Commun-
ciation Research Centre, University of Edin-
burgh, Scotland, UK, January 1997. Avaliable at
http://www.cstr.ed.ac.uk/projects/festival.html.

[3] K. Church and W. Gale. A comparison of the en-
hanced Good-Turing and deleted estimation meth-
ods of estimating probabilities of English bigrams.
Computer Speech and Language, 5:19–54, 1991.

[4] S. DeRose. Gramatical category disambiguation
by statistical optimization. Computational Lin-
guistics, 14:31–39, 1988.

[5] J. Hirschberg and P. Prieto. Training intonation
phrase rules automatically for English and Span-
ish text-to-speech. In Proc. ESCA Workshop on
Speech Synthesis, pages 159–163, Mohonk, NY.,
1994.

[6] S. Katz. Estimation probabilities from sparse data
for the language model component of a speech
recognizer. IEEE Transactions on Acoustics,
Speech and Signal Processing, ASSP-35:400–
401, 1987.

[7] M. Marcus, B. Santorini, and M. Marcinkiewicz.
Building a large annotated corpus of english:
the penn treebank. Computational Linguistics,
19:313–330, 1993.

[8] M. Ostendorf and N. Veilleux. A hierarchi-
cal stochastic model for automatic prediction of
prosodic boundary location. Computational Lin-
guistics, 20(1):27–55, 1994.

[9] P. Roach, G. Knowles, T. Varadi, and S. Arnfield.
Marsec: A machine-readable spoken english cor-
pus. Journal of the International Phonetic Associ-
ation, 23(1):47–53, 1993.

[10] K. Silverman. The structure and processing of fun-
damental frequency contours. PhD thesis, Univer-
sity of Cambridge, 1987.


