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Abstract
Current speech synthesizers typically lack backchannel tokens.
Those synthesiser, which include backchannels, typically only
support a limited set of stereotypical functions. However, this
does not mirror the subtleties of backchannels in spontaneous
conversations. If we want to be able to build an artificial listener,
that can display degrees of attentiveness, we need a speech syn-
thesizer with more fine–grained control of the prosodic realisa-
tions of its backchannels.

In the current study we used a corpus of three-party face-to-
face discussions to sample backchannels produced under vary-
ing conversational dynamics. We wanted to understand i) which
prosodic cues are relevant for the perception of varying degrees
of attentiveness ii) how much of a difference is necessary for
people to perceive a difference in attentiveness iii) whether a
preliminary classifier could be trained to distinguish between
more and less attentive backchannel token.
Index Terms: conversational speech, backchannels, attentive-
ness

1. Introduction
Humans spend a substantial part of their day listening to other
humans. Parents listen to their childrens’ latest adventures, ther-
apists listen to their patients, and professionals listen to each
other during company briefings etc. While the contexts which
surround the listening can vary a lot, the function still remains
the same; an attentive listener lends support to the speaker and
provides him with feedback.

Like with humans, the contexts under which an artificial
listener could be useful, are manifold. However, especially for
systems focusing on building artificial companions, a realisa-
tion of human-like feedback behaviour could be very useful.
Further application areas could include companions specialised
for interactions with the elderly [1, 2] or artificial listener to
function as an interviewer for healthcare decision support [3].

In recent years more and more research has focused on in-
vestigating listening behaviours. Most of the research in this
domain has focused on developing models to predict the cor-
rect timing of feedback utterances, as for instance described
in [4, 5, 6].There are also some studies, which set out to de-
scribe the different functions, feedback tokens could take on,
and how these functions are prosodically realised [7, 8].To our
knowledge, there is however only one study, which focuses on
describing differences in the realisation of feedback tokens be-
tween distracted and attentive listeners [9].

The aim of the current study is to lay the groundwork for
a conversational speech synthesiser, which is able to increase
or decrease the amount of perceived attentiveness, on the gran-

ularity of the smallest perceivable difference. For this we first
carry out an in depth analysis of third-party observer agreement
in relation to relative prosodic differences 5.1. Second, we in-
vestigate whether there are any significant difference between
backchannel tokens which are rated to be more attentive in com-
parison to the backchannel tokens which were rated to be less
attentive 5.2. Finally, in section 5.3 we propose a preliminary
classifier which is focused on ranking bisyllabic backchannel,
rather then classifying them according to predefined groups.

2. Background
There are only a few studies that investigates the prosodic re-
alization of backchannel functions. Neiberg et al.[8] investi-
gated how prosodic realization influence the perceived func-
tion of feedback tokens, taken from dyadic conversations. They
found that feedback tokens were often multi-functional, some
conveyed both understanding, agreement, certainty, and nega-
tive surprise. The perceived function was found to be correlated
with prosodic cues; e.g. tokens with a fast speaking rate and a
moderate F0 rise were found to convey understanding and in-
terest. A further study on the prosodic characteristics of Ger-
man feedback expressions was done by Malisz et al. [9]. They
analysed the prosodic characteristics of (“ja”, “m” and “mhm”)
across their pragmatic functions as well as the differences in
feedback produced by distracted vs. attentive listeners. They
split each feedback signal into three parts of equal length and
calculated the mean and standard deviation for each of these
parts. They calculated slopes over the first and the second half.
They then used Generalised Linear Mixed Models (GLMM) for
investigating feedback function differences, and distractedness-
related differences. They found that attentive speakers tend to
speak more loudly, energy is less variable, and pitch variabil-
ity measures are positively related to attentiveness. They ar-
gue that prosodic features may strongly depend on segmental
structure eg. nasality vs orality syllabic structure vs mono-
syllabic structure. Ward [7] found that syllabification, dura-
tion, loudness, pitch slope and pitch contour are relevant for
the functional feedback categories in English. Kawahara et al.
[10] try to predict an audience’s interest level on the basis of
backchannel tokens. For this they also analyse the prosodic re-
alisation of japanese feedback tokens. They find that prolonged
“hu:N” means interest and surprise while “a:” with higher pitch
or larger power means interest. On the other hand, “he:” can
be emphasized in all prosodic features to express interest and
surprise. Gustafson and Neiberg [11] analysed feedback to-
kens over the course of a Swedish-call-in-radio-show. They
found that interest-signalling, and encouraging pitch contours,
are most commonly found at the beginning of the call. Over
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time the mean intensity of the feedbacks tokens decreases, and
bisyllabic tokens become flatter, which basically turns them into
monosyllabic feedback tokens. They also note that the overall
pitch level decreases.

