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Abstract 

For many languages in the world, not enough (annotated) 

speech data is available to train an ASR system. We here 

propose a new three-step method to build an ASR system for 

such a low-resource language, and test four measures to 

improve the system’s success. In the first step, we build a phone 

recognition system on a high-resource language. In the second 

step, missing low-resource language acoustic units are created 

through extrapolation from acoustic units present in the high-

resource language. In the third step, iteratively, the adapted 

model is used to create a phone transcription of the low-resource 

language, after which the model is retrained using the resulting 

self-labelled phone sequences to improve the acoustic phone 

units of the low-resource language. Four measures are 

investigated to determine which self-labelled transcriptions are 

‘good enough’ to retrain the adaptation model, and improve the 

quality of the phone speech tokens and subsequent phone 

transcriptions: TTS and decoding accuracy to capture acoustic 

information, a translation retrieval task to capture semantic 

information, and a combination of these three. The results 

showed that in order to train acoustic units using self-labelled 

data, training utterances are preferably needed that capture 

multiple aspects of the speech signal.  

Index Terms: Low-resource language, Automatic speech 

recognition, Adaptation, Linguistic knowledge 

1. Introduction 

Automatic speech recognition technologies require a large 

amount of annotated data for a system to work reasonably well. 

However, for many languages in the world, not enough speech 

data is available, or these lack the annotations needed to train 

an ASR system. In fact, it is estimated that for only about 1% of 

the world languages the minimum amount of data that is needed 

to train an ASR is available [1]. In order to build an ASR system 

for such a low-resource language, one cannot simply use a 

system trained for a different, even if related, language, as 

cross-language ASR typically performs quite poorly [2]. 

Different languages have different phone inventories, and even 

phones transcribed with the same IPA symbol are produced 

slightly differently in different languages [3].  

Recently, different approaches have been proposed to build 

ASR systems for such low-resource languages. One strand of 

research focuses on discovering the linguistic units of the low-

resource language from the raw speech data, while assuming no 

other information about the language is available, and using 

these to build ASR systems (the Zero-resource approach) [4]-

[15]. Another strand of research focuses on building ASR 

systems using speech data from multiple languages, thus trying 

to create universal or cross-linguistic ASR systems [16]-[19]. 

However, most of the world’s languages have been 

investigated by field linguists, meaning that some information 

about the language typically is available. We here propose a 

method to adapt an ASR system for a high-resource language 

using linguistic information of the low-resource language to 

build an ASR system for that low-resource language. In 

addition to some unlabelled speech data (in line with the Zero-

resource approach), we assume that a ‘description’ of the 

phone(me) inventory of the language is available, e.g., obtained 

from a field linguist. A second assumption is that enough 

annotated speech material of a related high-resource language 

is available to build an ASR system for that related high-

resource language. Note, however, that the here-proposed 

system does not rely on having a high-resource related 

language; in principle, the approach presented here could work 

for any language pair. Experiments in cross-language ASR 

adaptation tend to report that adaptation between related 

languages is more successful than adaptation among unrelated 

languages [17], though many other factors seem to be equally 

important, including similarity of the speaker voices and 

recording conditions of the two speech corpora [18].  

Because different languages have different phone 

inventories, whichever high-resource language we choose, 

some of the phones from the low-resource language will not be 

present in the high-resource language. For instance, when 

comparing Dutch and English, English has, e.g., the /æ/ (as in 

fantastic) and /θ/ (as in three) which are lacking from Dutch. 

So, in order to build an ASR system for a low-resource 

language, first the acoustic phone tokens of the low-resource 

language need to be discovered. We propose a three-step 

method: (1) Build a phone recognition system on a high-

resource language, in our case Dutch. (2) The phone inventory 

of the ASR system trained on the high-resource language is 

remapped or ‘transferred’ to the phone inventory of the low-

resource language. For those phones from the low-resource 

language that are not present in the high-resource language, 

acoustic units need to be created in the high-resource language 

ASR system. A ‘baseline’ or starting point for the missing 

acoustic unit of the low-resource language is then created by 

extrapolating between acoustic units that are present in the high-

resource language. In our case, we chose to use English as a 

low-resource language for reasons which will become clearer 

below. (3) The adapted model will iteratively be used to create 

a phone transcription of the low-resource language, after which 

the model will be retrained using the resulting self-labelled 

phone sequences in order to improve the acoustic phone units 

of the low-resource language.   



