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Abstract
Grapheme-to-phoneme conversion follows the text pro-

cessing step in speech synthesis. Typically, lexicons or
Letter-to-Sound rules are used to map graphemes to phonemes.
However, in some languages, such resources may not be readily
available. In this paper, we describe a universal front end that
supports using grapheme information alone to build usable
speech synthesis systems. This work takes advantage of an
explicit mapping of Unicode characters from a wide range of
scripts to a single phoneset to create support for building speech
synthesizers for most languages in the world. We compare the
efficacy of this front end to the baseline approach of treating
every single grapheme as a separate phoneme for synthesis by
building voices for twelve languages across several language
families and to front ends with linguistic knowledge in
languages with higher resources. In addition, we improve our
models by using Random Forests as opposed to using single
Classification and Regression Trees. We find that the common
universal front end performs better than the raw graphemes
in general. We also find that using Random Forests lead to a
significant improvement in synthesis quality, which is better
than the quality of the knowledge based front end in many cases.

Index Terms: speech synthesis, lexicons, pronunciation, low
resources

1. Introduction
Grapheme to Phoneme (g2p) conversion is an essential mod-
ule in any Text to Speech (TTS) system. This process involves
reading a string of words, represented by symbols in the script
at hand, and mapping them into a set of phonetic symbols repre-
senting the pronunciation of the words. This stage occurs after
the text processing stage, in which abbreviations, numbers and
other symbols are expanded into words in the language.

Usually, g2p conversion is done by looking up lexicons de-
veloped for the language. In some languages, the relationship
between graphemes and phonemes follows well defined rules,
in which case hand-written g2p rules can be used. Even for
those languages that have large lexicons available, learned g2p
models or rules may be used to deal with unknown words. Lan-
guage specific knowledge (morphological, phonotactic, some-
times syntactic) is necessary for building these resources, which
makes developing a front end for a new language expensive and
time consuming.

The g2p conversion problem varies from language to lan-
guage. Some languages may require the development of large
lexicons, while for others, mapping graphemes to phonemes

may be trivial. Given a new language that we need to build
a speech synthesizer for, we need to come up with g2p rules or
find an appropriate lexicon for the language. Automatic, lan-
guage independent methods of finding this mapping have been
proposed[1] but they depend upon the availability of training
data, such as hand-crafted lexicons which may not be available
for low-resource languages.

One solution to this problem is to make the simplifying as-
sumption that the orthography of the language is phonetic, and
that each grapheme is a phoneme [2]. This allows us to build
baseline voices for languages without knowing anything about
the phonetics of the language. Another solution is to exploit
resources that transliterate graphemes into phonemes. The Uni-
code specification [3] provides a standardized digital represen-
tation of scripts in most languages of the world. Qian et. al [4]
have developed a toolkit that provides universal transliteration
for characters in the Unicode specification.

In our speech synthesizers, we use individual Classifica-
tion and Regression Trees (CART) to model the spectrum, pitch
and duration. In low-resource scenarios, we typically do not
have much data to train these trees on. Using Random Forests
[5], which is an ensemble learning technique that uses multiple
CART trees may provide advantages in such cases by splitting
the data in different ways and making better use of features.

In this work, we took speech corpora from twelve lan-
guages from disparate language families and various scripts and
built synthetic voices from them. We first built voices with the
simplest possible front end: assume that each grapheme is a
phoneme. Then, we made use of the universal mappings from
Unicode characters to phonemes to build voices. Finally, we
attempted to improve on these voices by making use of Ran-
dom Forests in our models. A few of the languages we built
voices for are high resource languages for which front ends
with linguistic resources are available. We built voices with
this available knowledge for these languages. We evaluated our
systems objectively and subjectively to compare these different
techniques.

The rest of the paper is organized as follows: Section 2
describes the languages and resources we used for our experi-
ments. Section 3 describes the techniques we used to build our
voices in more detail. The objective and subjective evaluation
results are presented in sections 4 and 5 respectively. Section 6
concludes.