3. Data
3.1. Corpus

The KTH-Idiap corpus [12] is a corpus of multi-party group dis-
cussions. Three PhD students had to convince a Post-Doc that
they were the best suited candidate for a prestigious scholarship.
We designed the corpus to encompass four distinct phases. Dur-
ing the first phase, the students were asked to shortly introduce
themselves. In the second phase, they were asked to give an
elevator-pitch-about their respective PhD project. The fourth
phase consisted of the students describing their projects’ im-
pact on society, and in the fifth and final phase they were asked
to collaboratively come up with a joined project proposal. In a
previous study, on the same corpus [13], it was found that third
party observers could distinguish between at least three distinct
types of listeners; an attentive listener, a side-participant, and a
bystander. It was also found that the frequency of backchannel
tokens was related to the perception of listener categories. No
analysis however, was carried out on the prosodic realisation
of these backchannel token. As the corpus is rich in conversa-
tional dynamics in general, and listener categories in particular,
we chose to use it for this study.

3.2. Feature Extraction

In order to determine syllable boundaries, syllables were man-
ually annotated in Praat [14]. We then calculated the syllable
duration, in milliseconds, from the corresponding TextGrid file
and, in a next step, extracted pitch and intensity values using
Praat [14]. We converted Hz values into semitones and nor-
malised F0-mean as well as rms-intensity values by speaker.

4. Perception Test Setup
4.1. Stimuli

The dataset we used in this study consists of bisyllabic as well
as mono-syllabic backchannel token. We include 254 unique
pairs of bisyllabic backchannel tokens, containing 64 unique
backchannels. We also include 197 unique pairs of monosyl-
labic backchannel token, containing 91 unique backchannels.
We sampled the backchannels across 9 speakers (5 male, 4 fe-
male). Each backchannel pair was rated by 24 raters.

To avoid cross-speaker confounds, pairs were only cre-
ated of within speaker comparisons. Each item, of a pair of
backchannel tokens, was embedded into the same carrier sen-
tence, so that it was possible to ensure that backchannel tokens
were rated in the same interactional environment. All carrier
sentences, as well as all backchannel tokens, were from the
KTH-IDIAP group conversation corpus. Backchannels were in-
serted into the same place in which a backchannel had occurred
in the original recordings.

4.2. Raters

Raters were recruited from the crowdsourcing platform crowd-
flower. We restricted the geographic area of the rater to the
United States, The Netherlands and Germany. No effect of ge-
ographic area on the ratings was found. To ensure that we re-
ceived the highest possible ratings, we chose a time threshold of

160 minimum seconds to complete 10 ratings. If a rater was un-
der this threshold (which was based on the average annotation
speed of one of the authors), he was automatically discarded.
Moreover, we set a maximum of 20 judgments per rater to avoid
any tiredness effects. Furthermore, we chose the settings as to
prefer quality over speed when recruiting the raters. In addi-
tion, we asked 6 expert phoneticians to annotate a subset of the
data in order to make sure that their distribution of ratings did
not differ significantly from the crowdsourced raters; which it
did not. All in this paper discussed analyses are based on the
crowdsourced ratings alone.

Raters were instructed to listen to pairs of short audio files
(each one <10 seconds) and determine in which soundfile a lis-
tener sounds more attentive. We defined an attentive listener as
someone who a) is paying attention; listens carefully; is obser-
vant b) is careful to fulfill the needs or wants of the speaker; is
considerate about the speaker.

In a dropdown menu we provided them with a choice to in-
dicate in which file they perceived the listener to be more atten-
tive, but also to indicate when they could not hear any difference
in the level of attentiveness.

5. Results

5.1. Thresholds for the Perception of Differences in Atten-
tiveness

In the following subsection we are going to investigate inter-
rater agreement depending on prosodic differences in backchan-
nel pairs. For this we divided the ratings into three groups; little,
median, and strong agreement. Little agreement consists of all
cases in which the winning backchannel only won with a major-
ity of 0-4 votes. Median agreement in turn consist of all cases
with a majority margin of 5-9, and strong agreement consists
of all cases with a majority margin of 10-23. We investigated
both bi- and monosyllabic backchannel token. The results are
summarised in Figure 1.

