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Abstract

Unsupervised discovery of subword units is an important prob-
lem in recognition and synthesis of zero-resource languages,
in which phonesets may not be known and the only resource
that may be available is speech. We use techniques that we
have recently developed for building synthetic voices for very
low resource languages without a written form to discover such
units. We use Articulatory Features trained on labeled speech
in a higher resource language to infer phonological segments of
varying granularity. We use both the raw Articulatory Features
and the Articulatory Features of the inferred units as frame-
based representations of speech. We evaluate our techniques on
minimal pair ABX discrimination within and across speakers.
In addition, to exploit the duration information we get from the
inferred phonological units, we also present evaluation results
on Mel Cepstral Distortion, an objective metric of speech syn-
thesis quality. We evaluate our techniques on multiple databases
of English, and also on Tsonga and Indic languages, in which
we apply the above methods cross-lingually.

Index Terms: unsupervised techniques, low resource, articula-
tory features

1. Introduction

Although speech processing has progressed significantly for
languages with significant resources, there are still many lan-
guages for which well-defined phoneme sets, or even well-
defined writing systems do not exist. Thus finding techniques
that can give a useful, reliable, symbolic representation of
recordings of human speech is still somewhat of an open task.
Recent work has developed various frame-based acoustic rep-
resentations that can be used to match different occurrences of
instances of words and phrases, but in this paper we look at
using higher level representations of the speech [1, 2].

This paper shows how previous work that we have done on
developing an unsupervised symbolic representation of speech,
suitable for “text” to speech systems for unwritten languages,
may be suitable for recognition and matching tasks as well as
just speech generation. Specifically we build on top of a pho-
netically derived acoustic representation of speech, [3], that we
refer to as Articulatory Features (AFs). AFs, which can be de-
rived from arbitrary streams of recorded speech, provide vectors
of features values 0-1 that represent IPA-like phonetic features.
Note our articulatory features might sometimes be called by
others as phonetic features, and are not directly related to what
we would call articulatory position features as might be discov-
ered from an electro-magnetic articulograph. Our AFs are di-
rectly derived from speech in a language independent way, us-
ing standard software algorithms without any specialized hard-
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ware.

Finding a frame based AF representation is only the first
part of our task. We then discover a segmental representation
of the signal, that is phoneme-like derived from the AFs that
is at least sufficient to reconstruct the signal using statistical
parametric synthesis techniques.

Our initial work on text to speech for languages without a
writing system, used cross-lingual phonetic decoding to come
up with a phoneme-based written form for building TTS sys-
tems in languages without a standardized written form [4]. In
our subsequent work we also used unsupervised and cross-
lingual techniques to come up with higher level units [5], which
improved objective and subjective measures of TTS system
quality. However these techniques are still dependent on an
originally seeded (cross-lingual) phonetic system. Our more
recent work that we use here derives segment-based Inferred
Phones (IPs) using acoustically derived frame-based AFs [6].

The rest of the paper is organized as follows. Section 2 re-
lates this work to previous work. Section 3 describes the data
and resources we used for our experiments. Section 4 contains
details of the techniques we used, and describes the metrics used
for evaluation, followed by results in section 5 and our infer-
ences and conclusions in section 6.

2. Relation to prior work

The main goal of this work is to find the basic units in language
in an unsupervised fashion. These smaller units could either be
words, sub-word units, phonemes or even sub-phonetic units,
which are maximally distinguishable in an ABX test [7][8].

Most methods in this domain have thus looked at variety of
methods related to either unsupervised pattern discovery or un-
supervised acoustic modeling . The first set of methods treat it
as a pattern recognition problem, by first finding repetitive pat-
terns in the database and then using these patterns to build word
based models [9, 10, 11, 12] . In [2], they use a hashing scheme
to convert the raw input features to a binarized fixed length form
and then do a clustering of these fixed length vectors, with the
main goal of improving feature based term discovery.

The second set of methods includes unsupervised acous-
tic modeling based approaches, wherein the speech is first seg-
mented, then a clustering of these segments is carried out based
on minimizing a certain objective measure and finally a re-
training of the acoustic model is done. This process is repeated
until convergence. In [13], the authors take a similar approach
to sub-word modeling wherein, they train an auto-encoder to
give encoder posteriors which are then binarized and clustered
to a maximum of 64 units . These 64 units are then used to ob-
tain a transcription of speech and based on this transcription the



acoustic model is retrained and this process of segmentation,
clustering and re-training continues until the model converges.
In most systems these three sub-tasks of segmentation, cluster-
ing and re-training are carried out as independent tasks to one
another.

