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ABSTRACT

In general text-to-speech systems, it is not possible to guarantee that
a lexicon will contain all words found in a text, therefore some sys-
tem for predicting pronunciation from the word itself is necessary.

Here we present a general framework for building letter to sound
(LTS) rules from a word list in a language. The technique can be
fully automatic, though a small amount of hand seeding can give
better results. We have applied this technique to English (UK and
US), French and German. The generated models achieve, 75%,
58%, 93% and 89%, respectively, words correct for held out data
from the word lists.

To test our models on more typical data we also analyzed general
text, to find which words do not appear in our lexicon. These un-
known words were used as a more realistic test corpus for our mod-
els. We also discuss the distribution and type of such unknown
words.

1. INTRODUCTION

Given that lexicons are closed by their nature and that the input text
for general text to speech (TTS) systems is open, there will always
be words in the text which are not contained within even the largest
lexicon. Even when a large lexicon can be constructed to cover the
whole vocabulary it would be useful to find a principled method to
reduce the size of the lexicon (which we discuss more fully in [11]).

In many languages the orthographic system has some relationship to
the pronunciation, depending on the language it may be trivial (such
as in languages like Spanish) or relatively difficult (like English), or
harder (such as in Japanese with full kanji). Humans can (often)
pronounce words reasonably even when they have never seen them
before. It is that ability we wish to capture automatically in an LTS
rule system.

Here we present a method for taking large lists of words and pro-
nunciations and building generalized rule systems that not only pro-
duce reasonable pronunciations for unseen words but also allow us
to remove the regular examples from the list so that much smaller
lexicons are adequate for the same coverage.

2. LETTER-PHONE ALIGNMENT

In order to make the building of models easier we wish to have
a standardized alignment between the letters in an entry and the
phones in its pronunciation.

The number of letters in a word and the number of phones in its pro-
nunciation in general are not a one to one match. For the languages
we have investigated, letters can map to zero, one, two or very ex-
ceptionally three phones. Even when there are the same number
of letters and phones the “correct” alignment may not be the most
simple. In general there seems to be less phones than letters.

The cases where a letter goes to more than one phone are fairly
restricted (e.g. x to /k s/, o to /w uh/ as in one). Almost all
letters can in some context correspond to no phone, which we will
call epsilon .

A more complex model involving multi-letter clusters to zero or
more phones is also possible though this introduces complexities
in the model learning, and alignment process that we preferred to
avoid.

Ideally we would like a purely automatic method for finding the best
single letter alignments, but so far we have achieved better results
from a hand-seeded method.

The hand-seeded method requires the explicit listing of which
phones (or multi-phones) each letter in the alphabet may correspond
to, irrespective of context. This is relatively easy to do and can be
done as an interactive process over the training set as new corre-
spondences are added to the allowables list. For example the letter
“c” may be realized as any one of

epsilon k ch s sh t-s

Vowel letters have typically a much longer list of potential phones.

The hand-seeded algorithm takes the list of allowables and finds
all possible alignments between each entry’s letters and phones. A
count is taken for which correspondences are used for each align-
ment and a table of probabilities of a phone (epsilon or multi-phone)
given a letter is estimated, again irrespective of context. Then the



entries are re-aligned and each possible alignment is scored with
the generated probabilities. The best alignment is selected. The
alignments generated by this algorithm are close to what would be
produced by hand and it is very rare to find alignments that would
be considered unacceptable.

The building of the allowables table is simple and quick though does
require some skill, however it can be done even without an in-depth
knowledge of the language the lexicon is for. A few words do not
produce alignments (which would require new entries in the allow-
ables table) which typically represent classes for which the relation-
ship between the letter form and the phones is too opaque. These
are typically abbreviations, such us “dept” as /d ih p aa r t m ah n
t/; words with very unusual pronunciation e.g. “lieutenant” (British
English); Foreign words (e.g. “Lvov”) and what could be consid-
ered mistakes in the lexicon e.g. “cannibalistic” with two /l/ phones.
Typically the number of entries that failed to have an alignment are
well under 1%.

The second alignment is an application of the expectation maxi-
mization (EM) algorithm [7] which we call the “epsilon scattering
method”. The idea is to estimate the probabilities for one letter �
to match with one phoneme � , and to use DTW to introduce ep-
silons at positions maximizing the probability of the word’s align-
ment path. Once the dictionary is aligned, the association probabil-
ities can be computed again, and so on until convergence. e.g. five
iterations are necessary on the CMU lexicon

Algorithm:

/* initialize prob(L,P) */
1 foreach word in training_set

count with DTW all possible L/P
association for all possible epsilon
positions in the phonetic
transcription

/* EM loop */
2 foreach word in training_set

compute new_p(L,P) on alignment_path
3 if (prob != new_p) goto 2

This differs from [6] in that the probabilities are distributed equally
(’scattered’) among each of the possible alternatives, rather than as-
signing an arbitrary weight to each shift.

