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Abstract

Recognizing paralinguistic cues from speech has applica-
tions in varied domains of speech processing. In this paper we
present approaches to identify the expressed intent from acous-
tics in the context of INTERSPEECH 2018 ComParE chal-
lenge. We have made submissions in three sub-challenges: pre-
diction of 1) self-assessed affect and 2) atypical affect 3) Cry-
ing Sub challenge. Since emotion and intent are perceived at
suprasegmental levels, we explore a variety of utterance level
embeddings. The work includes experiments with both auto-
matically derived as well as knowledge-inspired features that
capture spoken intent at various acoustic levels. Incorporation
of utterance level embeddings at the text level using an off the
shelf phone decoder has also been investigated. The experi-
ments impose constraints and manipulate the training procedure
using heuristics from the data distribution. We conclude by pre-
senting the preliminary results on the development and blind
test sets.

Index Terms: speech processing, convolutional neural net-
works, strength of excitation, classification, emotion

1. Introduction

Applications of Computational Paralinguistics have grown
rapidly over the last decade and span both human-human as
well as human-machine interactions. The ComPare Paralinguis-
tics challenges have been playing a significant role in driving
progress in the diverse use of paralinguistics. Besides the tra-
ditional task of affect recognition using suprasegmental non-
verbal aspects of speech, novel tasks were introduced, such as,
the detection of speaker traits, deception, conflict, eating and
autism [1, 2, 3, 4]. These challenges have shown that paralin-
guistic information can be used not only to identify affect but
also clues that are helpful to detect abnormalities indicating dis-
orders. Paralinguistic information also has applications in other
domains of speech processing such as dialog systems, speech
synthesis, voice conversion, assistance systems, and eHealth
systems.

In this paper, we present our approach to three of the IN-
TERSPEECH 2018 ComPare sub-challenges [5]: prediction of
1) self-assessed affect, 2) atypical affect and 3) types of cry-
ing. The Self-Assessed Affect (S) Sub-Challenge and the Atypi-
cal Affect (A) Sub-Challenge aim to classify affect from speech.
In (S) ground-truth labels are provided by the speaker itself.
The prediction of affect from speech oriented by the own as-
sessment, could be used as a support in eHealth systems for
individuals with affective disorders, such that a therapist can
monitor the emotional state of their clients. In (A) the goal is to
determine the affect of mentally, neurologically, and/or physi-
cally disabled individuals. The challenge is that some disorders
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also affect way people express their emotions. However, hav-
ing a system able to detect distress in workplaces of disabled
individuals can be helpful to make supervisors aware to suggest
breaks or divide tasks in smaller ones, improving the emotional
state of workers and therefore their concentration. The Cry-
ing (C) Sub-Challenge focuses on using paralinguistic informa-
tion to identify affect in vocalisations of infants. Experts in the
field of early speech-language development labeled audio-video
clips into three classes of vocalisations: neutral/positive , fuss-
ing, and crying.

Typical approaches for classification and prediction of par-
alinguistic features include extraction of low level descriptive
features followed by a machine learning model. Examples of
low level descriptors are Mel-Frequency Cepstral Coefficients
(MFCCs), log Mel-scale filter banks energies (FBANK) and
several suprasegmental acoustic features that can be extracted
using the openSMILE tool [6]. These features act as general
purpose feature set and are expected to achieve competitive re-
sults in a wide range of paralinguistic problems. However, de-
rived neural representations using unsupervised learning have
shown impressive results on many speech and image based
tasks recently [7]. These features usually embed the task rele-
vant information from the entire utterance in a compact form.
Also end-to-end learning models have been employed in af-
fect classification using Long Short-Term Memories (LSTMs)
or Gated Recurrent Units (GRUs) [8, 5].

Motivated by this, we explore different utterance level rep-
resentations and end-to-end approaches in the context of sub-
challenges. Specifically, we investigate the significance of us-
ing both utterance level acoustic and derived linguistic features.
We further employ data augmentation using utterance emphasis
(see section 2.3.4) and random utterance segmentation (section
2.3.2), as a strategy to cope with class imbalance. For obtaining
linguistic features we first obtain the text for each of the utter-
ances using a pretrained English ASPire model. We then train
a Recurrent Neural Network language model on the obtained
text at the phone level and use the representation at the hidden
state as the embedding of the utterance. Apart from this, we ex-
plore the applications of various Convolutional Neural Network
models and chart their performance. It has to be noted that even
though acoustic and phonetic embeddings use identical inputs,
they differ in the higher level features learned internally. There-
fore we believe that they complement each other producing a
superior fusion result.

