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Abstract

Code Mixing - phenomenon where lexical items from one
language are embedded in the utterance of another - is relatively
frequent in multilingual communities and therefore speech sys-
tems should be able to process such content. However, build-
ing a voice capable of synthesizing such content typically re-
quires bilingual recordings from the speaker which might not
always be easy to obtain. In this work, we present an approach
for building mixed lingual systems using only monolingual cor-
pora. Specifically we present a way to train multi speaker text to
speech system by incorporating stochastic latent variables into
the attention mechanism with the objective of synthesizing code
mixed content. We subject the prior distribution for such la-
tent variables to match articulatory constraints. Subjective eval-
uation shows that our systems are capable of generating high
quality synthesis in code mixed scenarios.

Index Terms: Code Mixing, Bilingual speech, Variational
Auto Encoder

1. Introduction

Code Mixing is a phenomenon where linguistic units such as
phrases, words and morphemes of one language are embed-
ded into an utterance of another language [1, 2]. This is quite
common in multilingual societies such as in India where En-
glish has transitioned from the status of a foreign language to
that of a second language. Today such mixing has manifested
itself in various types of text ranging all the way from news
articles through comments/posts on social media, leading to
co-existence of multiple languages in the same sentence. In
the context of Text to Speech (TTS), voice deployed in such
contexts has to be able to synthesize mixed text without ig-
noring the content from one of the languages. Typical ap-
proaches for building such mixed lingual voices require bilin-
gual recordings(3, 4, 5]: speech data from the speaker in both
native language as well as the additional language. However,
obtaining such data might not always be feasible. On the other
hand, social media and web 2.0 has enabled an outburst of au-
diovisual content at an unprecedented rate. Therefore, it might
be useful to design techniques that can leverage such resources.
In this paper, we present initial steps in that direction.

We investigate training strategies for building code mixed
voices subject to the availability of only monolingual data in
participating languages. Specifically, we concern ourselves
with two scenarios: (1) Mixing in the case of a sentence which
is primarily Indic but interspersed with English words. Such
sentences are found as a newspaper headlines ( Ex: Microsoft ki
mobile devices unit ne apni nayee smart phone Lumia 640 aur
uske badee screen wali variant 640 par se parda utha liya hai.)
(2) Mixing in the case of a sentence which is primarily English
but has some Indic words. Such sentences are found as navi-
gation instructions ( Ex: Proceed for 100 meters and then take
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Figure 1: Illustration of our procedure for generating a code
mixed utterance. Text from different languages is converted into
a common representation space by Tacotron encoder. The en-
coded representation is hashed to a latent code based on a dis-
crete articulatory prior bank. The code is passed to the decoder,
followed by a WaveNet using speaker embeddings as global
conditioning that generates audio.

a left at Sarojini Naidu Nagar Road, heading onto the Ballary
chowrasta.) Although building voices using such a combina-
tion of multilingual corpora appears as a simple extension of
multispeaker or multilingual speech synthesis, generating code
mixed content is a deceptively non trivial task since there is
a mismatch between training and the testing scenarios: Even
though the model has access to data from both the participating
languages during training, code mixed content it is exposed to
at test time - as seen from the example sentences - is a novel
composition of linguistic units from both the languages. To as-
sist the model in dealing with such mismatch, we incorporate
latent stochastic variables into the training procedure.

Models with latent random variables (referred to as la-
tent stochastic variable models hereafter) provide flexibility to
jointly train the latent representations as well as the downstream
network. They are expected to both discover and disentangle
causal factors of variation present in the distribution of origi-
nal data, so as to generalize at inference time. However, while
training latent stochastic variable models, optimizing the exact
log likelihood can be intractable. To address this, a recognition
network is employed to approximate the posterior probability
using reparameterization [6]. We make an observation that ar-
ticulatory information about speech production presents a dis-
crete set of independent constraints. For instance, manner and
place of articulation are two articulatory dimensions character-
ized by discrete sets(labial vs dental, etc). Based on this, we
condition the recognition network in latent stochastic variable
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models to conform to articulatory prior space by using a bank
of discrete prior distributions. We show that such priors help
encode language independent information thereby facilitating
synthesis of code mixed content.

