
DIPHONE COLLECTION AND SYNTHESIS

Kevin A. Lenzo
�
, Alan W Black

�
�
International Software Research Institute,

�
Language Technologies Institute,

Carnegie Mellon University,�
lenzo,awb � @cs.cmu. ed u

ABSTRACT

In this paper, we describe the design and collection of corpora
for diphone synthesis, the voice building process, and our expe-
rience in the creation of a new, publically available database of
ten diphone sets of one American English speaker for the Festival
Speech Synthesis System [3], using the FestVox document and
tools [1]. In support of our goal to make the tools and techniques
available for anyone to build their own synthetic voices, we have
generalized and streamlined the tasks involved from what were
once arcane anecdotes, half-written one-off scripts, and partial
descriptions, to detailed, complete instructions that others have
followed with good results.

1. INTRODUCTION

The FestVox [1] document is a growing, publically available re-
source that contains tools, data, and text about building complete
synthetic voices in English and other languages. That work cov-
ers everything from building text analyzers, lexicons, prosodic
models as well as various waveform synthesis techniques includ-
ing general unit selection and diphones. Inside this framework,
we have collected a considerable amount of data, and refined the
process. While building good, characteristic voices cannot be re-
duced to a simple recipe, we hope this will be a starting point
for those interested in speech science and technology, and will
provide a common basis for the comparison of various diphone
synthesis techniques over the same data sets.

Although diphone-based synthesizers are only one of a number
of techniques documented in FestVox, we believe they are, at
present, the most reliable and resource-effective method for build-
ing new voices for general text-to-speech synthesizers. A diphone
here is two connected half-phones, where a ”phone” here may in
fact be any segment including a traditional phoneme, allophone
or consonant cluster. We carefully construct examples of each
phone-phone transition in our phoneset, so as to capture all the
implied sequential articulatory transitions, even though some may
not be phonotactically valid (like [ZH-NG]).

To fully exercise our techniques, we are collecting ten sets of di-
phones, at 32KHz, with simultaneous electroglottograph (EGG)
signal, from a single speaker of American English (KAL) with
varying speaking rate. These databases are being released pub-
licly with an open license, so that anyone who wishes can replicate
our findings, study the voice, teach about synthesis, or build their
own by comparison. We, and others, have also used these tech-
niques on other voices and other languages. Four sets have been
recorded so far, and the bulk of this paper relates to our experience
with that set and the tools that have been created to help – includ-
ing a recording session management tool called pointyclicky.

2. DIPHONE SYNTHESIS

Diphone synthesis is one of the most popular methods used for
creating a synthetic voice from recordings or samples of a partic-
ular person; it can capture a good deal of the acoustic quality of an
individual, within some limits. The rationale for using a diphone,
which is two adjacent half-phones, is that the “center” of a pho-
netic realization is the most stable region, whereas the transition
from one “segment” to another contains the most interesting phe-
nomena, and thus the hardest to model. The diphone, then, cuts
the units at the points of relative stability, rather than at the volatile
phone-phone transition, where so-called coarticulatory effects ap-
pear.

There is clearly a simplifying assumption: that all relevant pho-
netic realizations can be enumerated, and that by simply collect-
ing all of phone-phone transitions, that any possible sequence of
speech sounds in the target language could be produced. Thus,
with a 44-phone inventory, one could collect a 44 * 44 = 1936
diphone inventory and create a synthesizer that could speak any-
thing, given the imposition of appropriate prosody – intonation,
duration, and shift in spectral quality, as determined by other mod-
ules in a general-purpose synthesizer.

3. COLLECTING A DIPHONE SET

Building a diphone synthesizer involves several steps:

3.1. Choosing the phone set

One should consider the phone set carefully for synthesis. For
American English, we have been using a phone set based on the
one we also use in the CMU Sphinx open source speech recogni-
tion system, which is a DARPAbet-style set of 44 phones. Lan-
guages with fewer phonemes can get away with fewer allophones,
but we find this set adequate.

3.2. Designing carrier material

We use nonsense carrier words to collect all possible diphones,
following [5]. Others have successfully used natural carrier
phrases, but the argued advantage of natural delivery offers may
also be a disadvantage as people may assume too much, and fail
to produce exactly the desired phones. Within this framework,
an experiment may be carried out to compare the results of voices
made from nonsense words to one made from naturalistic text, but
we know of none having been performed as of yet.

It should be noted that delivering diphones is not a particularly
natural endeavor. As these phone segments will be extracted both
for pitch and duration, it is important that their delivery be consis-
tent, so that joins are more likely to be acceptable.



