
LIMITED DOMAIN SYNTHESIS

Alan W Black
�
, Kevin A. Lenzo

�
�
Language Technologies Institute,

�
International Software Research Institute,

Carnegie Mellon University,�
awb,lenzo � @cs.cmu. ed u

ABSTRACT

This work presents a reliable and efficient method for build-
ing limited domain speech synthesis voices. By constructing
databases close to the targeted domain of the speech application,
unit selection synthesis techniques can be used to reliably give
very high quality synthesis within domain. In addition to a high
quality result we include the techniques and processes required to
build such voices often allowing new voices in limited but quite
complex domains such as dialog systems to be created in under
a week. The full tools, documentation examples etc are available
for free at http://festvox.org .

1. INTRODUCTION

With the recent increase in demand for speech applications, it has
become obvious that current general speech synthesis technology
is not at a quality that users accept. Many speech applications still
use fixed, fully pre-recorded prompts rather than standard TTS
(text-to-speech) systems to generate their speech output, because
the quality of standard TTS systems is not perceived to be good
enough.

Recent improvements in speech synthesis techniques, particularly
in the area of so-called “unit selection synthesis,” as typified by
AT&T’s NextGen system [1], have led to higher quality synthe-
sis, but it remains an expert skill to build new voices for such sys-
tems. There is a requirement not simply for high quality speech
synthesis, but also a reliable and efficient means of creating new,
customized voices within the system. It is no longer acceptable
for all speech technology systems to speak with one of only a few
voices or prosodic styles.

In addressing this issue, we at CMU are making the process of
building synthetic voices more reliable and faster, while requiring
less arcane skills. Through the FestVox project [2] we release
documentation, tools, scripts, etc. that allow new voices to be
built in both the existing, supported languages, as well as new
languages.

In developing both techniques for general diphone synthesis and
unit selection, we noted a particular niche where a limited domain
could be exploited to greatly improve reliability of high quality
synthesis. In many speech applications, most of the language to
be spoken is generated within the system. Despite this, many sys-
tems simply pass a raw text string, with no more than perhaps
some special punctuation, to a general-purpose TTS system. The
result is almost always disappointing, in that it sounds either quite
bored (inappropriate prosodic realization) or the signal quality
makes it unattractive. In noting that the quality of unit selection
synthesis can be very good, and that the number of bad synthe-
sis examples are much less when the sentences are closer to the
domain of the recordings, we decided to exploit this by designing
corpora specifically for each application.

2. HOW LIMITED IS LIMITED

Many speech applications have their speech output generated by
some computed function. Although there are some truly open do-
mains, like reading email, many systems are substantially lim-
ited. This may be a simple as slot-and-filler templates, where
some known set of names, prices, numbers, etc., and some stan-
dard prompts are used. Many IVR systems still use fully recorded
prompts to keep quality up, at the price of resource footprint and
flexibility. Our initial investigations into limited domain synthe-
sizers were in the form or talking clocks and fixed weather reports,
but we have found that we can also deal with more general dia-
log systems, especially if a backup method is provided for rare
out-of-domain cases.

A key aspect of building a limited domain synthesizer is the de-
sign of a prompt list that adequately covers the domain. Ideally,
we like to have an explicit representation of the utterances that
can be generated (e.g. the grammar or templates of the generation
system) plus information about their frequency of use. From this,
a prompt list can be generated to ensure frequent (and most im-
portant) forms will be well-represented, while coverage extends
to all cases. In a new system the frequency information is not al-
ways available but can be estimated. In general, prompts should
have at least one occurrence of each word in the vocabulary in
each prosodic context.

3. BUILDING A VOICE

The task of building a voice consists of the following processes

– Design the corpus
– Synthesize each utterance
– Record the voice talent
– Annotate (label) the recordings
– Extract pitchmarks
– Extract pitch-synchronous parameters
– Build a cluster unit selection synthesizer
– Test and tune, repeating as necessary

Issues in designing prompts are discussed above. We synthesize
the prompts for a number of reasons: first, to ensure that all the
appropriate tokens are expanded properly. For example in our
Communicator dialog domain, we must ensure flight numbers and
dates (both strings of numeric characters) are given the correct ex-
pansion. Second, we use the synthesized utterance to estimate the
time required for recording. We can, optionally, play the prompt
to the human voice talent, but that often has the adverse effect of
making the human speak more like the synthesizer, so we gener-
ally only present the text. The final reason to synthesize the output
is that we use the synthesized prompt in labeling the human spo-
ken utterance.