2. Background
2.1. Synthesis of Code Mixed Text

Synthesis of code mixed text using monolingual data [7, 5] has
been addressed primarily at the linguistic level: by either map-
ping the words/phones of the foreign language with the closest
sounding phones of the native language or by using transliter-
ation [8, 9]. However, these methods have been shown to gen-
erate foreign accents [10, 11, 12]. In our work, we borrow the
central idea from the works - the requirement of a common lin-
guistic space - and apply this as a constraint on the representa-
tions learnt in our latent stochastic variable model. In [13], the
authors follow a two step procedure to address the issue with
accented speech. They first warp the source speakers’ speech
parameter trajectories (in L1) towards the target speaker and
then ‘tile’ them with the data (in L2) to form a pseudo training
corpus which is subsequently used to train a bilingual speech
synthesis system. Similar practices can be found in the liter-
ature for voice adaptation [14, 15, 16, 17, 18] and voice con-
version [19]. Although we do not explicitly aim to transfer
acoustic parameters, our decoder is engineered to work with a
global speaker embedding that learns speaker specific informa-
tion. Therefore, our approach can be seen as analogous to these
works. Our work is closest to [20, 21] in that we use monolin-
gual recordings. However, we explicitly work in the latent prior
space while [20] operate at the level of encoding individual lan-
guages and [21] begin with an average voice and refine it using
phoneme informed attention.

2.2. Disentanglement

In [22], authors decompose Evidence Lower Bound (ELBO)
and show that there are terms measuring the total correlation
between the latent variables. In [23], authors propose incor-
porating a channel capacity term to promote disentanglement
of causal factors of variation in the data. Our work is similar
to these in that we analyze ELBO to show that it is possible
to control what gets disentangled. In [24], authors present a
generalization of ELBO by factorizing the latent representation
into a hierarchy. In [25], authors present an approach to accom-
plish disentanglement by modifying the co-variance matrix of
the latent representations. In [26] authors augment ELBO using
the density ratio trick to accomplish disentanglement. In [27],
authors posit that to improve ELBO we must also improve the
marginal KL, meaning we must have good priors. In [28] au-
thors show that actively trying to disentangle the causal factors
of variation is better than trying to pressurize the model to for-
get the invariant representations. We take inspiration from these
approaches that manipulate the prior distribution and impose
domain specific constraints - based on intuitions from articula-
tory features - on the prior space. Manipulating prior space has
other benefits such as interpreting the intermediate stage out-
puts of the model. However, such analysis is beyond scope of
the current study.

3. Proposed Approach

In this section, we first present the differences between soft at-
tention and variational attention. We then highlight the role of
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priors in latent stochastic variable models. Based on these anal-
yses, we present our proposed approach.

3.1. Soft Attention vs Variational Attention in Seq2Seq TTS

Let us consider a speech corpus X consisting of languages
{l1,...,1n}, where each [; might comprise of multiple speak-
ers. Let y1,...,yn denote acoustic frames in the target sequence
y while z1,...,x, denote the encoded text sequence x from one
of the languages. A typical attention based encoder decoder net-
work such as Tacotron factorizes the joint probability of acous-
tic frames as product of conditional probabilities. Mathemati-
cally, this can be shown as below:

P(ylz) = 27 P(ye|z1..@m, ¢) (1)

where s; is a decoder state summarizing y1,...y¢—1. Parameters
0 of the model are set by maximizing either the log likelihood
of training examples or the divergence between predicted and
true target distributions. At each time step t in these models,
an attention variable a; is used to denote which encoded state
of z1...zy, aligns with y;. The most common form of attention
used is soft attention, a convex combination from encoded rep-
resentation of input text. It has to be noted that soft attention in
such scenarios is essentially a latent deterministic variable that
computes an expectation over the alignment between input and
output sequences. Empirically, soft attention provides surpris-
ingly good alignment often correlating with human intuitions.
Having said that, to synthesize code mixed speech at test time,
the generative process needs to disentangle appropriate individ-
ual language attributes from observed data X s and also com-
pose them to form a coherent utterance in the voice of desired
speaker. However, presence of deterministic alignment method
limits the ability of models to generalize to such scenario.