2. Languages and Resources
Since our goal is to use the Unicode based mapping to produce
a universal grapheme-to-phoneme frontend, we ran experiments
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with twelve different languages. These languages were chosen
to vary across writing systems, language families as well as the
amounts of resources available for the language. We also used
speech databases of different sizes in order to compare our tech-
niques across different amounts of data.

Two of our languages, Hindi and Konkani are from the
Indo-Aryan language family. Hindi is a major language in India
with over 180 million native speakers. Hindi (Modern Standard
Hindi) uses the Devanagari script as its standard writing system,
and the script has a phonetic alphabet with a few rules to handle
special cases. To build our synthetic voices, we used a corpus
of Hindi from the IIIT-H Indic Databases[6]. Konkani is the
official language of the Indian state of Goa, and is a minority
language in a few other states. It has around 8 million native
speakers and uses scripts such as Latin, Kannada, Malayalam
and even Arabic. We used a corpus of Konkani from the CMU
SPICE project[7] that used the Latin script.

Tamil is also an Indic language, from the Dravidian family
of languages. It is spoken by over 70 million speakers in south-
ern India as well as Sri Lanka, Singapore and Mauritius. We
based our Tamil experiments on the IIIT-H Indic corpus[6].

Iraqi Arabic, Dari and Pashto are languages that all use the
Arabic script in their written forms. Iraqi Arabic is the Ara-
bic dialect native to the Mesopotamian basin of Iraq has about
15 million speakers. Dari is a dialect of Persian that is the
standard language used in Afghanistan. It has about 18 mil-
lion native speakers. Pashto is the other official language of
Afghanistan, is the oldest preserved Iranian language and has
over 40 million speakers. The corpora we used for Iraqi, Dari
and Pashto were used for building synthesizers as part of the
DARPA TRANSTAC project.

Russian is a Slavic language spoken by over 155 million na-
tive speakers and uses the Cyrillic script. Thai is a language spo-
ken by over 20 million people and uses its own script. We col-
lected our Russian and Thai speech corpora from the SPICE[7]
dataset.

Inupiaq is a Inuit language spoken by about 2100 people in
northern and north western Alaska, and it uses the Latin+ script
as its orthography. Ojibwe, also known as Anishabnaabe is an
indigenous language of the Algonquian family and is native to
Canada and the United States. It has about 56000 native speak-
ers and uses the latin script in its written form. Our corpus for
Inupiaq and Ojibwe was collected as part of the Endangered
Languages project at Carnegie Mellon University.

In the European family of languages, we did experiments
with English and German. For English, we used the ARCTIC
[8] recordings of the speaker SLT and for German, we used
a similar corpus that we recorded locally. Table 1 shows the
amount of speech data in minutes that we used to build synthetic
voices for each of these languages.

As we can see in Table 1, the data for our languages var-
ied from as little as 5 minutes of recorded speech for languages
like Konkani and Inupiaq to over an hour of speech for English
and Dari. In addition, the quality of recordings was also not
uniform across the databases, with Russian being significantly
worse than the other databases. We did this in order to mimic
real-world scenarios of data availability for low-resource lan-
guages and to measure the gains our techniques would provide
across different data sizes.

3. Experimental Setup
We performed our experiments in the context of the Festival[9]
speech synthesis engine. We built statistical parametric synthe-

Table 1: Data available for different languages

Language Duration (minutes) Script
English 66 Latin

Dari 63 Arabic
Hindi 56 Devanagari
Iraqi 61 Arabic

Pashto 56 Arabic
German 53 Latin
Tamil 41 Tamil
Thai 25 Thai

Ojibwe 12 Latin
Russian 6 Cyrillic
Konkani 5 Latin
Inupiaq 5 Latin

sis models using the Clustergen[10] framework and used the
Festvox[11] suite of tools to build Festival voices.

For each language, we built up to four different voices: (i)
Raw grapheme voice, where each (Unicode) character is treated
as a phoneme, (ii) UniTran based voice, where we used the
universal mapping from graphemes to strings of phonemes (iii)
Random Forests (RF) voice, in which we used Random Forests
instead of single CART trees in our models, using the UniTran
mappings (iv) knowledge based voice, which used any knowl-
edge we had for that language including lexical resources. For
some of the languages, we could not build knowledge based
voices and for them, we only present the comparison of the raw
grapheme, UniTran and RF voices.