Although recording with studio quality equipment can give bet-
ter results, we are interested in making the process as accessible



as possible. When studios are used for recording to DAT tape
the transfer process and splitting of the files is laborious and time
consuming. For all of the limited domain systems we have built,
we have recorded directly to computer files. Most commonly we
use a laptop (not connected to the mains power) in a quiet room
(i.e. without other computers or air-conditioning), to reduce back-
ground noise. The recording quality, once audio devices are set
up appropriately, is acceptable though taking care at this point is
important. More information on the recording process is given in
[?], including the use of a GUI tool for recording session manage-
ment (pointyclicky).

The prompts are recorded in the desired style for the synthesizer.
A talking clock, consisting of 24 simple utterances is one of our
standard baseline examples. Building clocks with “funny voices”
is easy, but importantly the resulting synthesizer retains the style
of the speaker exactly – Scottish accents, falsetto, “laid-back”
speakers, and even cartoonish voices are all captured well.

After recording, we label the text using a simple but effective tech-
nique based on [6]: we use DTW to align between the mel-scale
cepstral coefficients (and delta) of the synthesized and recorded
waveforms. As we know the position of the labels in the synthe-
sized prompt, we can map this onto the collected recording. This
technique was originally developed for labeling diphone data,
where the phonetics are much more clearly defined, but we have
found this technique perfectly adequate for this task also. In fact,
there are distinct advantages of this often loose labeling over hand
crafted low level phonetic labelling. For example when a speaker
pronounces the word “Tuesday”, in a Scottish accent, it might
better be phonetically labelled as /ch y uw z d ey/, while the syn-
thesizer labels (US English) are given as /t uw z d ey/. But the
alignment will match the label /t/ to the spoken /ch y/ and hence
when a /t/ followed by /uw/ is selected for synthesis it will select
the appropriate piece of speech preserving the original speaker’s
idiolect. The speaker must produce utterances that are close to the
desired form, but they do not need to be phonetically exact.

Although the labeling is often good, it is never perfect. Hand cor-
rection will improve it, with diminishing returns. After labeling,
we extract mel-scale cepstral coefficients; we have found that our
unit selection techniques work much better if this is done pitch
synchronously rather than at a fixed frame rate. As we do not (nor-
mally) record these databases with an EGG (electro-glottograph)
signal, we extract the pitch marks from the waveform directly,
although this is not as accurate as extracting from an EGG signal.

The unit selection technique we use is an updated version of that
more fully described in [3]. However, there are a number of sub-
stantive improvements in that algorithm since we last published,
as well as some specific tuning we have found useful for limited
domain synthesis.

The general algorithm takes all units of the same type and cal-
culates an acoustic distance between each, using a weighted Eu-
clidean mahalanobis distance of cepstrum parameters plus F0. Se-
lected features including phonetic and prosodic context are used
to build a decision tree that minimizes acoustic distance in each
partition. Although [5] makes similar use of decision trees for
clustering, we do not use HMMs to first label nor use sub-phonetic
acoustic states; nor do we build the tree to its maximum depth, but
(optionally) stop with 5 to 10 instances in each cluster.

At synthesis time, we select the appropriate cluster using the deci-
sion tree, and then find the best path through the candidates, tak-

ing account the costs (and optimal position) of joins using another
acoustic based cost (cf. optimal coupling [4]).

For limited domain synthesis, we have determined that certain pa-
rameters are more likely to give reliable synthesis. First, in addi-
tion to taking candidates from the selected cluster we also include
any units that are consecutive in the database to units selected for
the previous segment and are of the right type. Thus, selection
is not just for candidate units, but we are effectively selecting the
beginning of longer units.