We believe that the use of nonsense carrier material makes the de-
livery of the diphones more consistent. Also, the pronunciation of
a phonetic string is more clearly defined in these nonsense words
than in elicited natural words. We generate carrier phrases so that,
where possible, we can extract the diphones from the middle of a
word. As it takes time for the human articulation system to start,
we do not want to extract diphones from syllables at the start or
end of words, unless these transitions to or into silence (SIL) are
part of the diphone in question.

for example, from

SIL T AA B AA B AA SIL

we would extract the diphones [B-AA] and [AA-B], and from

SIL T AA T EY AE T AA SIL

we would get [EY-AE], as the [T-EY] and [AE-T] are taken from
elsewhere, though one could indeed get all three from the one
prompt.

For each class in the language, consonant-vowel, vowel-
consonant, vowel-vowel, consonant-consonant, silence-phone,
phone-silence, and any other special sets like syllabic, conso-
nant clusters and allophones we build simple carrier sets and loop
through all possible values generating a long list of strings of
phones which contain all possible diphones in the language to be
recorded. Basic scripts are provide for this that can be adapted for
other language, while specific scripts are provided for currently
supported languages.

3.3. Generating the prompts

Once the phone set and the sort of carrier material for each type
has been chosen, the prompt list is produced automatically from
the specification using a set of templates. Consonant-vowel and
vowel-consonant pairs are generally kept together, as shown in the
example above – [B-AA] and [AA-B] are generated in a single
prompt. Special contexts are also created for e.g. vowel-vowel
diphones, also as shown above, and for transitions to and from
silences into a phone.

We then synthesize these prompts using an existing synthesizer.
The prompts are generated for a number of reasons: first, to
play to the user while recording. Even highly trained phoneti-
cians make mistakes in reading 2000 prompts so the synthesized
prompts help guide the speaker to say the right thing. Secondly,
as we generate these prompts at constant pitch and duration, this
encourages the speaker to do likewise. As we are going to modify
the pitch and duration independently, it is better if the recording is
in a monotone, and consistent. This, we feel, is best done by effec-
tively having the nonsense word delivered in what almost sounds
like a chant.

The second reason for generating prompts is their use in labelling
the spoken word which is described below.

3.4. Preparing the audio collection environ-
ment

Ideally, speech data is collected in an anechoic chamber, with
high-quality recording equipment, in a comfortable setting,
at CD-quality, with simultaneous audio and electroglottograph
(EGG) signal. In practice, we have collected KAL1 in a sound-
proof booth in the Electrical and Computer Engineering lab at
CMU, and then collected KAL2 through KAL4 at one of the au-
thor’s apartment, largely between 4 and 6 AM, before traffic got
started.

We used a Shure SM-2 close-talking headset microphone, a Sym-
metrics SX202 microphone preamp, a Glottal Enterprises EG2-
PC electroglottograph, and a SoundBlaster X-Gamer PCI audio
card, with various recording and playing utilities on a decent ma-
chine running Linux. The computer was on an uninterruptible
power supply (UPS), which reduced electrical noise. We used a
wireless keyboard and mouse, so that the subject could sit back
several feet from the computer monitor – which otherwise intro-
duced considerable noise into the recordings. The radio frequency
from the wireless keyboard and mouse appeared to have no detri-
mental effect.

In general, we record diphone sets at 32 KHz, with simultaneous
audio and EGG signal, after making sure the levels are sane for
both (sane being peaking in the 80% range). After collection,
however, these signals are split into separate files.

We have also collected diphone sets directly to a laptop computer
in a quiet room (i.e. one without air-conditioning or other com-
puters, which isn’t easy on the CMU campus). Laptops should be
run on battery power to reduce hum. The audio systems on some
laptops, however, are not good high enough quality for recording,
and ensuring that the machine’s audio device is good enough is
very important. For other synthesis techniques, such as the limited
domain synthesizers [2] we have built in the FestVox framework,
the audio quality is less important as there are typical multiple
examples of each phone type. In our diphone database there are
often only one examples and hence every part of the recording
must be good.

3.5. Collecting the data

Figure 1: pointyclicky

For data collection, we use either an application called
“pointyclicky” (Figure 1) written in Perl with Perl/Tk, or a simple



shell script called “prompt them;” both are in the FestVox dis-
tribution. With pointyclicky, the management of the recording
session is simplified. You can double-click with the left mouse
button to play the prompt (or the recording, if it exists), as well
as make a selection and act over it – such as iterating over the se-
lected files with the sequence of displaying the text, playing the
prompt, pausing briefly, and then recording.