2. Framework

In this section, we present different features and classifiers used
for all three sub-challenges. We used two different classification
models: 1) Bidirectional LSTM using low-level features which
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Figure 1: Original SoundNet architecture [7] on top and modi-
fied SoundNet architecture at the bottom. The modified version
uses 2 layers of 512 fully connected (fc) units and a softmax
layer of 3 units.

uses temporal information , and 2) Random Forest classifier or
SVM Classifier using high-level features, which are utterance
based, combined with utterance level embeddings.

2.1. Temporal classification
2.1.1. Low level features

For acoustic feature extraction we divided each utterance
(length is 8s) into 25 ms segments with a 10 ms frame shift.
For each frame we extract 13 mel-frequency cepstral coeffi-
cients and their deltas and double-deltas obtaining a feature vec-
tor of 39 dimensions. We further extract the log pitch (f0) and
strengths of excitation (5 dim) [9]. In addition, we also obtain
40 dimensional filter banks and 23 dimensional PLP based fea-
tures. Filter banks have been obtained using the open source
toolkit Kaldi [10] with ‘dithering’ enabled as it was shown to
be robust in other experiments. We have also extracted sev-
eral features using Opensmile toolkit [6] and performed sin-
gular value decomposition with the intention of obtaining an
acoustic representation. This procedure also results in a dense
low dimensional representation. This representation was later
used in combination with the high level features we obtained in
the spirit of early fusion.

2.1.2. Classifier

Using all previously mentioned features, we train a 2 layer bidi-
rectional LSTM network with 512 units in each cell. This is fol-
lowed by 2 fully connected layers each with 512 units. The final
softmax layer dimensions were dependent on the sub challenge.
The network is trained by minimizing the expected divergence
between the classes using cylindrical SGD [11].
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Figure 2: Architecture for extracting textual embedding. The
hidden layer obtained after passing all phonemes of an utter-
ance, is used as embedding of the same utterance. The phonetic
decoding is then obtained using a pre-trained acoustic model.

2.2. Utterance-based classification

Recently, end-to-end approaches have shown impressive results
on many speech based tasks [8]. Specifically combinations of
CNN and fully connected layers with a global pooling layer
have obtained human level recognition rates on speaker and lan-
guage recognition tasks. The global pooling layer functions as
averaging sequential inputs therefore aggregating frame level
representations to utterance level. This is advantageous for end-
to-end learning.

2.2.1. Extracting high level acoustic representations using
Modified SoundNet

SoundNet [7] is a convolutional network operates on raw wave-
forms and is trained to predict the objects and scenes in video
streams at certain points. After the network is trained, the acti-
vations of its intermediate layers can be considered a represen-
tation of the audio suitable for classification. It has to be noted
that SoundNet is a fully convolutional network, in which the
frame rate decreases with each layer. Since we need to predict
the emotions with reasonable recall, we cannot extract features
from the higher layers of SoundNet directly.

The original SoundNet network has seven hidden convolu-
tional layers interspersed with maxpooling layers. Each con-
volutional layer essentially doubles the number of feature maps
and halves the frame rate. The network is trained to minimize
the KL divergence from the ground truth distributions to the
predicted distributions. In the original SoundNet architecture,
the higher layers have been subsampled too much to be used
directly for feature extraction. In order to fully exploit the in-
formation in the higher layers, we train a fully connected variant
of SoundNet (see Fig. 1). Instead of using convolutional layers
all the way up, we switch to fully connected layers after the 5th
layer. We have also changed the input sampling rate to 16 kHz
to match the provided data.

2.2.2. Linguistic features

An informal analysis of the recordings indicated that the con-
tent being spoken plays a non trivial role in the valence of the
utterance. A simple manifestation of this is the distribution
of filled pauses and hesitations in the provided data across the
classes. In the Self Assessed Affect dataset, examples belong-
ing to the class ‘low’ have higher number of such irregularities
compared to the other two classes. Note that these features are
not extracted for the Crying dataset. Therefore we hypothesize
that using an off the shelf phoneme decoder to recognize such



events might be beneficial. For this we first obtain the text at the
phoneme level for each of the utterances using a pretrained En-
glish ASPire model from the toolbox Kaldi [10]. We then train
a Recurrent Neural Network language model on the obtained
text at the phoneme level and use the representation at the hid-
den state as the embedding of the utterance. The architecture is
depicted in Fig. 2.