Normally for general unit selection we have used phone name
as the unit “type name”, though the acoustic distance may also
include X% of the previous phone, so these are much closer to
diphones than phones. In the limited domain synthesizers, we
construct the type from the phone plus the word the phone comes
from. Thus a /d/ in the word “limited” is distinct from a /d/ in the
word “domain”. This apparently severe restriction may give rise
to a claim that we are doing “merely” word concatenation, but
this is not true. We are still selecting individual phones, though
they come form some instance of the word to be synthesized. In
fact, what happens is that a word is often synthesized from phones
from different instances of the desired word and the join point
between parts is chosen dynamically at the best point, typically in
mid-vowel or fricative or silence of a stop.

This choice of unit type means there are now much fewer in-
stances of each type, which has the distinct advantage of much
faster synthesis – the initial motivation for this restriction. How-
ever we have also found that when words not in the original vo-
cabulary are synthesized they are often poorly synthesized. There-
fore, at present, we see this as a good cut-off point at which we
can guarantee high quality synthesis. Although this restriction
may be disappointing to some, what we are presenting is limited
domain synthesis and find this restriction acceptable for many ap-
plications; work continues on methods of backing off acceptably.

We now have the selection system working in slightly less time
that is takes to do standard diphone synthesis. Although the
unit selection process is computationally more expensive than di-
phone selection, in the unit selection case we do not (usually) do
prosodic modification, though we do pitch-synchronous smooth-
ing for some databases. The unit selection database is substan-
tially larger than a diphone database. We have not yet experi-
mented with data compression algorithms, but as the quality of
unit selection synthesis depends on larger variety of units avail-
able, it will always be the case that all but the smallest limited
domain synthesizers require a larger space than diphone synthe-
sizers.

4. A TALKING CLOCK

The original demonstration of this technique was a simple talking
clock. The prompts consist of 24 simple utterances of the form

The time is now, a little after quarter past two in the afternoon.

The basic template of which is

The time is now, EXACTNESS MINS HOURS DAYPART.

We have successfully built a large number such
clocks, some of which are available on-line at
http://festvox.org/ldom/ldom time.html .



Not counting recording time, this takes around 3 minutes to build.
Such clocks have also been built in languages other than English,
such as Chinese and Nepali. On a recent visit to Barcelona, we
built a talking clock in Catalan, a language we had no previous
synthesis experience in. We designed the prompt list, based on a
native informant, and used an existing English synthesizer to cross
synthesize the prompts which is adequate enough for automatic
labeling. The 12 prompts were recorded and in less than an hour
we had a high-quality natural sounding Catalan talking clock.

5. DOES IT REALLY WORK?

Talking clocks are good as toy examples, and for debugging the
process but there aren’t many applications that require such a
closed domain. The question we need to address is how this tech-
nique performs on larger domains. As with general unit selection
synthesizers, it is clear than when its works the quality is excel-
lent, but what must be more properly investigated is how often
this technique fails and how badly. As we are proposing a system
that doesn’t just offer high quality synthesis, but also a method for
building such voices we also must test the reliability of building
voices.

We devised a simple weather report system that downloaded
weather reports for named US cities from weather.gov . This
is a simple slot filling template problem with the template of the
form

The weather at, HOUR, on DAY DATE, outlook OUT-
LOOK, TEMPERATURE degrees, winds WINDI-
RECTION, WINDSPEED (with gusts to WIND-
SPEED).

We generated 250 utterances of this type, looping through values
for the slots e.g.

The weather at 1 A.M., on Sunday January 1. outlook
cloudy, 20 degrees, winds, North 2 miles per hour.

The first hundred were recorded and used to build a limited do-
main synthesizer as described above. The second hundred were
used to find problems that were then fixed by correcting the au-
tomatic labeling. The final 50 utterances were used for testing
alone.

Once recorded, it takes less than an hour to build the basic voice
on a 500 MHz Pentium III running Linux. Then, less than a day
was spent by one person on fixing problems; most of that time
was spent doing a visual check over all the phone labels. The sec-
ond set of one hundred test sentences were used as a diagnostic
test. Of the problems found, most were minor segmental labeling
errors, though three errors we found where the speaker said a dif-
ferent word from the prompt, “west” for “east” and “pm” for “am”
(twice). The autolabeller can (unfortunately) cope with such mis-
matches but of course this causes a problem when semantically
different but phonetically similar utterances are spoken from what
is requested. However, as pointed out above this robustness is also
sometimes valuable.

