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Abstract

This paper describes the acoustic-to-articulatory inversion map-
ping using a Gaussian Mixture Model (GMM). Correspon-
dence of an acoustic parameter and an articulatory parameter
is modeled by the GMM trained using the parallel acoustic-
articulatory data. We measure the performance of the GMM-
based mapping and investigate the effectiveness of using multi-
ple acoustic frames as an input feature and using multiple mix-
tures. As a result, it is shown that although increasing the num-
ber of mixtures is useful for reducing the estimation error, it
causes many discontinuities in the estimated articulatory tra-
jectories. In order to address this problem, we apply maxi-
mum likelihood estimation (MLE) considering articulatory dy-
namic features to the GMM-based mapping. Experimental re-
sults demonstrate that the MLE using dynamic features can es-
timate more appropriate articulatory movements compared with
the GMM-based mapping applied smoothing by lowpass filter.

1. Introduction

An articulatory parameter, one of representations of speech,
is useful for various applications such as speech coding [1],
speech recognition [2][3], and speech synthesis [4]. Because
it is much harder to record articulatory movements than the
speech signal, many attempts at determining articulatory con-
figurations from the speech signal have been studied. This pro-
cess is called an acoustic-to-articulatory inversion mapping. It
is well known that this mapping is one-to-many mapping.

Development of recording devices enables us to record the
speech signal and movements of several articulators simultane-
ously. Available large enough quantities of parallel acoustic-
articulatory data make it possible to apply a corpus-based ap-
proach to the inversion mapping. As one of the corpus-based
methods, the inversion mapping with the acoustic-articulatory
codebook has been proposed [5]. The optimum sequence of
code vectors is selected under dynamic constraints on acous-
tic and articulatory parameters. Specifically, multiple acoustic
frames are used as an input feature, and a measure capturing
articulatory discontinuities is used for the selection. Richmond
modeled the mapping with Neural Network based on mixture
density estimation [6]. It has been reported that the multiple
representation for articulatory probability density is effective
for the inversion mapping. Hiroya et al. proposed the inversion
mapping using speech production model based on the HMM
[7][8]. In this model, the acoustic-articulatory correspondence
is represented as a linear mapping in each state of the diphone
HMMs. In this method, not only dynamic features of acoustic
and articulatory parameters but also phonetic information that is
needed for training HMMs are used as constraints for address-
ing the problem of the one-to-many mapping.
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In this paper, we address the inversion mapping without
constraints on phonetic information. As a mapping method,
we employ the mapping method based on a Gaussian Mixture
Model (GMM) that is often used for voice conversion [9]. We
investigate the effectiveness of using multiple acoustic frames
and multiple mixtures. Moreover, in order to improve the map-
ping accuracy, we apply maximum likelihood estimation (MLE)
considering articulatory dynamic features to the GMM-based
mapping. The MOCHA database [10] is used as acoustic-
articulatory data in this paper.

The paper is organized as follows. In Section 2, the GMM-
based mapping method is described. In Section 3, evaluations
of the mapping are described. In Section 4, we apply MLE us-
ing dynamic features to the GMM-based mapping. In Section
5, the effectiveness of using articulatory dynamic features is de-
scribed. Finally, we summarize this paper in Section 6.

2. GMM-Based Mapping

In the GMM-based mapping algorithm [9], a mapping function
from an acoustic feature vector x; to an articulatory feature vec-
tor y, in frame ¢ is defined as
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where g, denotes an estimated articulatory feature vector. The
total number of mixtures is M. A set of model parameters ®

consists of weights, mean vectors and covariance matrices. The
weight of the i-th mixture is w;. The vectors ul@) and ugy)
denote the mean vector of the i-th mixture for « and vy, respec-
tively. The matrices $**) and =) denote the covariance
matrix of the ¢-th mixture for & and the cross-covariance ma-
trix of the ¢-th mixture for « and y. These covariance matrices
are full. The normal distribution with (") and 2{**) is rep-
resented as N (z; ™, £°*)). As shown in these equations,
the conditional mean vector in each mixture is calculated by a
simple linear conversion taking account of the correlation be-
tween acoustic and articulatory features. The estimated articu-
latory feature is defined as the weighted sum of the product of
each of the conditional mean vectors and the conditional prob-
abilities that the input feature vector belongs to each one of the
mixtures.