When we build models from the results of alignment using each of
the above algorithms on the OALD we get the follow results

Method Letters Words
Epsilon scattering 90.69% 63.97%
Hand-seeded 93.97% 78.13%

“Letters correct” is the number of letter-phone pairs which are cor-
rectly predicted with respect to the test set. “Words correct” are the
number of complete words where the complete phone string pre-
dicted (minus epsilons, but including stress markers) is correct with
respect to the test set.

So we can see clearly that the hand-seeded method is better. How-
ever we still feel that the hand-seeded is a simple task and feel that
we have not yet fully investigated method to improve the automatic
method to achieve the level of the hand-seeded method.

3. BUILDING RULES

Once an alignment is found we can train a phone prediction model.
In our work we have used decision tree technology [3] as we feel
this is simple and produces compact models. We also feel that other
learning techniques would not produce significantly better results.

For each letter in the alphabet of the language we trained a CART
tree given the letter context (three either side) to predict epsilon,
phone or double phone from the aligned data. One can build a single
tree without any significant difference in the accuracy but building
separate trees is faster and allows for parallelization.

We split the data into train and test data by removing every tenth
word from the lexicon. This means that the data set contains only
one occurrence of each word and hence word frequency is ignored.
Another factor is that as these lexicons usually contain many mor-
phological variations, it is likely there will be a similar word or
words in the training set.

We removed short words (under four letters) from the training and
test sets as these words are typically function words which in gen-
eral may have non-standard pronunciations, or are abbreviations
(e.g. “aaa” as /t r ih p ah l ey/) which have little or no relationship
with their pronunciation. Also, where part of speech information
was available, we removed all non-content words. The reasoning is
that unknown words are typically not the most common words and
in general unknown words will have more standard pronunciations
rather than idiosyncratic ones.

We have so far tried this technique on four lexicons, Oxford
Advanced Learners Dictionary of Contemporary English (OALD)
(British English) [10], CMUDICT (US English) [4], BRULEX
(French) [5] and the German Celex Lexicon [1].

Correct
Lexicon Letters Words
OALD 95.80% 74.56%
CMUDICT 91.99% 57.80%
BRULEX 99.00% 93.03%
DE-CELEX 98.79% 89.38%

CMUDICT, although also English, does not get as good results
compared with OALD as it contains many more “foreign” words,
particularly names, which are much harder to predict without any
higher level information (such as ethnic origin).

The above results are the best results achieved after testing various
parameters in the CART building process. Particularly we varied
the “stop” value which specifies the minimum number of examples
necessary in the training set before a question is hypothesized to
distinguish the group. Normally the smaller the stop value the more



over-trained the models may become. However the following table
shows the results for OALD, tested on held out data, while changing
the stop value

Correct
Stop Letters Words Size
8 92.89% 59.63% 9884
6 93.41% 61.65% 12782
5 93.70% 63.15% 14968
4 94.06% 65.17% 17948
3 94.36% 67.19% 22912
2 94.86% 69.36% 30368
1 95.80% 74.56% 39500

As the stop value is reduced, the size of the model increases. The
model size is the total number of questions and leaf nodes in the
generated CART trees. However it appears that more finely tuned
data is always better, such that even with stop value 1 the model is
not over-trained.

Note that comparisons with other LTS training techniques are not
that easy. As when the train/test sets differ, and when the domains
differ there can be no direct comparisons. For example if we remove
proper names from the OALD and train and test on the remainder
our word correct score goes up to 80%. However the above results
compare favorably with other systems using similar data sets (e.g.
[8]).

4. STRESS ASSIGNMENT

The importance, and realization of lexical stress varies between lan-
guages but in order to produce a reasonable pronunciation from a
string of letters it is often more than simply producing a string of
phones, lexical stress markings are also required. In English lexical
stress may be different depending on syntactic class, it may even
move with some morphological derivations. Therefore predicting
lexical stress for each vowel in the predicted string cannot in general
be done from the letter context alone. However results in [12] sug-
gest that combining phone and stress prediction in a single model
give better results.

We tested this on the OALD data set. We first built letter to phone
models where lexical stressing information was removed from the
phones and we trained a separate stress prediction model using the
same test set using features such as syllable position in word, vowel
length, vowel height, number of syllables from end of word, and
part of speech. On held out data from the OALD the per syllable
results are

Actual Predicted
unstressed stressed %

unstressed 7390 378 95.1%
stressed 512 8207 94.1%

total correct 15597/16487 (94.6%)

This model was combined with the output of the letter to phone
model (LTP+S).