On the other hand, variational attention[29] provides a
mechanism to factorize this alignment and mediate the gener-
ative process of y through a stochastic variable z. In addi-
tion, both soft and hard attention mechanisms can be shown
as special cases of ELBO[29]. Therefore, incorporating latent
stochastic variables allows us to directly optimize ELBO. In
this context, model parameters are set by maximizing the log
marginal likelihood of the training samples. But direct maxi-
mization of this marginal in the presence of latent variable is
often difficult due to expectation involved. To address this, a
recognition network ¢ is employed to approximate the posterior
probability using reparameterization. It is interesting to note
that the encoder in a deterministic Seq2Seq network functions
as the recognition network in latent stochastic variable mod-
els and is incentivized to search over variational distributions to
improve ELBO. Intuitively, the lower bound is tight when the
inferred variational distribution is closer to the true posterior of
the data. In this paper, we make an assumption that the true
posterior of speech distribution is governed by the articulatory
properties of speech. Based on this insight, we constrain the
prior distribution to model the articulatory space.

3.2. Role of Priors in Latent Stochastic Variable Models

The choice of priors plays a significant role in optimization
within latent stochastic models. In this subsection, we present
an analysis to show that priors control the disentanglement of
causal factors of variation in such models. Let us consider the
ELBO being optimized:

By, (z1z,0)llogpe(z|c, 2)] — | Dk (g (2|7, ¢)||pe(z]c))| (2)



where the first term is the reconstruction error while the
second is the divergence between approximate and true posteri-
ors. Here are the four phenomenon that are manifested due to
choices of priors:

(1) Disentanglement or Factorization of causal factors of
variation
The KL divergence forces the posterior distribution output by
encoder to follow an appropriate prior about the data generation
process. Typically, prior space is assumed to be continuous dis-
tribution and a unit Gaussian. The global optimum value for the
divergence in such cases is 0 and is reached only when both the
distributions exactly match each other. Since the prior informa-
tion about the data generation process typically involves some
causal factors of variation of the data, this naturally is assumed
to translate to a constraint on the encoder to track such factors.
Thus, such models have potential to disentangle or factorize the
causal factors of variation in the distribution.

(2) Marginalization of Nuisance Factors of Variation
It has to be noted that during training optimization is performed
in expectation over minibatches. Therefore, the expectation of
KL divergence can be rewritten as related to the amount of mu-
tual information between the latent representation and the data
distribution [30]. As this divergence decreases, the amount of
information the encoder can place in the latent space also de-
creases. As a result, encoder is forced to discard some nuisance
factors that may not have contributed to the generation of data.
Thus, KL divergence also forces the model to marginalize the
nuisance variables.

(3) Posterior Collapse due to simple priors
Consider the scenario where the prior is too simplistic, such
as the aforementioned unit normal distribution. In such cases,
the model is incentivized to force the posterior distribution to
closely follow the Gaussian distribution [31]. Typically the de-
coders in variational models are implemented using universal
approximators such as RNNs. In the context of a TTS systems,
decoder segment of the acoustic model along with the neural
vocoder act as the decoders. Since such decoders are very pow-
erful, they are able to learn or ignore the priors about data dis-
tribution themselves and hence marginalize out the latent repre-
sentation input from the encoder. In other words, the prediction
of next sample is based solely on the marginal distribution at
the current timestep which can be implemented by learning a
dictionary per time step. Therefore, the encoder is no longer
forced to track the causal factors of variation in the data. This
is referred to as posterior collapse or mode collapse.