In order to estimate model parameters, a GMM on joint

probability p(z, y|®) is trained [11].



3. Evaluation of GMM-Based Inversion
Mapping
3.1. Experimental conditions

Acoustic-articulatory data of two speakers in MOCHA [10] was
used. One was female (fsew0), and the other was male (msakO0).
The 460 British TIMIT sentences were uttered by each speaker.

We used electromagnetic articulograph (EMA) data, one
of representations of articulatory data provided in MOCHA, as
an articulatory parameter. The locations of seven articulators
(top lip, bottom lip, bottom incisor, tongue tip, tongue body,
tongue dorsum, and velum) are shown by x- and y-coordinates
on the midsagittal plane. We performed a normalization pro-
cess described in [6] for reducing the effect of noise resulting
from measurement error. The 14-dimensional articulatory fea-
ture vector converted to Z-score was used. The frame shift was
10 ms.

As for an acoustic parameter, we used the O-th through 24-
th mel-cepstral coefficients extracted from 16 kHz sampling
speech data. STRAIGHT analysis method was employed for
this extraction [12]. The shift length was 10 ms. A feature vec-
tor was constructed by concatenating multiple acoustic frames.

The number of mixtures was varied from 1 to 64 (1, 2, 4,
8, 16, 32, 64). The number of input acoustic frames was varied
from 1 to 21 (a current £+ 0, 1, 3, 5, 7, 10 frames). When the
number of frames was set to more than 5, the input vector di-
mension was reduced using PCA analysis technique with a loss
of no more than 20% of the information.

A 1/5 cross validation test was conducted to measure the
accuracy of the mapping under open conditions. The 460 sen-
tences were divided into 5 partitions consisting of 92 sentences,
and then one of the partitions was reserved for the testing by
turns, while the other 4 partitions were used for training. The
root mean square (RMS) error was calculated between the mea-
sured articulatory parameters and the estimated articulatory pa-
rameters. Finally, the average of the RMS error was calculated
over the 5 combinations of the training and testing partitions.

3.2. Effectiveness of using multiple acoustic frames and
multiple mixtures

The results are shown in Fig. 1. The RMS error shows the
average of the errors for individual dimensions of the articula-
tory vector. Using multiple acoustic frames and multiple mix-
tures is obviously effective for improving the mapping accu-
racy. However, the degradation of accuracy is caused by ex-
cessively increasing the number of these parameters because a
larger amount of training data is needed for estimating a larger
number of parameters. Moreover, it can be observed that the op-
timum number of mixtures for each number of acoustic frames
decreases as the number of acoustic frames increases. Conse-
quently, the best mapping accuracy is achieved when the num-
ber of acoustic frames is set to 11 and the number of mixtures
is set to 32 in this experiment. In that case, the RMS error is
1.61 mm (0.67 on z-score) and the correlation coefficient is 0.73
for the female speaker, and the RMS error is 1.53 mm (0.66
on z-score) and the correlation coefficient is 0.74 for the male
speaker.

Figure 2 shows an example of the estimated articulatory
movement using 32 mixtures and that using a single mixture.
The measured articulatory movement is also shown in this fig-
ure. It can be seen that many discontinuous parts in the esti-
mated articulatory movement caused by using the multiple mix-
tures because the correlation between frames is ignored in the
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Figure 1: RMS error [mm] between measured and estimated
articulatory movements. The upper figure shows the result for
the female speaker, and the lower figure shows the result for the
male speaker.

GMM-based mapping.

4. Maximum Likelihood Estimation Using
Dynamic Features

In order to use a constraint on articulatory movements, we apply
a parameter generation algorithm based on ML using dynamic
features [13] to the GMM-based mapping. Hiroya et al. also use
this technique in the inversion mapping with the HMM-based
speech production model [8]. In the production model, a HMM
state sequence is determined by the Viterbi search. Meanwhile,
we use the EM algorithm described in [13] for maximizing like-
lihood in this paper.

Not only static but also dynamic features are used as the
articulatory feature vector, which is given by
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The conditional probability of the target feature vector yj for
the given input feature vector x; is written as
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Figure 2: An example of estimated and measured articulatory
trajectories.
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Model parameters are estimated by training a GMM on joint
probability p(z, y'|@’).