For bisyllabic backchannel token, differences in the dura-
tion of backchannels, appear to be a strong cue for raters when
deciding which backchannel token conveys more attentiveness.
For the second syllable for instance, durational differences of
more than 80 ms are more frequent in the “strong agreement”
(20%) than in the “little agreement”’ group (8%). The oppo-
site trend can be observed for the first syllable. As with dura-
tion, rms-intensity appears to be a strong cue. The greater the
difference in loudness between the two backchannel token, the
more the raters agreed. For instance, for the first syllable, the
occurences of differences of 0-0.5 decreases from 37% in the
“little agreement”’ condition, to 18% in the “strong agreement”
group. For the second syllable they decrease from 35% to 19%
. We could not find any effect of F0-mean or F0-slope on inter-
rater agreement.

For monosyllabic backchannel token, as for the bi-syllabic
backchannel token, rms-intensity appears to be a strong cue.
Also in this case, the greater the difference in rms-intensity, the
more the raters agree. However, different from the bisyllabic
backchannels, duration does not appear to be as important, as
no clear pattern can be observed. The same is true for f0-slope.
In contrast to the bisyllabic backchannels, raters appear to use
f0-mean as a cue for their ratings; here the number of instances
of a differences greater than 2 increases from 8-24% between
little and strong agreement.
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Figure 1: Inter-Rater Agreement Depending on Prosodic Dif-
ferences.

5.2. More attentive vs. Less attentive backchannels

We made all possible pairwise attentiveness comparisons within
the data. We then defined two groups of tokens: “Wi” and “Lo”,
in which, for each pair, the more attentive token was assigned to
the group “Wi”, and the less attentive was assigned to the group
“Lo”. Note that, due to making all comparisons, the groups
may contain repeated samples. In addition, we excluded all the
backchannel pairs for which the majority of raters indicated that
they could not perceive a difference in attentiveness between
the two backchannel tokens. The differences across syllable for
each prosodic cue between the two groups can be observed for
the bisyllabic token in Figure 2 and for the monosyllabic token
in Figure 3.

5.2.1. Prosodic Cue Analysis: Bisyllabic Backchannels

Welch Two Sample t-test were conducted to compare duration,
f0-mean, f0-slope and rms-Intensity between ”Wi” and ”Lo”
stimuli. We found no significant difference in duration for the
first syllable. However, there was a significant difference in du-
ration for more–attentive backchannel (M=0.188, SD=0.0524)
and less–attentive backchannel (M=0.206, SD=0.0423) condi-
tions; t(476.8)=-4.135, p <0.001. Although there seems to be

Figure 2: More attentive vs. less attentive bisyllabic backchan-
nel.

a trend that the as more attentive rated syllable has a higher
f0-mean, no significant difference in f0–mean for the first or
second syllable was found. It is however noticeable that the
first syllable is higher in f0-mean than is the second sylla-
ble. Moreover, we found a significant difference in F0-slope
of the first syllable for more–attentive backchannel (M=-10.516
, SD= 9.3278) and less attentive–backchannel (M=-7.752, SD=
12.907) conditions; t(371.42)=2.485, p = 0.001. Finally, there
was a significant difference in rms-Intensity of the first sylla-
ble for more–attentive backchannel (M=1.142, SD=1.733) and
less attentive–backchannel (M=-0.165, SD=0.849) conditions;
t(296.57)= -9.696, p <0.001 as well as the second syllable
for more–attentive backchannel (M=-0.309 , SD=0.907) and
less attentive–backchannel (M= 0.478, SD= 0.861) conditions;
t(406.87)=-9.009 , p <0.001.

5.2.2. Prosodic Cue Analysis: Monosyllabic Backchannels

We carried out the same prosodic analysis also for the monosyl-
labic backchannel token. We found a significant difference in
rms–intensity for more–attentive backchannel (M=0.845, SD=
1.048) and less–attentive backchannel (M=-0.469, SD= 0.793)
conditions; t (299.8)= -12.764, p <0.001. The “winning” group
has a higher rms-intensity than the “loosing”’ group. We also
found a significant difference in f0-slope for more–attentive
(M=2.192, SD= 16.552) and less–attentive backchannel (M=-
5.643, SD= 15.11092)conditions; t(319.36) = -4.450 p <0.001.
No significant difference could be observed for F0-mean and
duration.