The second model introduced two types of vowel phone, stressed
and unstressed versions. The standard LTS model building tech-
nique was applied so the CART trees themselves produced phone
and stressing information directly (LTPS).

LTP+S LTPS
LNS 96.36% 96.27%
Letter — 95.80%
WNS 76.92% 74.69%
Word 63.68% 74.56%

(LNS = letter/phone ignoring stress, WNS = word ignoring stress)

A score for “letters correct” for the separate model is not available
as the stress prediction model does not preserve alignment.

Thus it can be clearly seen that although higher values are possi-
ble per word when ignoring stress, a separated model applied after-
wards gives significantly lower results than if the phones and stress
levels are predicted by a single model.

We also discovered that including part of speech information in
the phone prediction models themselves improved the accuracy of
the model. Without POS information the combined model gives
95.32% letter correct and 71.28% word correct. Thus part of speech
obviously helps and is readily available in a TTS system with a stan-
dard POS tagger even for unknown words.

Ultimately stress cannot be predicted on local context alone as there
are a number of example in English where local context is insuffi-
cient (cf. photograph/photography). Ideally morphological decom-
position is required to do such prediction but we have not yet inves-
tigated this area.

5. DOES IT REALLY WORK

To find out a more realistic assessment of these models’ treatment
of unknown words we processed the first section of the WSJ Penn
Treebank [9]. This consists of a total of 39923 words in news text
style. Using our standard OALD lexicon we find that a total of 1775
words (4.6%) are not found in the lexicon, 943 of which are unique.
Of those unknown words we find the following distribution

Occurs %
names 1360 76.6
unknown 351 19.8
American spelling 57 3.2
typos 7 0.4

American spelling of words is distinguished here (e.g. “honor”,
“center”) as it is so systematic. As OALD is a British English
Lexicon it doesn’t contain such spellings, though for TTS use it
obviously should. As WSJ is more carefully published than other
texts such as email, the issue of typos is almost negligible. We have
done similar analysis of unknown words from Time magazine arti-
cles finding a very similar distribution and ratio of unknowns, thus
we feel the above is typical of news story type text.



We listened to each of the 1775 words as pronounced by a num-
ber of the models discussed above. A yes/no decision was made
about acceptability. Note that a number these words have multiple
acceptable pronunciations. If any of those were predicted they were
deemed acceptable. For example the pronunciations of “Reagan” as
/r ey g ah n/ and as /r iy g ah n/ were both considered acceptable.

The best results, shown above for OALD, were obtained by build-
ing the deepest possible trees. But when those models were applied
to these unknown words the results showed that although the mod-
els were not over-trained for the unseen test set extracted from the
lexicon itself, they were for these unknown words. The following
shows the results after varying the stop value for CART building.

Lexicon Unknown
Stop Test set Test set size
1 74.56% 62.14% 39500
4 65.17% 67.66% 17948
5 63.15% 70.65% 14968
6 61.65% 67.49% 12782

Thus the best model for unknown words is not the best model for the
held out lexical entries. What is more, the best model for unknown
words is less than 40% the size of the best model for the lexical
test set. These figures reflect both the fact that the held out data in
the lexical test set (every tenth entry) is often just a morphological
variation of the entries around it, and secondly the lexical test set
does not take into account word frequency of unknown words.

Looking at those words that are pronounced wrongly we find some
mistakes are still recognizable (e.g. Chrysler as /k r ih s l ah er/) but
many are unacceptable and unrecognizable showing there is still
work to be done. Further analysis of these words shows

Occurs %
names 413 79
unknown 94 18
American spelling 7 0
typos 2 0

One would expect proper names to be the hardest to pronounce (es-
pecially those of foreign origin) but although it appears they are
slightly harder our model seems to do as well on them as other non-
names.

Further analysis of the types of names that are still unpronounce-
able shows a larger proportion of non-anglo-saxon origin than in
those that are correctly pronounced. As many of the languages these
names originate from often have a more standardized pronunciation
than English (e.g. Polish, Italian, Japanese (in its romanized form)),
knowing the origin of an unknown word may allow more specific
rules to be applied, but we have not yet investigated this area.

6. SUMMARY

We have presented automatic (and near automatic) processes for
building letter to sound rules systems from lists of entries and their

pronunciations. We have successfully built LTS models for four dif-
ferent languages and feel confident this process will work for many
other languages. As well as quoting results from held out data from
the words lists used for training, we also present results of applying
one model to unknown words from news text.

This method is fully implemented and documented
and distributed with the Festival Speech Synthesis Sys-
tem [2], or a PERL implementation is available from
http://www.cs.cmu.edu/ lenzo/t2p.
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