However, the authors in [14] combine the segmentation step
along with the clustering step by first starting out with a single
HMM state to represent the entire dataset and then iteratively
splitting these HMM states based on some objective measure.
The authors in [15] go a step further, by jointly training an
acoustic model using a nonparametric Bayesian model namely
the Dirichlet process mixture model. However, most of these
methods approach the task of unsupervised unit discovery from
an ASR perspective, with the objective of increasing the classi-
fication or discrimination ability of each unit.

How our work is different is that we approach the problem
from a synthesis viewpoint and so we are interested in find-
ing the basic units in speech that are discriminable enough to
be used to generate speech rather than classify between differ-
ent phonetic or sub-word units. Thus the units our synthesis
pipeline discovers are designed to be invertible and robust to
speaker variation. We believe that this fits in nicely with the goal
of the zero resource challenge where the aim is to mimic how
a child learns language units in its infancy and is able to dis-
tinguish across speaker variability and retain the common units
across speakers.

Our initial work on TTS without text relied on cross-lingual
phonetic information. This method inherently makes assump-
tions about the phoneme distribution in the original cross-
lingually trained phonetic models. Although relevant to the task
we wanted to better represent the phonemes in the target (unla-
belled) language.

Details of this technique are described in [6]. Our first stage
was to build on the notion of AFs as described in [3]. Such fea-
tures have been used beyond speech recognition in representing
expressive speech [16] and cross-lingual voice conversion [17].

3. Data and resources

The data that we used for our experiments was provided by the
organizers of the Zero Speech challenge was in English and Xit-
songa. The English Buckeye database consists of 9 hours of
data spoken by 12 speakers, with multiple speakers in the same
audio file. Since the size of each audio file was many minutes
long, we split the files into 10 second long files for some of our
tasks and then recombined them during evaluation. We used the
NCHLT Xitsonga speech corpus [18] provided by the organiz-
ers, which consists of 4.5 hours of speech by 24 speakers.

In addition, we used two other databases. The first was a
combined database of the RMS and SLT Arctic data [19], which
is around 2 hours of US English speech data, from one male and
one female speaker. The second was a combined Hindi database
with recordings from a local female speaker and the Blizzard
challenge 2015 data [20], consisting of recordings of one male
speaker, giving a total of around 2.5 hours of data.

For all our experiments, we used the (US English) WSJ
acoustic model distributed with the CMU Sphinx toolkit [21]
for cross-lingual phonetic decoding. We used a trigram German
phonetic language model for decoding and performed multi-
ple iterations of decoding and building targeted acoustic models
from the decoded transcripts and the speech, as described in [4].

We built all our models in the context of the Festival Speech
Synthesis Engine [22] and the Festvox voice building tools [23].
We built CLUSTERGEN [24] Statistical Parametric Synthesis

voices so we could calculate the Mel cepstral distortion (MCD)
[25], an objective measure of speech synthesis quality.

4. Experiments and Evaluation
Methodology

In this section, we describe the details of the different models
that we compared and how we evaluated these models.

4.1. Feature Description
4.1.1. Baselines

We used the MFCC features provided by the organizers, (which
we refer to as the baseline Mceps) as well as the SPTK Mceps as
baselines for this task. The baseline Mceps are 13 dimensional
MFCC features computed every 10ms and the ABX score is
computed using the cosine distance. The SPTK Mceps are de-
rived using the SPTK toolkit [26] and are 50 dimensional vec-
tors (25 dimensions + A) which are used in synthesis and hence
designed to be invertible.

4.1.2. Z-model Mceps

The Z-model Mceps are speaker normalized Mceps. Each
speaker’s Mceps are mean and variance normalized to match
the average across all speakers in the database.