5.3. RankSVM Classification

In this Section, we evaluated whether it is possible to obtain an
automatic assessment on attentiveness.We decided to focus on
bisyllabic token in this study, but plan to extend it to include
monosyllabic backchannels as well. To avoid defining an ex-
plicit attentiveness scale, and stating it as a regression problem,
we instead formulated this task as a ranking problem, where
two samples are compared according to relative attentiveness.
To this end, we employed a Ranking SVM algorithm, in which,
for a given pair xi and xj , their difference (xi − xj) is clas-
sified into +1 (if i is more attentive than j) or -1 (if j is more
attentive than i), thus turning the problem into a binary classi-
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Figure 3: More attentive vs. less attentive monosyllabic
backchannel.

fication. To assign such target label (relative attentiveness) to a
given pairwise comparison, we used the majority vote from the
crowdsourcing experiments. All cases in which the majority of
raters indicated that there was no perceivable difference in at-
tentiveness, was excluded from the data set. This reduced the
size of the data set to 205 pairs.

In our experiments we used a Support Vector Machine
(SVM) classifier based on the linear kernel. We applied a
grid-search with 10-fold cross validation to identify the hyper-
parameters. For the classification we used all features which
were previously determined to have a significant effect on per-
ceived attentiveness except for f0–slope, as this feature reduced
the performance of the classifier. The remaining features thus
were rms–intensity of first and second syllable as well as the
duration of the second syllable. As a result of this experiment,
we obtained an accuracy of 83%, which corresponds to a 27%
improvement over majority class classification (56% acc.).

6. Discussion
In the current study we have been able to model perceptual dif-
ferences in mono– as well as bisyllabic backchannel token. It
has to be noted, that the bisyllabic backchannel token do not ex-
press the prototypical high or rising pitch cues for interest, en-
gagement and surprise. Instead we found that the most salient
cues to attentiveness, in these bisyllabic backchannel token,
were duration of the second syllable, F0 slope of the first sylla-
ble and rms-intensity of both syllables. We did not find any sig-
nificant difference in F0 mean. For the monosyllabic backchan-
nel token, we found a significant difference in F0-slope as well
as intensity. These findings differ from Neiberg et al.[8], who
found in their study that surprise and interest are correlated with
longer duration and higher average F0. These differences might
be due to both, the different characteristica of the respective cor-
pora used, and the difference in approach concerning the distin-
guishing of bi– and monosyllabic backchannels.

Moreover, previous studies have shown that high or rising
pitch is perceived as more engaged than flat pitch (e.g.[15, 16]).
However, in the current study we did not find any difference in
attentiveness between the bisyllabic tokens with rising or high
flat pitch, and those with flat pitch. Furthermore, it has also
been found in previous studies that different feedback tokens

have different intrinsic functions. In a study on feedback tokens
with acted emotions “ah” and “oh”’ was commonly interpreted
as surprise, even when the actor tried to convey other functions
through prosody [15], and in a study on spontaneous backchan-
nels in casual conversation “aha” and “mhm” have been found
to convey surprise [8]. In the current study “aha” and “mhm”
were found to differ in how they convey attentiveness. When
investigating 71 pairs of bisyllabic feedback tokens of these
types that had the same prosodic realization (flat slightly falling
pitch) the “aha” tokens where significantly more often regarded
as more attentive in 55 comparisons, while the “mhm” token
only where rated as more attentive in 12 cases.

As Malisz et al. [9] we found that attentive speakers tend
to speak more loudly. While they do not report on any dura-
tional aspects and we did not calculate the standard deviation in
pitch, our results corroborate their findings in that F0 slope, as
a measure of variability, at least for monosyllabic backchannels
and in the first syllable of bisyllabic backchannels, is positively
related to attentiveness.

7. Conclusion
In the current study we used a corpus of three-party face-to-
face groups discussions. We devised perception experiments,
and recruited raters through a crowdsourcing platform, in or-
der to investigate how prosodic realisation influence perceived
difference in attentiveness in bisyllabic as well as monosyllabic
backchannel pairs. To understand, why one backchannel is per-
ceived as more attentive than another, we analysed their pat-
terns of F0, duration and rms–intensity. We found differences
in the way attentiveness is expressed in mono–, in contrast to
bisyllabic backchannel token. When building a synthesiser for
an attentive conversational agent, it might therefore be advanta-
geous, to model mono– and bisyllabic backchannel token sepa-
rately.

Finally, we have also been able to build a classifier to rank
bisyllabic backchannels, that do not exhibit the prototypical
high or rising pitched cues for interest, engagement and sur-
prise. The classifier achieves an accuracy of 83%. We believe
that this result could further be improved by combining the here
proposed classifier with the thresholds for inter–rater agreement
discussed in this paper. Such a classifier would only rank a
backchannel pair if the difference in prosodic cues extends, a
still to be determined, combination of thresholds in prosodic
cues. In forthcoming studies, we would also like to use the cur-
rent findings, as a starting point, in order to devise a parametric
speech synthesiser which is able to generate, perceivable more
respectively less attentive sounding backchannel tokens.
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