2.2.3. Classifier

We obtain the prediction scores from our models using either
a Random Forest Classifier or a one-vs-rest classifier imple-
mented using a binary SVM classifier depending on the per-
formance. It is a known fact that SVM models perform better
on sparse data than does trees in general. Therefore depending
on the data augmentation techniques, we choose the classifier.

2.3. Data Manipulation & Enhancement

In this section we present various data engineering approaches
that make the data more suitable for our models. Specifically,
we explore approaches that aim to (a) obliterate the imbalance
in class, (b) extract derived features which might help in distin-
guishing between the classes, (c) downsizing and normalizing
on the duration of clips, etc.

2.3.1. Class balancing by data restriction

In order to address the class imbalance present in the original
data, we reduce the number of samples used for the classes that
are dominant in the dataset. We hypothesize that the skewness
of the original data causes low recall for classes that are in mi-
nority. Therefore, we study the effects of attempting to artifi-
cially balancing the classes by using less samples of dominant
classes.

2.3.2. Class balancing by data augmentation

The objective function we minimize in this approach is the ex-
pected divergence between the classes. An analysis of the orig-
inal data points to the imbalance between the classes: For ex-
ample, in Self Assessed Affect subchallenge, there are almost 3
times less number of examples for the ‘low’ class compared to
the other classes in the training set. To alleviate this, we look at
approaches to augment the existing data. Since our model oper-
ates on the sequence of frames, we hypothesize that segmenting
the audio data into chunks [12] exposes the model to different
distributional properties. We obtain 4 times the original data for
the class with less number of examples in Self Assessed Affect
challenge by chopping the original signal between (0-2), (0-4),
(0-6) and (0-8) seconds.

2.3.3. Deriving Speaker Identity

Speaker normalization and adaptation have been widely doc-
umented as significant for a speech recognition system. As
the original data did not have speakers tagged per utterance,
we have tried to do speaker recognition using length normal-
ized i Vector. i-Vectors are low-dimensional representation
of GMM supervectors in a single subspace which have been
formulated to include all characteristics of speaker and inter-
session variability. Mathematically, given an observation set
X, the adapted mean super-vector m, is modeled as,

ms = mo + Tws + 6 (D
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where my is the Universal Background Model (UBM) super-
vector, and 6 is the residual term which accounts for the vari-
ability not captured by T. Following Garcia-Romero and Epsy-
Wilson [13], we perform a within class covariance normaliza-
tion followed by length normalization of i vectors. These have
been shown to ‘gaussianize’ the distribution and improve the
performance of PLDA. iVectors have been extracted after log
energy based voice activity detection on the utterances. This
system was built within framework of Kaldi toolkit[10].

2.3.4. Improving contrastiveness of features

We have tried to improve the contrastive nature among the
classes artificially. An informal analysis of the recordings from
Self assessed affect subchallenge led to the observation that the
utterances with high valence were also relatively at a higher
speed compared to the utterances with lower rate. Therefore we
increased the rate of speech for the high valence utterances by
10 percent while simultaneously decreasing the rate of speech
for low valence utterances by 10 percent. We performed simi-
lar perturbations with respect to pitch: boosting the pitch of the
samples from ‘high’ class and lowering the pitch for the sam-
ples from ‘low’. The samples for ‘medium’ class have not been
subjected to any modification.

2.4. Early Fusion - Combining different representations

We have experimented with a feature level fusion of Sound-
net layer 5 and ResNet50 [14] features extracted from the au-
dio files. Resnet has been trained on around 1.28 images from
the Imagenet dataset and has a top 5 error of 3.57% beating all
other CNN image classifiers. We aim to systematically study
the strategies of combining representations from multiple fea-
ture extractors.

3. Datasets
3.1. Self-Assessed Affect Recognition

The dataset used in this sub-challenge is the Ulm State-of-Mind
in Speech (USoMS). It contains recordings of 100 students. The
labels were obtained from the subjects themselves obtaining 3
classes: low, medium, and high.The class distributionfor com-
bined train and dev sets are: 716 high, 698 medium, and 174
low. This highlights skewness in the data distribution.