The phone transcriptions created by the adapted models will 

contain errors which will have repercussions on the quality of 

the acoustic phone units. The main question for this paper is 

therefore whether selecting only those self-labelled 

transcriptions that are ‘good enough’ to retrain the adaptation 

model will improve the quality of the acoustic phone units and 

subsequent phone transcriptions. These acoustic phone units 

should on the one hand capture the acoustic information of that 

phone correctly, and on the other hand, they should be able to 

capture semantic information correctly. Four criteria were 

investigated: ASR score, text-to-speech (TTS) synthesis score, 

translation text retrieval score, and a fusion of the three. 

2. Methodology 

A baseline system was trained on Dutch, adapted to English, 

and then applied for the transcription of English utterances. The 

baseline was then compared to self-trained systems created 

using the four different criteria for determining which 

utterances to use in self-training. The different criteria capture 

different attributes of the speech, therefore we expect them to 

be complementary. ASR confidence scores measure the degree 

to which the transcription is a good match to the audio signal 

(relative to the model); in a sense, this is a measure of the 

phonetic quality of the transcription or the degree to which the 

transcription captures linguistically salient attributes of speech. 

TTS also measures phonetic quality, but with different models. 

TTS attempts to measure the adequacy of the transcription to 

capture all information that a human listener would hear. 

Translated text retrieval measures the degree to which the 

transcription is sufficient to communicate the meaning of the 

sentence. The experiments were run at the Pittsburgh 

Supercomputing Center (PSC; [20],[21]).   

2.1. Speech materials 

The Spoken Dutch Corpus (Corpus Gesproken Nederlands, 

CGN, [22]) is a corpus of almost 9M words of Dutch spoken in 

the Netherlands and in Flanders (Belgium), in over 14 different 

speech styles, ranging from formal to informal. For the 

experiments reported here, we only used the read speech 

material from the Netherlands, which amounts to 551,624 

words for a total duration of approximately 64 hours of speech. 

The English data came from the FlickR_8K corpus [23],[6] 

which contains 5 different natural language text captions for 

each of 8000 images captured from the FlickR photo sharing 

website which were read aloud by crowdsource workers from 

Amazon Mechanical Turk. Additionally, within the context of 

the Frederick Jelinek Speech and Language Technology 

(JSALT) workshop 2017, tokenised translations into Japanese 

were obtained for each of the 40,000 captions. Moreover, forced 

alignments for FlickR_8K were created using a DNN/HMM 

hybrid system using 8,000 CD states and logMELs as acoustic 

input features trained on data as described in [24].  

To mimic a low-resource language we randomly selected 

3660 utterances from the FlickR_8K training set. The duration 

of these utterances corresponded to approximately 4 hours of 

speech (which corresponds to the number of hours of speech 

material for an actual low-resource language, Mboshi [1]). 

2.2. Proposed systems: Baseline and self-trained 

Figure 1 shows an overview of the proposed adaptation 

system. First, a Baseline DNN is trained on the Dutch CGN. 

Next, the soft-max layer of the DNN is adapted from the Dutch 

to the English phone set (see Section 2.3): the Adapted model. 

Subsequently, the adapted soft-max layer is used to decode the 

English speech material using a free phone recognition pass. 

The projection and soft-max layers are then retrained with (1) 

all self-labelled utterances, or (2) only with those self-labelled 

utterances that have the best scores according to the four 

selection criteria. Two decoding and retraining iterations are 

carried out, yielding different Self-trained models.  

All models are tested on our train-test set of 3660 utterances 

from FlickR_8K. The accuracy of the output phone sequences 

of the different models is evaluated by comparing them to the 

gold standard as created by the forced alignment (see Section 

2.1) by calculating the edit-distance, and is reported as 

percentage Token Error Rate (%TER) where “tokens” here are 

phones, phone-like units, and acoustically discovered units.  

2.2.1. Baseline model 

The baseline model used for the experiments is trained 

using Connectionist Temporal Classification (CTC; [25]), 

implemented using Eesen [26]. The CTC paradigm uses a 

Recurrent Neural Network (RNN), trained using an error metric 

that compares the reference and hypothesis symbol sequences 

with no regard to the time alignment of symbols. The CTC-

RNN models the mapping between the speech signal and the 

output labels without the need for an explicit segmentation of 

the speech signal into output labels (typically obtained using a 

forced-alignment), and models all aspects of the sequence 

within a single network architecture by interpreting the network 

outputs as a probability distribution over all possible label 

sequences, conditioned on a given input sequence. 