3.1. Raw Grapheme Synthesis

Given a new language to build a synthetic voice in, we have
used raw graphemes for synthesis as the baseline method. The
idea is simple: we take the text in the presented orthography.
We then explode the text into individual Unicode code points,
and then each of the Unicode characters becomes a phoneme for
purposes of synthesis. Here, we treat each of these characters
as a grapheme. This method is automatic and universal: the
produced set of ”phonemes” are simply characters, and there
is no information available about how they are pronounced, or
which phonetic or phonotactic features they possess. Each of
these phonemes (characters) is considered to have three states
in the context of HMM synthesis within Clustergen.

The advantage with the raw grapheme method is that it can
be used when we have absolutely no information about the pho-
netics of a language - all we need is speech data and correspond-
ing transcripts in the orthography of the language. The disad-
vantage with this method is that the models cannot use phonetic
feature information while clustering similar phonemes together,
since we have no information about what the phonemes actually
are. Another disadvantage is that multiple characters that may
actually map to a single phoneme in the language (like vowel
markers and vowels) now map to different phonemes, which
may lead to less data and context for each phoneme.

3.2. Proposed Method with UniTran

UniTran[4] is a transliteration framework to convert UTF-
8 encoded text into a guessed phonetic transcription in the
WorldBet[12] or X-Sampa. It supports about 40 different char-
acter code pages in the Unicode specification. The two notable
omissions are the Latin character set, and the Chinese Kanji.
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UniTran is distributed with the Natural Language Toolkit[13]
for Python.

We took the character mapping tables from UniTran and
converted them for use in Festvox. While this conversion was
mostly automatic, we had to deal with a few special cases. In
some cases, UniTran specified alternate mappings for a single
character. Festvox defaulted to just using the first provided map-
ping. In addition, we also added support for the Latin charac-
ters. While the Latin alphabet isn’t necessarily phonetic, we
made reasonable assumptions about which letter maps to which
phoneme in the X-Sampa set. This will not be optimal for all
languages but allowing some mapping into a symbol set with
phonetic features allows for later models to make more complex
distinctions that would not be possible if they were mapped to
an unknown symbol.

We took all the phonemes that UniTran maps to, and cre-
ated a master phoneset description file in Festvox that contains
several features for each phone, such as whether it’s a vowel or
a consonant, for vowels: height, length, frontness and rounding;
and for consonants: the type, voicing and place of articulation.

When we create a new Festvox voice, we go over the text
corpus and map each Unicode character into its appropriate
phone. We then accumulate the list of phones actually used
in the language at hand and select a subset of the master phone-
set above, to customize the phoneset in the particular language.
This means phonemes that were not observed in the training
data of our voice, but still exist in the target language will not
have a phoneset entry. This is not a problem, because even if a
phoneset entry existed, we wouldn’t have training data to build
parametric models for cepstra and prosody for the particular un-
seen phone.

Once we have the grapheme to phoneme mapping this way,
we represent each phoneme with three HMM states and use
standard Clustergen techniques to build the voice.

3.3. Synthesis with Linguistic Knowledge

Some of the languages we used in our task are high-resource
languages, and there has been prior work on building synthetic
voices for them. For English, German, Hindi, Iraqi and Tamil,
we have developed front ends that have linguistic knowledge
incorporated in them, beyond simple phonetic features. These
are in some sense ”oracle” languages for the task at hand.

For English and German, we used our standard Festival
front ends. These front ends have a large lexicon and letter to
sound rules trained from this lexicon, for unseen words. For
Iraqi, we also used a large lexicon that specified pronunciation
variants of words, since the diacritics that map to short vow-
els are not written in the script. We used the first pronuncia-
tion variant of a word when multiple variants were present. For
Hindi and Tamil, we used g2p mappings for all the characters
and added post-lexical rules for nasalized vowels, contextual
nasal consonants. For Hindi, we added rules for terminal and
medial schwa deletion. For Tamil, we added rules for contex-
tual voicing of consonants. In all these cases our linguistically
based voices require substantial linguistic and expert resources
beyond the simple grapheme or UniTran based voices.