(4) Loss of output fidelity due to complex priors
A reasonable and intuitive solution to posterior collapse is mak-
ing the prior space more complex thereby pressurizing the pos-
terior distribution to track the prior space more closely. For
instance, [32] attempt to accomplish this by adding a hyperpa-
rameter /3 to promote disentanglement and gradually increasing
channel capacity, something that increases loss. However, it
has to be noted that simply making the prior distribution arbi-
trarily complex also perhaps leads to unreasonable constraints
on the decoder. For instance, in scenarios that have categorical
distribution as their output (tasks such as language modeling,
machine translation, image captioning among others) it is un-
intuitive to assume that the true prior that generates latent dis-
tribution is a Gaussian when the likelihood is based on discrete
sequential data in such tasks. Having such strong priors directly
affets the reconstruction ability in these models.

Therefore, priors in latent stochastic models play a signifi-
cant role in the optimization and facilitate disentanglement of
causal factors of variation on the one hand, as well as help
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the ability of the model to reconstruct the data distribution on
the other. In this paper, we engineer the prior space to follow
articulatory constraints. Since the articulatory features can be
considered independent of language, we believe they facilitate
encoder in disentangling language universal information impor-
tant to compose code mixed utterance at the test time. As there
are multiple articulatory dimensions ( place vs manner), we im-
plement them using a bank of discrete distributions as opposed
to a single continuous/discrete distribution. We believe that this
choice makes the prior space sufficiently complex to prevent
posterior collapse while still being tractable for high fidelity
output. In the following section, we explain the details of our
approach.

3.3. VACONDA' - Variational Attention based CONtrolled
Disentanglement using Articulatory priors

Table 1: Articulatory Features

Feature name Possible Classes | Cardinality
vowel or consonant +-0 3
vowel length slda0 5
vowel height 1230- 5
vowel frontness 1230- 5
lip rounding +-0 3
consonant type sfanlr0 7
place of articulation lapbdvgO0 8
consonant voicing +-0 3

We make an observation that dealing with speech presents
a characteristic advantage - speech has both continuous as well
as discrete priors. The generative process of speech assumes a
Gaussian prior distribution which is continuous in nature. How-
ever, the language which is also present in the utterance can be
approximated to be sampled from a discrete prior distribution.
Exact manifestation of this in linguistics can be at different lev-
els: phonemes, words, syllables, sub word units, etc. From the
analysis presented in previous subsections, we posit that it helps
encoder effectively disentangle the latent causal factors of vari-
ation if we use background knowledge about the data distribu-
tion while designing the priors. In other words, incorporating
appropriated priors provides us with an opportunity to control
what gets disentangled (or) decomposed (or) factorized in the
latent space. In our context, an appropriate requirement from
the encoder is to generate language agnostic yet phonetic repre-
sentations such that a speaker dependent decoder can synthesize
code mixed content. Therefore, we engineer our prior space
to account for phonetic information in the utterance by repre-
senting the prior as a discrete latent variable bank, similar to
filterbanks used for feature extraction from speech. Each dis-
crete latent variable has a different set of states reflecting one
of the articulatory dimensions. The specific design of our la-
tent space is highlighted in the table 1. Voice building proce-
dure with these priors is depicted in figure 1. We have used
the articulatory dimensions according to the definitions in Indic
voice building process of [33]. Although some of them might
be redundant, for this initial study we have retained all the ar-
ticulatory dimensions. Without loss of generality, we assume

'Phonetically similar to its namesake ‘Wakanda’ from Marvel
Comics



that the individual latent articulatory dimensions are indepen-
dent of each other. The divergence between the true prior and
approximate prior now becomes:

Dict (9 (zenclP)l[P(2c0ae)) = D

i ip) [ZOQP(ziode ]

enc

Eq(b(zf;nc\p) [ZOQQ¢(Zénc |p)] - Eq(p(z

where N is the number of articulatory dimensions and i denotes
the index of individual articulatory dimensions. zoq4e denotes
the parameterized codebook and ze,. denotes the representa-
tion output by the encoder.