4.1.3. Cross-lingual phonetic decoding

We decoded the speech from all the databases cross- lingually
using the WSJ model and obtained phonetic transcripts. This
process is done iteratively, with a targeted acoustic model being
created at each iteration that is used to decode speech at the
next iteration. Typically, we build voices at each iteration and
measure the MCD of the voices. This iterative process is carried
out till the MCD converges and stops improving. The iteration
that produces the lowest MCD is selected as the best iteration.
From our previous work we have found that the best labels are
obtained in around iteration 3, so we chose the labels of iteration
3 for all our databases. The choice of labels is not critical here,
since we only use the timestamps of these labels for the inferred
phonemes.

4.1.4. Raw Articulatory Features

We trained a neural network on a large corpus of multi-speaker
English speech [27]. This predicts a 26 coefficient vector of 0-
1 values for phonetic features, such as voicing, nasality, place
of articulation, etc, trained from the labeling derived by forced
aligned models of the original WSJ data. This produces a
frame-based labeling of Mel-cepstrum features.

4.1.5. Inferred Phonemes

Using these AF’s, the next stage is to use a cross-lingual
phonetic recognizer to discover similar segments (of varying
length) in the acoustics. Then we take these segmentations and
re-cluster them into similar segments based on their frame-level
AFs as described in [6]. This is helpful because a cross-lingual
phonetic recognizer may label all /k/like sounds together, while,
this post recognition re-clustering may separate out different
types of /k/ (e.g. aspirated and unaspirated) into different
segment-types. We can control the number of segment-types to
find the number of symbols that can best re-construct the acous-
tic signal using statistical parametric text to speech techniques.



We refer to these segment-types as inferred phones.

4.2. Evaluation Metrics

The ABX metric measures the discriminative power of the sub-
word units within and across speakers. For the across speaker
measure in the ABX task, if we select an ABX triplet to be such
that, A and B are triphones from the same speaker, having the
same context, but varying in the middle phone, like put and pat,
while X is the same as A except from a different speaker. The
goal then is to find linguistic units, such that A and X are much
closer than B and X. Similarly in the within speaker task, the
goal remains the same, except that X is another instance of A
from the same speaker.

In addition to using the ABX metric, we also used Mel Cep-
stral Distortion (MCD) of voices built with the representations
that we inferred. To calculate the MCD, we hold out 10% of the
data and build a synthetic voice using the rest of the data. Then,
we resynthesize the held-out data and compare the Mceps to the
Mceps of the original speech. The MCD is an objective metric
commonly used to measure the quality of speech synthesizers
and has been found to correlate with subjective metrics of syn-
thesis quality.

Furthermore, we also did a word based comparison de-
scribed in the next section, since our IPs did not fit into the
ABX evaluation framework.

5. Results

First, we ran the ABX evaluation software provided by the orga-
nizers on the baseline Mceps, SPTK Mceps, Z-model normal-
ized SPTK Mceps and the raw AFs that were extracted from the
audio. Since the AFs were extracted frame-wise, we could di-
rectly use them with the evaluation software as they were. From

Table 1: ABX on Mceps and AFs (% Error rate)

Method | Data [ Within Speaker [ Across Speaker |

Baseline Mceps Buckeye 15.6 28.1
SPTK Mceps Buckeye 16.69 29.50
Z-model Mceps Buckeye 16.98 28.01
Raw AFs Buckeye 18.35 29.84
Baseline Mceps | RMS+SLT - —
SPTK Mceps | RMS+SLT 7.56 18.45
Z-model Mceps | RMS+SLT 7.54 17.62
Raw AFs | RMS+SLT 7.53 15.02
Baseline Mceps Tsonga 19.10 33.8
SPTK Mceps Tsonga 19.69 33.93
Z-model Mceps Tsonga 19.74 30.69
Raw AFs Tsonga 18.12 29.73
Baseline Mceps Hindi - —
SPTK Mceps Hindi 8.89 28.13
Z-model Mceps Hindi 9.11 27.22
Raw AFs Hindi 8.33 24.91

Table 1 we see that the articulatory features perform much bet-
ter than the Z-model Mceps across all databases. This indicates
that the AFs are doing speaker normalization implicitly, and are
more robust to speaker variation. We also see that the within-
speaker error rate for the Z-models is slightly higher than the
Mceps, which is expected, given that the Z-models are doing
speaker normalization.

Next, we used the raw AFs to create IPs as described earlier.
Instead of using the raw AFs for each file as we had done before,

we replace the IPs for a file with the vector of average value of
the phoneme’s AFs, calculated across the entire database. Since
the ABX task was set up to be a frame based evaluation, we
replicated this average value for each frame that the IP spanned.