3.2. Atypical Affect Recognition

The dataset comprised of a total of 10677 audio files out of
which there are 3342 training, 4186 validation files and the re-
maining test files. There are four target classes that pertain to
the four emotions - neutral, happy, sad and angry. The distribu-
tion of classes is again skewed with 5209, 1708, 516 and 175
being the total numbers of neutral, happy, sad and angry labels
on the train and validation sets.

3.3. CRYING

This dataset is obtained from the Cry Recognition In Early De-
velopment (CRIED) database. It consists of 5588 vocalizations
of 20 infants sampled at 44.1kHz in mpeg format. The objec-
tive is to identify three mood-related types of infant vocalization
- neutral/positive, fussing and crying. The class distribution is
as follows: 2292 cases of neutral/positive mood, 368 files of
class fussing and the remaining 178 belonging to the class cry-
ing. The dataset is clean of vegetative sounds such as breathing



sounds, smacking sounds, hiccups and so on. Further details
about the datasets can be obtained from [15].

4. Experiments

In the following we present the preliminary results obtained us-
ing the systems we investigated on the Self Assessed Affect sub
challenge. We further present the results of UAR for blind tests
for all the three sub-challenges.

4.1. Class balancing by data restriction(System CBR)

We systematically try to reduce the data points from the classes
with higher number of examples. The results from this experi-
ment are depicted in Table 1.

Table 1: UAR for class balancing by data restriction

Data split UAR[%]
90% Medium 56.8

100% High 70% Medium 55.0

100% Low 40% Medium 52.1
90% High 59.1

100% Medium  70% High 56.8

40% High 51.5

All Data 57.2

4.2. Speaker identity based experiments(System SI)

Table 2: UAR for Speaker identity based experiments

Normalization
UAR[%] used notused
d 62.2 54.0
Speaker ID use
notused 61.1 64.7

Since the classifiers we use are discriminative in nature, we
experiment with two ways of incorporating speakers or subject
specific information:

e (1) We add the identity of the speaker as an extra di-
mension thus forcing the model to build speaker spe-
cific models. For example, in case of decision trees, this
forces the model to split at the identity of speaker.

* (2) Normalizing with respect to the speaker, following
the procedure typically used in speech recognition.

The results from these experiments have been depicted in
table 2.

4.3. Improving contrastiveness of features(System CTR)

We have explored two ways of artificially increasing the con-
trastiveness of the features, based on observations on the orig-
inal data. Since the different classes appear to have a differ-
ent distribution of artifacts such as hesitation, we have tried to
use signal processing techniques to further separate the classes.
Specifically, we have used festival toolkit [16] to decompose
the signal into its spectrum, pitch and then apply class specific
modifications to the utterances in the train set. The waveform
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was reconstructed using the vocoding framework within festvox
voice building tools. We have used WSOLA [17] to accomplish
duration based manipulations. The results from these experi-
ments are shown in the table 3.

Table 3: UAR for Emphasis and Data Augmentation Experi-
ments

Augmentation [%] UAR [%]
100 54.4
200 58.3
300 57.2
400 58.8

4.4. Blind Test Results and Discussion

The evaluation results on blind test set for the three sub-
challenges is mentioned in the table 4. Based on the preliminary
experiments, system SI appears to achieve a significant boost
over the baseline before fusion. This seems plausible due to the
nature of task at hand: emotions and intent have been known to
be speaker specific. System CTR surprisingly does not have the
expected gain in performance. We hypothesize that even though
the premise of improving the class statistics by enhancing con-
trastiveness is valid, the manner in which we have performed
the manipulation might be flaky. For example, given manipulat-
ing pitch might not be the best way to improve contrastiveness
when the classes are separated by valence. However, we do see
improvements with the Atypical affect subchallenge. Specifi-
cally, the recall for the class angry seems to improve with very
little augmentation. Another observation with respect to system
CBR is that the ‘neutral’ class seems to be very sensitive to any
subsampling.

Table 4: UAR Blind test summary

Sub-challenge UAR

Self Assessed Affect 48.3

Atypical Affect 34.2
CRYING 71.406

5. Conclusion

In this work, we present the submission from CMU for COM-
PARE challenge 2018. We have explored the usage of both low
level and high level features aimed at deciphering the intent
from acoustics. In the preliminary experiments, higher level
features seem to effectively embed the holistic information re-
quired for intent recognition. Since the datasets were highly
skewed, we have explored various data augmentation and class
balancing techniques. It might be beneficial to design architec-
tures that exploit the nature of data and the constraints of the
task.
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