4. Experiments
4.1. Data

We have used speech and text data from three Indian languages
Hindi, Telugu and Marathi released as a part of resources for
Indian languages [34] to build our synthesis systems. From our
baseline voice building process, we found male speaker from
Hindi to be the most reliable voice in terms of quality. There-
fore, all of our systems use English recordings from Mono seg-
ment of this speaker as English set - as a scaffolding. For
other two languages, we use only monolingual data from the
speakers. In other words, to generate code mixed Telugu sen-
tence, the systems have access to English content but from a
different speaker. As baseline for comparison, we have built
a CLUSTERGEN voice using monolingual recordings employ-
ing phone mapping. Evaluation was performed in the form of
listening tests with 20 native students following the convention
of Blizzard Challenge evaluations using [35] with naturalness
as criterion in terms of Mean Opinion Score (MOS) on a scale
of 1(least natural) to S(highly natural). All the listening tests
involved test sentences generated using the Multilingual test set
(ML) from [36]. The evaluation results are depicted in table 2.

4.2. Implementation Details

We have built two systems employing variational attention:
VQTacotron with vanilla vector quantization and VACONDA
- with articulatory prior on the latent space. The architecture
of our models continues from [37], with some modifications.
We have used WaveNet[38] as our decoder. Following [39], we
have shared the parameters of all the residual layers with com-
mon dilation factors. We use Mixture of Logistics loss to train
the model and the number of logistics was set to 10. Speech
signal was power normalized and squashed to the range (-1,1).
To make the training faster, we have used chunks of 8000 time
steps. Our quantizer performs vector quantization to generate
the appropriate code from a parameterized codebook. We de-
fine the latent space e € R**< contains k d-dim continuous
vector. Quantization is implemented using minimum distance in
the embedding space. We have used 128 dimensions to perform
the comparison in system VQTacotron. The number of classes
was chosen to be 64, approximating 64 universal phonemes. For
system VACONDA, we use a linear mapping to first project the
128 dimensional vector to 160 dimensions. We then perform
comparison with respect to individual articulatory dimensions
each of which is 16 in size. The speaker embedding is shared
between the decoder of our acoustic model and WaveNet. We
have noticed the lengths of utterances in the Indic datasets be-
ing too big to train attention from scratch. Therefore we have
initialized attention using alignments performed within Festvox
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using HMM aligner. All the models were built at phone level
since that was observed to be the most stable configuration even
though our phones do not cover all the variants (ex. we do not
have explicit phones for geminates). We have used quantization
penalty and commitment loss terms as mentioned in [40]. In ad-
dition, we have also normalized each latent embedding vector
to be on a unit sphere.

Table 2: MOS Scores for Naturalness in prosodic modeling
based experiments

Config Clustergen | VQTacotron | VACONDA
Hi-Eng (Male) 39 4.31 4.28
Tel-Eng(Female) 3.6 3.9 4.1
Mar-Eng(Male) 3.7 4.0 4.0
Mar-Eng(Female) 34 3.9 4.0

4.3. Observations

An informal analysis on the outputs from the proposed sys-
tems revealed that the characteristics of the English speaker
were retained in certain areas within the utterance, resulting in
a slightly stylized version?. We want to investigate this further
and hope to uncover techniques that can provide more control.
While most of the systems using CLUSTERGEN [4] make er-
rors in the prosodic features such as irregular duration shifts
at the boundaries between languages, the proposed approaches
have smooth transitions at the boundaries. However, we have
observed marked differences in the pronunciations by the pro-
posed approaches. For instance, the phone ‘S’ from the word
‘Stanford” when heard in isolation is indistinguishable from
other fricative sounds. Since we specifically deal with articu-
latory priors in VACONDA, a reasonable assumption to make
is that this issue will be bypassed by the model. However, this
characteristic is common across voices built using both VQTa-
cotron as well as VACONDA.

5. Conclusion

In this paper, we investigated approaches to build mixed-lingual
speech synthesis systems based on separate recordings and
present systems at three different levels. Specifically we present
a way to incorporate stochastic latent variables into attention
mechanism. We subject the latent variables to match articula-
tory constraints. Subjective evaluation shows that our systems
are capable of generating high quality synthesis in code mixed
scenarios. From evaluations, we have identified interesting is-
sues specific to the proposed approaches and different from er-
rors observed in any of the previous methods. We are investi-
gating them as an ongoing work and hope to understand them
as well as formulate better techniques to handle the code mixed
text.
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