Table 2 shows the ABX results on IPs of different sizes.
The stop value was used to control the number of IPs that were
inferred. Stop value of 1200, 1000 and 800 were experimented
with. For the same stop value, the exact numbers of IPs varied
across databases as can be seen in Table 2. As we see, none of

Table 2: ABX on IPs of different sizes (% Error rate)

[ No. of IPs | Data [ Within Speaker [ Across Speaker |
81 | RMS+SLT 14.30 19.06
65 | RMS+SLT 14.64 19.41
55 | RMS+SLT 14.92 19.57
71 Tsonga 42.84 46.03
57 Tsonga 44.09 46.43
82 Hindi 20.83 29.62
55 Hindi 20.05 28.91

the IPs were able to do better than the AFs or the Mcep baseline.
We hypothesize that the major difference in the performance of
the IPs on the Tsonga database as compared to its AF’s is be-
cause of the nature of the Tsonga database which contains a
higher variability of speakers, has been recorded over the tele-
phone and consists of short utterances, a combination of all of
which does not allow us the benefit of having clean data to train
the cross-lingual model to give suitable IP representations. The
AF’s do perform better because, they firstly are frame based
features and secondly, because they implicitly do speaker nor-
malization.

Since our work focuses in finding phoneme-like segments
in untranscribed data, we would like to test these IPs within
the ABX test framework used above. But that framework is not
very appropriate for a sub-word segmental model. As it is tested
against some phonetic-like truth, the segment size will be sim-
ilar and thus our deduced segments will be about the same size
(given some reasonable assumption about finding appropriate
boundaries). Thus scores will be a simple 0 or 1, depending on
whether it fits the frame exactly or not. Thus we also present
some other measures that might better show our own contribu-
tion.

The main issue is measuring phoneme sized units against
phoneme sized units when the boundaries are one of the key
variances in such a model, thus it would be better to extend
the size of the comparison units to something more like words
(specifically multiple phoneme-like segments long).

We analyzed our data (for which we have true transcrip-
tions) and looked for multi-syllable words that appear more than
once. We then used these words as our test words. We then
compare these words with each other within and across speak-
ers using different measures. In the cases where we are compar-
ing the same word the measure should be lower, and when they
are different words the measure should be larger. We can do this
with simple frame based parametrization (as done above) but as
the words are longer we can also do this in the IP domain. Addi-
tionally we can also do this using synthesis, as we can generate
an acoustic stream from the symbolic IP stream.

Table 3 column 1 lists the average DTW cost across all in-
stances of the same speaker saying the same keyword, i.e., we
are finding an average cost of matching the keyword in one sen-
tence to all other instances of it and calculating an average of



Table 3: Word-based scores-Within Speaker (DTW cost)

| Method [ Data [ Keyword [ Not Keyword ‘
Mceps | RMS-SLT | 2.55+1.89 | 4.44+0.04
Average AFs | RMS-SLT | 0.59 £0.55 | 0.92 £ 0.02
Synthesis | RMS-SLT | 3.30 £5.05 | 3.67 £ 0.11
Mceps Hindi | 7.274+£9.11 | 8.78 £0.22
Average AFs Hindi | 0.93£1.49 | 0.97£0.05
Synthesis Hindi | 3.79 +3.95 | 3.84 +0.08

Table 4: Word-based scores-Across Speaker (DTW cost)

Method [ Data [ Keyword [ Not Keyword ‘
Mceps | RMS-SLT 2.224+1.46 4.58 +0.04
Average AFs | RMS-SLT 0.41£0.35 | 0.94+0.02
Synthesis | RMS-SLT 1.59+£3.67 | 3.68+0.11
Mceps Hindi | 10.08 £8.93 | 12.44 +£0.30
Average AFs Hindi 0.88+1.53 | 1.10£0.05
Synthesis Hindi 445 +483 | 527+£0.14

this cost as compared to column 2 which represents the average
of the cost when matched to other words apart from the key-
word the same speaker said in the corpus. Table 4 column 1
compares the cost of measuring the keyword said by speaker 1
to all instances of the same keyword said by speaker 2 in the
database, vs., column 2 which lists the average cost of compar-
ing keywords said by speaker 1 to all non keyword instances
spoken by speaker 2. These measures within and across have
been done as overall cost measures for Festival Mcep (base-
line), Average AF’s (the vector representation of the IP) and
synthesized Mceps after rebuilding the voice from the unsuper-
vised IP units obtained. We see that the IP as a feature for doing
keyword spotting is successful, since in both cases across and
within speaker it is able to give a lower cost on a simple DTW
Euclidean distance metric. One interesting point to note from
this result is that the variance is lower for AF’s as compared to
those of the Mceps and is again indicative of the speaker nor-
malization that is happening implicitly in deriving this repre-
sentation.