The 50 held-out test sentences were then evaluated, both with the
fully automatic, but uncorrected labeling, and then the corrected
form. Three categories were identified, correct where no notable
errors in synthesis were heard, minor where some notable glitch

in synthesis occurs (but the sentence is still fully understandable),
and wrong where a semantic error occurs (wrong word) or the
synthesis has a major problem that affects understandability.

Correct Minor Wrong
Automatic 60% 32% 8%
Corrected 90% 10% 0%

In the corrected case, there were three actual errors (two occurred
twice) all of which were easily fixed, and none were particularly
serious.

This experiment implies that we do have a relatively robust system
for reliably building new voices in a very short time.

6. SCALING UP TO REAL TASKS

A third and more serious limited domain synthesizer we have built
using these techniques is for the CMU DARPA Communicator
system [7]. The Communicator is a telephone based, mixed ini-
tiative dialog system for planning trips, flights, and booking cars
and hotels. At first it appears the domain is not closed as it in-
cludes greeting to registered users by name, and allows reference
to (at least in principle) any airport in the world.

Since the project began some two years ago, we have logs of ev-
erything the system has said. To develop our recording corpus,
we selected the latest three months of logs and found the most
frequent phrases used by the system. Around 100 phrases are
what could be term fixed form, in that they contain no variable
parts, such as “Welcome to the CMU Communicator,” and “I’m
sorry, I don’t understand that.” We then extracted the set of basic
templates used by the language generation system and collected
the possible values, cities, airports, airlines and the closed classes
of dates, times, prices, etc.

For the obvious closed class slots, namely dates, flight numbers,
prices, times etc, we constructed a small number of fillers which
provided word coverage for each class, without having to list them
exhaustively.

For cities and airports, which are essentially an open class, we
used the frequency information in our logs to select which set
to include in our recordings. For the more frequently mentioned
cities we included more than one occurrence in our prompts (in
differing prosodic position) and for less frequent names we only
included them once, in an intended prosodically neutral position.
With around 300 cities and airports we could cover all of cities
in the three month logs. On checking through previous logs the
percentage of out of domain words was very small.

The templates were filled out with actual values giving rise to
around 500 more prompts. These were recorded in the style of a
helpful agent, labelled, and a unit selection synthesizer was built.
To test the system we used the phrases from our existing logs
and listened to many examples. This pointed at errors in label-
ing which were corrected. The most common form of error was
a misplacement of silence (pauses). We had constructed the sen-
tences to use punctuation when a pause is desired, though some
of the utterances generated by the language generation system do
not always use punctuation consistently. Also, the speaker did not
always insert a pause where the synthesizer expected them. These
problems are easily hand corrected, and we also used automatic
techniques to find pauses which had an unusually large amount of



power which tended to be mislabelled sections.

Various text processing issues also were included in this voice to
properly deal with flight numbers and homographs such as “US
Airways”.

Although we had built an initial test voice for communicator us-
ing this technique, as we changed many of the basic prompts and
styles for a later version, we rebuilt a new voice once we were
confident the system was stable and the code was thoroughly de-
bugged. The final voice was built in under one-man week with a
break down of approximately one day to design the prompts, one
day to record the prompts and build the basic voice, and the rest
of the time for tuning and correction.

After this version was running, we made some changes to the lan-
guage generation system and decided to add some extra airport
names and some more (foreign) city names. We constructed a
further 50 utterances and recorded these and added them into the
system in another morning’s work. This exercise was important
to us, as for many domains although they may be limited they
may not remain static so the ability to add new content easily is
important.

In an open domain like Communicator we also have to deal with
out of vocabulary words. As the unit selection algorithm deliber-
ately fails when an unknown word is present we must provide a
backup. We initially intended to only use a diphone synthesizer
for the out of vocabulary word alone but it is very obvious when
listening to such examples that the voice quality switch midway
in a sentence is extremely distracting, especially as the unknown
word is typically an important content word like a place name,
even though the diphone synthesizer is based on the same voice
as our limited domain voice. Thus if a phrase contains an out
of vocabulary word we back-off for the whole phrase, which al-
though is not ideal, is much more understandable.