The baseline RNN uses a six layer bidirectional LSTM 

Recurrent Neural Network. Each LSTM layer has 140 LSTM 

cells, and LSTM layers are connected using 80-dimensional 

projection layers. There is also an 80-dimensional projection 

layer at the input of the LSTM, which reduces the 

dimensionality of the input features, which consists of 3 stacked 

frames (at 10ms distance) of 40-dimensional FBank features. 

The network step size is 30 ms. The final LSTM outputs are 

connected to another 80-dimensional projection layer which is 

connected to the phone soft-max layer. The size of the soft-max 

layer depends on the phone set of the language; see Section 2.3. 

The network has been trained with Stochastic Gradient Descent 

for 20 epochs, using phones as targets. 

We apply greedy decoding and thus take the output of the 

CTC network (consisting of a probability distribution over the 

phone set) and at every frame select the phone with the highest 

probability. Sequences of adjacent outputs with the same value 

are clustered into the same phone, and blanks (used by CTC to 

fill the distance between phonetic detections) are discarded. 

Note that all phones have an equal prior probability.  

Figure 1. Overview of the proposed adaptation system. 



Table 1. Mapping of the English (L2) phone not present in the 

Dutch phoneme inventory, with an example of the sound 

(indicated with bold) in an English word. 

Missing L2 

phone 

Example Mapping 

L1:1 L1:2 L1:3 

æ map ɛ a ɛ 

ʌ cut ɛ ɑ a 

ð they v z v 

ɝ bird ø o ø 

θ three f s f 

ʊ book ɪ u ɪ 

2.2.2. Best scoring utterances according to ASR score 

The best scoring ASR utterances are those phone sequences 

that have the lowest TER on the train-test set. The number of 

selected phone sequences was identical to the number of phone 

sequences obtained from the translation retrieval measure (see 

Section 2.2.4). 

2.2.3. Best scoring utterances according to TTS score 

The TTS system used is Clustergen [27]. TTS typically 

consists of four stages. First, text is converted to a graph of 

symbolic phonetic descriptors. This step is omitted in our case, 

as the output of the Adaptation model already consists of a 

sequence of phones. Second, the duration of each unit in the 

phonetic graph is predicted. Third, every frame in the training 

database is viewed as an independent exemplar of a mapping 

from discrete inputs to continuous outputs, and a machine 

learning algorithm (e.g., regression trees [27] and random 

forests [14]) is applied to learn the mapping. Discrete inputs 

include standard speech synthesis predictors such as the phone 

sequence and prosodic context, as well as variables uniquely 

available to Clustergen such as the timing of the predicted frame 

with respect to segment boundaries at every prosodic level. 

Continuous outputs include the excitation and pitch, the mel-

cepstrum [29], and a representation of the dynamic trajectory of 

the mel-cepstrum (its local slope and curvature); mel-cepstrum 

of the continuous signal is then synthesized using trajectory 

overlap-and-add. Clustergen works well with small corpora 

because it treats each frame of the training corpus as a training 

example, rather than each segment. This makes it suitable for 

our low-resource scenario.  

Synthesized speech can be compared to a reference speech 

signal using mean cepstral distortion (MCD, [27]). MCD 

measures the average distance between the log-spectra of the 

synthetic and natural utterances. MCD has been demonstrated 

to be an extremely sensitive measure of the perceived 

naturalness of speech utterances, e.g., an MCD difference 

between two synthesis algorithms of 0.3 (on the same test 

corpus) is usually perceptible by human listeners as a significant 

difference in perceived naturalness [27]. 

In the experiments reported here, MCD measured the 

difference between synthetic and reference speech signals.  Low 

MCD suggests that the ASR generated a pretty reasonable 

transcription of the utterance. MCD of the re-synthesis was 

therefore used as the second of our selection criteria. 