The motivation behind using the speech synthesis pipeline
was to find a set of linguistic units which are good at repre-
senting the speaker agnostic, invertible sub-units in the speech
corpus. The measure of how good these units are in generating
speech can be measured with the MCD. Since the MCD is a dis-
tance based metric, lower is better, and it is database-specific,
so it cannot be compared across the different databases.

Thus in addition to reporting the MCD scores for the voice
built from our best IP, we have also reported scores from cross-
lingual phonetic decoding from WSJ acoustic model. Since the
MCD is database specific, we also give ground truth (Full TTS
baseline) when transcripts were available for comparison. Ta-
ble 5 lists the MCD of voices built with transcripts from cross-
lingual phonetic decoding, our best IPs and the full knowledge-
based speech synthesizer (Full TTS-groundtruth) — for compar-
ison. An increase of 0.08 is found to be perceptually significant,
while an increase of 0.12 is equivalent to doubling the data [28].

Here, we see that for English, the phonetic decoding MCD
is better than the IP MCD. Although this may seem surprising,
we must note that we used the WSJ acoustic model to decode
the RMS-SLT voice, so this is not being done cross-lingually.
So, the phones in the phonetic voice are appropriate for this

Table 5: MCDs of voices built with different transcripts

| Data [ Transcript [ MCD ‘
RMS-SLT Full TTS | 4.97
RMS-SLT | Phonetic Decoding | 5.51
RMS-SLT IPs | 5.86
Hindi Full TTS | 4.94
Hindi | Phonetic Decoding | 6.60
Hindi IPs | 5.94

voice, which results in a higher MCD. Both, the phonetic de-
coding MCD as well as the IP-based MCD are higher than the
knowledge-based (full TTS) based MCD, which is to be ex-
pected. For Hindi, the IP-based voice has a lower MCD than
the cross lingual phonetic voice which indicates that the IPs are
a better representation of the speech for Hindi.

6. Conclusion

In this paper we present an alternative unsupervised linguis-
tic unit discovery method to find speaker agnostic, invertible
speech units which are optimized for speech synthesis. We have
investigated these proposed AF and IP based features as an al-
ternative to unsupervised acoustic modeling and in the context
of performing well on the ABX task.

However, since our proposed features do not fit well into the
ABX framework, which requires the discovery of units which
can fit within its framework of phoneme-sized ground truth, we
have also reported MCD scores which measure how good the
synthesis of the IP based voices is, which in turn measures the
discriminability of the IP representation.

Although the IPs give a good symbolic representation of the
speech they are still not the most ideal representation. As the
number of segments in an utterance are initially derived from a
cross-lingual phonetic recognizer, they most probably represent
phoneme-sized units. It may be better to allow them to be split
into multiple subsegments (the IP-based text to speech synthe-
sizer automatically models sub-phonetic segments).

We find that on clean datasets, with less number of speak-
ers, our proposed method works well. However, on noisy
datasets like the Xitsonga dataset, which consists of many
speakers and short utterances recorded via a telephone, we find
that our model fails to perform as well , which we conjecture is
due to the lack of good data to adapt the baseline model to.

The work presented here is still preliminary, a more elab-
orate speaker specific adaptation technique may help — though
we have found that AFs are typically a better speaker indepen-
dent representation. However, when synthesizing templates for
matching, adapting the acoustics toward the target speaker in
the utterance will improve performance.

Also IPs alone probably do not give all the information use-
ful for word level matching. We know in IP-based text to speech
that addition of word boundary information helps synthesis and
thus finding super segmental information about syllable and
word (like) boundaries will probably help higher level match-
ing too (and certainly the generation of synthesized acoustics
for later matching).
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