3.4. Synthesis with Random Forests

For our Random Forests voices, we started with the UniTran
mapping for the grapheme to phoneme conversion. We applied
our now standard random forest technique, originally developed
for our standard voices. For these voices, we build 20 decision
trees to predict spectral features, where each tree is randomly

restricted to 70% of the standard prediction features.
Each tree individually will typically give worse results than

a tree built with all features, but the combination of multiple
trees built with different features will typically give a substan-
tial improvement. Although this technique is not specifically
designed for grapheme based voice builds, the combination of
predictions from different trees allows better use of features and
avoids over splitting the data, which we felt may be helpful in
this low resource scenario.

4. Objective Evaluation
In order to compare the different grapheme to phoneme conver-
sion strategies, we built full synthetic voices out of them. We
held out 10% of the data during voice building. On this data, we
compared the synthetic speech with reference recorded speech
by looking at the Mean Mel Cepstral Distortion[14] (MCD) of
the predicted cepstra. Since this is a distance measure, a lower
value suggests better synthesis. Kominek [15] has suggested
that MCD is linked to perceptual improvement in the intelligi-
bility of synthesis, and that an improvement of about 0.08 is
perceptually significant and an improvement of 0.12 is equiva-
lent to doubling the data.

Let us first compare our UniTran based method to the base-
line with raw graphemes, shown in Table 3. On eight languages
in our set, we see that using the phonetic features yields an im-
provement in the synthesis quality. The voices for Dari and
Pashto actually get worse. Our analysis shows that this is caused
by the inherent vowel in the Arabic script. The basic UniTran
mappings are appropriate for Iraqi (which is a dialect of Ara-
bic), but not appropriate for Pashto and Dari that are in different
language families, but use the Arabic script. On the Thai voice,
the MCD goes up, but the pitch prediction error goes down
from 35Hz to 30Hz. Ojibwe, that uses a Latin script, doesn’t
have a very different synthesis model when moving from raw
graphemes to phonetic features with UniTran.

Let us now look at the comparison of our UniTran based
voices to voices with linguistic knowledge. We see that across
all five languages for which we have knowledge-based front
ends, the voice with knowledge is much better than the UniTran
based voice. The difference is much larger (0.32) on English,
and relatively smaller (0.09) on Iraqi. This may be because the
amount of linguistic knowledge that went into the English voice
was much larger than that in the Iraqi voice. Adding higher level
knowledge about syllable structure and morphology for these
languages may further improve our techniques.

Table 2: MCD for languages built with raw graphemes, Uni-
Tran and knowledge (when available)

Language Raw UniTran Knowledge Based
English 5.23 5.11 4.79

Dari 4.78 4.95
Hindi 5.10 5.05 4.94
Iraqi 4.77 4.72 4.63

Pashto 4.91 4.96
German 4.72 4.30 4.15
Tamil 5.10 5.04 4.90
Thai 4.82 4.98

Ojibwe 6.72 6.71
Russian 5.13 4.78
Konkani 5.99 5.87
Inupiaq 4.79 4.68

3362



Next, we will compare MCD for the UniTran and RF voices
shown in Table 3. We see that in every single case, we get a sig-
nificant improvement in MCD. In case of Hindi, Iraqi, German
and Tamil we are able to perform better than the knowledge
based front end without Random Forests. We expect that build-
ing a Random Forest voice using the knowledge based front
end would lead to even better improvements, but for our low-
resource scenario where such a front end will not be available,
this result is very encouraging.