To aid in quickly visualizing what prompts have and have not yet
been recorded, the color of the item’s name, as well as the back-
ground in the scrolling list, changes based on state: if the prompt
does not exist, the background of the cell is gray; if it does, it is
white. If the recorded file exists, the text is blue; if not, it appears
in red. This allows the user to quickly navigate over large lists and
see what is and is not finished. Bad “takes” can be easily deleted,
and their status is immediately reflected in the list.

The two menus, “Action” and “Script,” are user-extensible. The
program looks into a hidden directory that contains two subdi-
rectories of the same names, and these contain the various Perl
programs that are executed when these are selected in from the
menu. Items in the “Action” menu iterate over the items selected
in the scrolling list on the left of the user interface in pointyclicky,
whereas those in the “Script” menu act independently of the se-
lection, to do things such as instantiate an example talking clock
example, or invoke festival to perform the processing to complete
the voice building.

One handy feature of pointyclicky is that, despite its name, one
needn’t use a mouse. All the functions are accessible as simple
keyboard shortcuts, which allows the voice talent to cruise around
over the files easily, and hear what is recorded and the prompts.
When one wants to start recording whatever remains to be done,
one simply uses the Edit menu to select the remainder, then selects
the appropriate action – the default being to display the prompt,
play the synthesized prompt, turn the background color to yellow,
pause for 0.75 seconds, turn the background to red, record for the
specified time, and then turn the background back to the default
color. All of these commands have been used to extend the Perl
language, and are documented in the FestVox Perl module avail-
able at http://festvox.org/pointyclicky . Other ac-
tions are available by default too, and the user can simply drop
Perl programs into the appropriate directories, or edit the Prefer-
ences for pointyclicky’s behaviour in a dialog box.

Anecdotally, we have found that this interface helps both speed
up the recording process, and reduce the number of errors. It
certainly makes the recording process more pleasant and manage-
able.

3.6. Segmentation/Alignment

We use a simple, effective technique based on [6] to segment the
recorded prompts, by using DTW to align the pre-generated, la-
beled synthesized diphone prompts to the new recordings. This
is the same technique we use for aligning data for limited domain
synthesis; the technique has worked quite well for us to make
initial passes, even when the source language and the target lan-
guage differ: American English has been used to generate first-
pass alignments for both Croatian and Nepali.

To confirm this technique’s accuracy we used it against some ear-
lier databases which had been hand labelled.

type RMSE stddev
KED-KED self 14.77ms 17.08
MWM-KED US-US 27.23ms 28.95
GSW-KED UK-US 25.25ms 23.92
KED-WHY US-Kor 28.34ms 27.52

KED is a US English voice, collected at University of Edinburgh,
MWM was collected at Oregon Graduate Institute. A KED voice
built directly from this fully automatic labelling technique was
certainly understandable though not as good as the hand labelled
form. GSW is a British English voice yet we used this to label
US English (with reasonable mappings for phone names). Again
the results were reasonable. The last example used KED, the US
English voice, to align against WHY a Korean voice. In spite of
these being different languages, the results was perfectly usable.

Even though there is a phonetic mismatch between English and
Korean – English uses aspiration of stops in free variation as aloo-
phones, whereas Korean has a phonemic distinction between aspi-
rated and unaspirated stops – we note that mostly labelling is cor-
rect but for a small number of labels they are completely wrong
having aligned to some lip smack, or some other noise or artifact.
The success of this should not be surprising. This is a very con-
strained labelling task. We know exactly what phones are present
and hence alignment should be trivial. In fact if it is not trivial it
is likely there is a problem with the recording.

We do not pretend that this is perfect, but the alignments are very
good as a first pass. We do usually also hand check all labelling
and move boundaries as is required to get the best performance.
But this level of fine tuning was also done in the days that we
relied solely of hand labelling. In those days, initial hand labelling
was always somewhat rough and prone to error. This technique
has allowed us to remove that stage producing initial results in
minutes rather than days.

3.7. Quality control

After the automatic alignment and labeling (often called “auto-
labeling”) is finished, the results are visually inspected by either
random sample, or by checking every one, using display tools
such as emulabel [4]. We also run a number of scripts that check
the durations and other features of each segment, to find those that
are quite obviously out automatically, so as to go in with emulabel
and correct them by hand.

In collecting these diphone sets we have noted that the quality of
autolabelling has improved as we typically use the previous set as
the prompts. Of course this is the same voice delivered (mostly) in
the same style thus later versions have not required full checking
and sampling and targeting problems alone has been sufficient.