2.2.4. Best scoring utterances according to translation 

retrieval 

The translated text retrieval system is trained to retrieve the 

ID of the Japanese translated text from a database of Japanese 

translated texts which corresponds to the English transcription 

of the spoken utterance that is presented at its input. The 

Japanese translated texts database consists of all 3660 training-

test utterances. The retrieval system is based on the image 

retrieval system by [6] but instead of matching images, we are 

matching phone sequences to translated texts. The retrieval 

system is implemented in the xnmt sequence-to-sequence 

neural machine translation architecture [30] using the DyNet 

neural network library [31]. The source and target encoders both 

consist of an input layer, LSTM hidden layer, and an output 

layer, each containing 512 nodes. The embeddings output by 

the encoders are fed into the retriever which calculates the dot-

product of the two encoders and takes the smallest as the best 

match. The source encoder takes as input the phone sequences 

output by the soft-max layer of the CTC-DNN (see Section 

2.2.1). The target encoder takes as input the IDs of the translated 

text utterances. Adam-training with a learning rate of 0.001 is 

used to map the phone sequences to the IDs of the Japanese 

translations. Training runs for 100 epochs.  

After training, the 3660 training utterances are run through 

the retrieval system again in order to retrieve the phone 

sequences that score best on the retrieval task. These are those 

utterances for which the correct ID of the translated text appears 

in the top N=10 of answers.  

2.2.5. Fusion of scores 

System combination, of systems with complementary error 

patterns, often yields a combination system whose TER is lower 

than the TER of any component system [32]. Since translation, 

TTS, and ASR all capture different aspects of the speech signal, 

we expect that the TER of the combination system should be 

lower than the TERs of any component system. We therefore 

retrain the Adaptation model with those phone sequences that 

capture the acoustic and the semantic information best, i.e., we 

select those N utterances that appear in at least two of the three 

best utterances lists (giving preference to the combination of 

translation retrieval + TTS or ASR), where N is equal to the 

number of utterances for the other measures.  

2.3. Adaptation of the soft-max layer 

The number of different Dutch phones in CGN is 42, while 

the English FlickR_8K has 45 different phones. There are three 

reasons for the difference between the phone sets. (1) Nine 

English phones are diphthongs or affricates which do not exist 

in Dutch, but which can easily be constructed from a sequence 

of two Dutch phones. These nine English phones are not 

represented in the soft-max layer but dealt with in a post-

processing step. (2) Eleven Dutch phones are not present in 

English and these are removed from the soft-max layer. (3) Six 

English phones do not exist in Dutch (referred to as missing L2 

phones) and need to be added to the soft-max layer. Vectors in 

the soft-max layer are created for these missing L2 phones on 

the basis of the trained Dutch (L1) phones; the created soft-max 

nodes are then adapted using the speech data selected according 

to the selection criteria described in Section 2.2. 

The desired English-language phones are initialized by 

linearly extrapolating the missing L2 (English) node in the soft-

max layer from existing vectors for the Dutch L1 phones using:  

 

�⃗� |𝜑|,𝐿2 =  �⃗� |𝜑|,𝐿1:1 + 0.5 (�⃗� |𝜑|,𝐿1:2 − �⃗� |𝜑|,𝐿1:3)   (1) 

 

where �⃗� |𝜑|,𝐿2 is the vector of the missing L2 phone φ,L2 

that needs to be created,  �⃗� |𝜑|,𝐿1:𝑥 are the vectors of the Dutch 



L1 phones φ,L1:x in the soft-max layer that are used to create 

the vector for the missing English phone φ,L2. Among the three 

Dutch phones, L1:1 refers to the phone which is used as the 

starting point from which to extrapolate the missing L2 phone, 

and L1:2 and L1:3 refer to the L1 phones whose displacement 

is used as an approximation of the displacement between the 

Dutch L1 vector and the L2 phone that should be created. Table 

1 lists the six missing L2 phones, and the Dutch L1 phones that 

are used to create the vectors for the missing English L2 phones. 

3. Results 

The TER of the Adaptation model, i.e., the Baseline model 

for which the soft-max layer had been adapted to the English 

phone set but not yet retrained, is 72.59%. Table 2 shows the 

TER results for the Self-trained models, i.e., the models after 

retraining. Iteration 1 refers to the models for which the 

projection layer and soft-max layer have been retrained with the 

best scoring self-labelled phone sequences according to the 

ASR, TTS, translation retrieval system, or the combination of 

these. Iteration 2 refers to the models for which the projection 

layer and soft-max layer have been retrained with the best-

scoring (according to the DNN, TTS, and retrieval task) self-

labelled utterances of the corresponding models after Iteration 

1. The number of phone sequences used for retraining was 2468 

(=67.43% Recall@10 on the translation retrieval task) for 

iteration 1 and 2101 (=57.40% R@10) for iteration 2. 