Let X = [z, 22", - ,wTT]T be a time sequence of

the acoustic feature vector and Y = [le, Yo o yTT] '
be that of the articulatory feature vector. The relationship be-
tween a sequence of the static feature Y and a sequence of the
static and dynamic features Y can be represented as a linear
conversion,

Y = WY )

where W is a transformation matrix consisting of coefficients
of a delta window and O [13]. In order to maximize a likelihood
function p(Y'| X, ®"), we maximize an auxiliary function of
a current feature vector sequence Y' and a new feature vector

sequence Y defined by
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The constant K is independent of Y. The sequence of the esti-

mated articulatory static feature ¥~ that maximizes Q(Y’,Y")
is given by
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The target vector sequence given by the conventional mapping
function is used as the initial vector sequence Y. The new vec-
tor sequence Y is calculated by the above equations, and then
Y is substituted for Y. This procedure is iteratively performed
until a certain convergence condition is satisfied.

There is little difference between the articulatory move-
ments estimated with diagonal covariance matrices and that
with full covariance matrices in our preliminary experiments.
Therefore, we use only diagonal elements of D’ (3).

5. Evaluation of MLE Considering
Articulatory Dynamic Features

We investigate the effectiveness of MLE taking articulatory dy-
namic features into account by comparing with smoothing of
the estimated articulatory trajectories by lowpass filter.

5.1. Experimental conditions

A 1/5 cross validation test was conducted in the same way as
described in Section 3.1. The number of acoustic frames used
as an input feature was set to 11. The number of mixtures was
varied from 1 to 128. Cutoff frequency of lowpass filter was
determined so that the RMS error was minimized in each di-
mension of the articulatory vector.

5.2. Results

Results of the MLE and the GMM-based mapping with the low-
pass filtering are shown in Fig. 3. Results of the GMM-based
mapping without the lowpass filtering are also shown in this fig-
ure. The RMS error can be reduced by performing smoothing of
the estimated articulatory trajectories. Especially, the smooth-
ing is effect when a number of mixtures are used because many
articulatory discontinuities are caused by using multiple mix-
tures as mentioned in Section 3.2.

The mapping accuracy of the MLE and that of the GMM-
based mapping with lowpass filtering is almost equal when the
number of mixtures is small. However, when a large number
of mixtures are used, the MLE can estimate more appropriate
articulatory movements than the GMM-based mapping applied
the lowpass smoothing. In the MLE, the smoothing of articu-
latory trajectories is performed considering the estimated static
and dynamic probability density functions. In order to model
joint probability density of both static and dynamic features, a
larger number of mixtures are needed compared with the case
of using only the static feature. When the number of mixtures
is set to 64, the RMS error is 1.45 mm (0.61 on z-score) and
the correlation coefficient is 0.79 for the female speaker, and
the RMS error is 1.36 mm (0.59 on z-score) and the correla-
tion coefficient is 0.80 for the male speaker. An example of the
articulatory movement estimated by the MLE is also shown in
Fig. 2.

We also measured the performance of the lowpass smooth-
ing in the MLE with dynamic features. Table 1 shows results
for the female speaker when the number of mixtures is set to 64.
The results of the GMM-based mapping with lowpass filtering
are also shown in this table. It is shown that the improvements
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Figure 3: RMS error as a function of the number of mixtures.

by the lowpass smoothing in the MLE is much less than those
in the GMM-based mapping. These results demonstrate that the
smooth trajectories can be estimated by the MLE.

6. Conclusions

We performed the inversion mapping using a Gaussian Mix-
ture Model (GMM). In order to address the problem of one-
to-many mapping, we used multiple acoustic frames and multi-
ple mixtures. From results of experimental evaluations, it was
shown that the articulatory trajectories having many discontin-
uous parts are estimated by the GMM-based mapping with a
large number of mixtures. In order to avoid the articulatory
discontinuity, we applied the maximum likelihood estimation
(MLE) considering articulatory dynamic features to the GMM-
based mapping. Experimental results demonstrated that the
MLE using dynamic features can estimate more appropriate ar-
ticulatory movements compared with the GMM-based mapping
applied the smoothing by lowpass filter.
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