3.8. Extracting pitchmarks and pitch-
synchronous parameters

Once the recordings are made and are labelled, building the di-
phone synthesizer itself is mostly automatic. Our first stage is to



extract the pitchmarks from the EGG signal, if an electroglotto-
graph was used at recording time. We use the pitchmark program
that is part of the Edinburgh Speech Tools, on which Festival is
built, to do this. For diphone databases for which no EGG is pro-
vided, we can extract the pitchmarks form the waveform files di-
rectly, but this is typically not as good from the EGG signal. For
all voice sections of the speech, we position the pitchmarks at the
peak of the pitch period. For non-voiced sections, we introduce
a “fake” or pitch mark evenly spaced through those sections. As
our signal techniques for pitch and duration modification depend
of pitch synchronous analysis, getting the pitch marks right is very
important to the final quality of the synthesizer.

Although we try hard to ensure that the audio quality remains con-
stant throughout the whole recording, it is unusual for the whole
set to be done, perfectly, in a single sitting, and we have found that
slight differences in power occur between different sittings, due to
position of the microphone as well as the speaker delivering with
different vocal effort. To combat this, we include a simple power
normalization phase. As different phones have different inher-
ent power can cannot simply normalize everything; therefore, we
calculate the mean RMS power over all vowels in each nonsense
word, then find the mean over all the files, and calculate a modifi-
cation factor for each word that in the normalization.

After power normalization, we extract LPC parameters pitch syn-
chronously.

3.9. Diphone index

As diphones run from mid of one phone to mid of another, we
need to know exactly where that “mid” is. For supported lan-
guages, we already know where the diphone boundary is in ex-
isting diphone databases, so when we synthesize the prompts, the
accompanying labels include both the phone boundary positions,
as well as the diphone boundaries. Although midway between
phone boundaries may be the most appropriate join point for vow-
els, it almost certainly is not for stops, where the closure part of
the phone is by far a better place to join. Diphone boundaries
(marked as “DB”) are also often the part requiring correction.

From the labels, we build a diphone index automatically, which
can be used by Festival to synthesize waveforms. Two basic meth-
ods are offered first: so-called “separate-mode,” where the di-
phones are selected from each LPC and residual file on demand,
and “group-mode,” where we can collect just the diphone parts
and put them into a single large file. The first of this is used in
the initial debugging stage. The second stage is used for distribu-
tion of complete voices, as it is both more compact and quicker to
access.

3.10. Amalgamation

A final voice consist of not just a diphone set, but also the
front end of the TTS system including text analysis, lexicons and
prosodic models. These, in contrast, although difficult in them-
selves, are much smaller that the diphone set, and for English at
least are a standard part of our distribution.

Thus, the building a new English voice can simply be a matter of
recording a new diphone set. Our tools provide complete scripts

and detailed walk-through for this process building on top of the
existing modules.

4. CONCLUSIONS

In building so many diphone database, and particularly by repeat-
ing the process a number of times with the same speaker in the
same dialect, we feel we have streamlined our build process so
that it is much more reliable. In other systems, building new
voices is such an undertaking that it is not something that can eas-
ily be experimented with, without significantly more work. We
can record, label and hand-check a complete US English diphone
set in a day, albeit a long day, and with only preliminary quality;
but, with such turnaround rate, we have be able to identify specific
problems that we have had to address.

Even when the speaker is an expert in phonetics and diphone syn-
thesis, we know it is still very easy to make phonetic mistakes
in recording. The vowel-vowel transitions are notably difficult to
produce. They are relatively rare in normal speech but of course
as we are collecting complete coverage we need instances of all
examples. We have also noted that the phones [AX] and [AH] are
particularly difficult to reliably produce, even when we are keenly
aware of the trouble spot.

The US English databases themselves are available from
http://festvox.org/dbs/index.html , and the
full documentation with scripts, code and explicit walk-
troughs of these techniques with examples are available at
http://festvox.org .

5. REFERENCES

1. Black, A., and Lenzo, K. Building voices in the Festival
speech synthesis system. http://festvox.org, 2000.

2. Black, A., and Lenzo, K. Limited domain synthesis. In IC-
SLP200 (Beijing, China., 2000).

3. Black, A., Taylor, P., and Caley, R. The Festival speech synthe-
sis system. http://www.cstr.ed.ac.uk/projects/festival.html, 1998.

4. Cassidy, S. The EMU speech database system.
http://www.shlrc.mq.edu.au/emu/, 2000.

5. Isard, S., and Miller, D. Diphone synthesis techniques. In
Proceedings of IEE International Conference on Speech In-
put/Output (1986), pp. 77–82.

6. Malfrere, F., and Dutoit, T. High quality speech synthesis
for phonetic speech segmentation. In Eurospeech97 (Rhodes,
Greece, 1997), pp. 2631–2634.