Table 3: MCD for languages built with UniTran vs. Random
Forests

Language UniTran Random Forests
English 5.11 4.91

Dari 4.95 4.80
Hindi 5.05 4.88
Iraqi 4.72 4.56

Pashto 4.96 4.80
German 4.30 4.10
Tamil 5.04 4.85
Thai 4.98 4.74

Ojibwe 6.71 6.19
Russian 4.78 4.64
Konkani 5.87 5.59
Inupiaq 4.68 4.56

5. Subjective Evaluation
So far, we saw improvements in objective metrics both while
going from raw graphemes to UniTran and from single CART
trees to Random Forests. We compared these conditions in sub-
jective evaluations for English, German, Russian, Hindi and
Tamil. Our choice of languages was based on the availability
of subjects for listening tests.

We used Testvox [16] to carry out all our subjective tests
both locally and on Amazon Mechanical Turk. In order to en-
sure that native speakers took the test, we translated the instruc-
tions to the respective languages. Each participant listened to
audio clips in random order and was asked to pick the one she
preferred, with the option of picking ”no difference”. Each par-
ticipant listened to either 5 or 10 pairs of clips, with most par-
ticipants listening to 10 pairs.

Table 4 shows the results of the subjective listening com-
parison between raw graphemes and the Unitran-based systems.
We can see that in all five languages, subjects preferred the Uni-
Tran voices to the Raw Graphemes voices. In some languages,
this difference was higher while in languages like Hindi and
Tamil where the UniTran method does not provide a huge gain
over raw graphemes due to the nature of the writing system, the
difference wasn’t as high. The quality of the Russian speech
data being lower probably made it harder to differentiate be-
tween the two voices.

Table 5 shows the comparison between the Unitran-based
systems with and without and Random Forests. There was a
preference for the RF voices over the UniTran voices in all
cases. Once again, the Russian speech seemed harder to dif-
ferentiate.

So far, we saw that the subjective results mimicked the
MCD trends that we saw earlier. Since our main goal was to
see how far we could get with our best grapheme voices when
compared to voices built with knowledge, we carried out tran-

Table 4: Raw graphemes vs. UniTran preference

Language Participants Prefer RG Prefer UniTran No difference
English 13 22% 61% 17%
German 12 29% 54% 17%
Russian 11 32% 43% 25%

Hindi 12 38% 51% 11%
Tamil 12 28% 58% 14%

Table 5: UniTran vs. Random Forests preference

Language Participants Prefer UniTran Prefer RF No difference
English 12 31% 61% 8%
German 9 36% 51% 13%
Russian 12 29% 47% 24%

Hindi 12 31% 51% 18%
Tamil 12 37% 53% 10%

scription tests in English, German and Hindi. We asked 10 sub-
jects to transcribe 10 sentences each in English, German and
Hindi for the Knowledge Based and Random Forests grapheme
conditions. Table 6 shows the percentage of words transcribed
correctly for all the languages.

Table 6: Words transcribed correctly for Knowledge Based and
RF grapheme systems

Language Knowledge Based Random Forests
English 87.14% 66.52%
German 90.85% 89.89%

Hindi 88.19% 86.34%

Here we see that for English, the grapheme RF voice is still
significantly worse than the knowledge based one. This is due
to two reasons - the knowledge that went into the English voice
is substantially more than the other languages and the nature of
the English script makes a grapheme-based technique quite in-
appropriate for it. However, we see that for both German and
Hindi, the difference between the usability of the RF and knowl-
edge based voices is very low, and all the voices are almost at
90% transcription accuracy.

6. Conclusions
In this paper, we introduced a method to build grapheme-based
voices by using a universal mapping of Unicode characters to
phonemes, which has now been incorporated into the standard
distribution of the Festvox voice building tools. We built voices
using this front end for twelve languages. We also built our
standard Random Forest voices using the UniTran mapping.
We showed that the UniTran voices are better than baseline
raw grapheme voices. In addition, we also showed that using
Random Forests as a modeling technique improves the UniTran
based voices and in most cases, is better than the knowledge
based voice modeled with single trees. We believe that this new
frontend in Festvox will allow voices for new languages to be
setup more easily and help speed up building synthetic voices
for many more languages of the world. In addition, using Ran-
dom Forests may help in low resource scenarios to make the
best use of the available data.
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