We have also considered backing off to a more general a unit se-
lection synthesizer for the unknown word as this would, perhaps,
better preserve voice quality. However although the quality of this
is sometimes good, it can also be very bad, and have yet no au-
tomatic way to distinguishing the quality. It is this wide variation
in quality in unit selection that the limited domain synthesis is ad-
dressing, hence using a diphones synthesizer currently for us is
the best solution.

During recent evaluations of the whole dialog system by external
parties, we logged the number of utterances synthesized and also
how many contained words out of vocabulary, and hence required
the backup diphone synthesizer. Over a three week period 18,276
phrases were synthesized. 459 (2.5%) contained out of vocabu-
lary words (71 distinct words). These were all less frequent (or
forgotten) place names.

It is important to note that, although Communicator was not de-
signed as a system that would have a limited output vocabulary,
using these limited domain synthesis techniques we have more
than adequately given it a more interesting and higher quality
voice than a conventional TTS system.

7. CONCLUSIONS

The first important observation to make is that this system does
not solve the general synthesis problem. We must make that clear
as too often a single high quality example is played giving the im-

pression anything can be synthesized at that high quality. How-
ever, what we do conclude here is that these techniques allow reli-
able high-quality synthetic voices to be developed quickly, if they
are targeted towards a limited domain.

The advantage that these techniques bring, in that the synthe-
sis implicitly models the quality in the recorded database, is in
the long run, a disadvantage too. As more general synthesis is
required, with varying prosody, varying emphasis and focus as
well as larger vocabularies, the amount of data that needs to be
recorded will become too large. At some point we need to prop-
erly model prosodic and spectral phenomena explicitly so that we
can get the same quality of synthesis without having to record
such large databases.

We see this technique as offering a more general solution to sys-
tem currently using recorded prompts. This offers the quality of
recorded prompts but also the generality of simple synthesis so
phrases other than those in the recordings can be generated. We
do not currently recommend this system for truly general synthe-
sis, such as reading email or news stories, but there still are many
speech applications which fall within the scope of this technique.

Full documentation with scripts, code and explicit walk-
throughs of these techniques with examples are available at
http://festvox.org

8. ACKNOWLEDGEMENTS

This research was sponsored in part by the Space and Naval War-
fare Systems Center, San Diego, under Grant No. N66001-99-1-
8905. The content of the information in this publication does not
necessarily reflect the position or the policy of the US Govern-
ment, and no official endorsement should be inferred.

9. REFERENCES

1. Beutnagel, M., Conkie, A., Schroeter, J., Stylianou, Y., and
Syrdal, A. The AT&T Next-Gen TTS system. In Joint Meeting
of ASA, EAA, and DAGA (Berlin, Germany, 1999), pp. 18–24.

2. Black, A., and Lenzo, K. Building voices in the Festival
speech synthesis system. http://festvox.org, 2000.

3. Black, A., and Taylor, P. Automatically clustering similar
units for unit selection in speech synthesis. In Eurospeech97
(Rhodes, Greece, 1997), vol. 2, pp. 601–604.

4. Conkie, A., and Isard, S. Optimal coupling of diphones. In
Progress in speech synthesis, J. van Santen, R. Sproat, J. Olive,
and J. Hirschberg, Eds. Springer Verlag, 1996, pp. 293–305.

5. Donovan, R., and Woodland, P. Improvements in an HMM-
based speech synthesiser. In Eurospeech95 (Madrid, Spain,
1995), vol. 1, pp. 573–576.

6. Malfrere, F., and Dutoit, T. High quality speech synthesis
for phonetic speech segmentation. In Eurospeech97 (Rhodes,
Greece, 1997), pp. 2631–2634.

7. Rudnicky, A., Bennett, C. Black, A., Chotimongkol, A.,
Lenzo, K., Oh, A., and Singh, R. Task and domain specific
modelling in the carnegie mellon communicator system. In
ICSLP200 (Beijing, China., 2000).