Formal statistical significance tests have not yet been 

performed for these data, but an overly conservative model can 

be defined: if we assume that token errors within a speech file 

are 100% correlated, and follow a Bernoulli model [33], then 

two ASR systems are significantly different if their TERs differ 

by at least 50%/sqrt(3660)=0.83%.  By this overly conservative 

standard, 3 of the 5 systems at Iteration 1 and the fusion system 

at Iteration 2 are significantly better than the baseline (see bold 

numbers in Table 2), and there is no significant difference 

among these different methods of selecting self-labelled 

utterances. Except for the fusion system, the systems in the 

second iteration, however all performed worse than the Iteration 

1 models, occasionally even worse than the baseline model. 

4. Discussion and conclusions 

We presented a three-step method to build an ASR system 

for a low-resource language through the adaptation of an ASR 

system of a high-resource language, using a combination of 

linguistic knowledge and semi-supervised learning. Crucially, 

phones that are present in the low-resource language but not in 

the high-resource language need to be created. This is done 

through a linear extrapolation between existing acoustic units in 

the soft-max layer after which the acoustic units are iteratively 

retrained using all utterances or only those utterances that have 

the best score according to four different criteria: ASR score, 

TTS score, translated text retrieval score, and their combination.  

The baseline TER is comparable to the phone error rates of 

cross-language ASR systems (e.g., [2] reports PER ranging 

from 59.83% to 87.81% for 6 test languages). Re-training the 

system, using a self-labelling approach with confidence scoring, 

can significantly improve TER after the first iteration (see Table 

2). The differences between the different approaches are 

however small, a more sensitive statistical test might 

demonstrate significance of some of the differences in Table 2. 

Retraining the systems for a second pass, however, decreased 

performance for all measures but the fusion system, even 

surpassing the Baseline’s performance for some measures.  

Table 2. Token error rates (TER%) on the 3660 FlickR_8K 

train-test utterances for the different self-trained models. Bold 

indicates significantly better performance than Baseline. 

Selection criterion Iteration 1 

(2468 utts) 

Iteration 2 

(2101 utts) 

All sentences 71.80 72.56 

ASR 71.67 72.42 

TTS 71.71 72.52 

Translation retrieval 71.83 72.88 

Fusion 71.76 71.72 

 

The projection and soft-max layers were retrained using 

only the best scoring phone sequences according to four 

different criteria. However, since neural networks are extremely 

data hungry, the (in principle) improved quality of the training 

utterances at Iteration 2 did not outweigh the substantial 

decrease in training data from Iteration 1 to Iteration 2. The 

system retrained on all sentences, on the other hand, might have  

suffered from the presence of a couple of bad transcriptions. 

Only the fusion model’s performance did not decrease from 

Iteration 1 to Iteration 2. This is likely due to the training 

utterances of this system capturing both phonetic and semantic 

information well. Thus, in order to train acoustic units using 

self-labelled data, training utterances are needed that capture 

multiple aspects of the speech signal.  

Instead of discarding the bad data, future work will 

investigate the use of data augmentation methods to increase the 

importance of the good data. [33] demonstrated that ASR could 

be improved by making “perturbed” copies of each of the input 

waveforms, thus increasing the size of the training dataset. 

Perturbations include pitch shifting, speeding up, slowing 

down, or adding certain types of noise at different SNRs. The 

best-scoring phone sequences would then receive a duplication 

factor that is larger than those phone sequences which have a 

lower score. Relatedly, this would allow us to refine the fusion 

method by not using the majority vote but rather use the 

intersection of the three measures. Moreover, the current 

retraining only updates the projection and soft-max layers, 

because of the fairly low amount of (re)training data that is 

available. However, future work will investigate the effect of 

retraining the whole LSTM, or also introduce projections in the 

temporal dimension, or update only specific LSTM layers. 

Although the aim of the paper is to investigate the 

possibility to build an ASR system for a low-resource language 

through the adaptation of an ASR system build for a high-

resource language, the low-resource language we used in the 

current work is not an actual low-resource language. We plan 

to extend this work to Mboshi [1], a Bantu language which is 

an actual low-resource language. 
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