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Abstract

Multilingual acoustic models have been successfully applied
to low-resource speech recognition. Most existing works have
combined many small corpora together, and pretrained a mul-
tilingual model by sampling from each corpus uniformly. The
model is eventually fine-tuned on each target corpus. This ap-
proach, however, fails to exploit the relatedness and similarity
among corpora in the training set. For example, the target cor-
pus might benefit more from a corpus in the same domain or a
corpus from a close language. In this work, we propose a sim-
ple but useful sampling strategy to take advantage of this relat-
edness. We first compute the corpus-level embeddings and esti-
mate the similarity between each corpus. Next we start training
the multilingual model with uniform-sampling from each cor-
pus at first, then we gradually increase the probability to sample
from related corpora based on its similarity with the target cor-
pus. Finally the model would be fine-tuned automatically on the
target corpus. Our sampling strategy outperforms the baseline
multilingual model on 16 low-resource tasks. Additionally, we
demonstrate that our corpus embeddings capture the language
and domain information of each corpus.

1. Introduction

In recent years, Deep Neural Networks (DNNs) have been suc-
cessfully applied to Automatic Speech Recognition (ASR) for
many well-resourced languages including Mandarin and En-
glish [1, 2]. However, only a small portion of languages have
clean speech labeled corpus. As a result, there is an increasing
interest in building speech recognition systems for low-resource
languages. To address this issue, researchers have successfully
exploited multilingual speech recognition models by taking ad-
vantage of labeled corpora in other languages [3, 4]. Mul-
tilingual speech recognition enables acoustic models to share
parameters across multiple languages, therefore low-resource
acoustic models can benefit from rich resources.

While low-resource multilingual works have proposed var-
ious acoustic models, those works tend to combine several low-
resource corpora together without paying attention to the va-
riety of corpora themselves. One common training approach
here is to first pretrain a multilingual model by combining all
training corpora, then the pretrained model is fine-tuned on the
target corpus [5]. During the training process, each corpus in
the training set is treated equally and sampled uniformly. We
argue, however, this approach does not take account of the char-
acteristics of each corpus, therefore it fails to take advantage of
the relations between them. For example, a conversation corpus
might be more beneficial to another conversation corpus rather
than an audio book corpus.

In this work, we propose an effective sampling strategy
(Corpus Relatedness Sampling) to take advantage of relations
among corpora. Firstly, we introduce the corpus-level embed-
ding which can be used to compute the similarity between cor-
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pora. The embedding can be estimated by being jointly trained
with the acoustic model. Next, we compute the similarity be-
tween each corpus and the target corpus, the similarity is then
used to optimize the model with respect to the target corpus.
During the training process, we start by uniformly sampling
from each corpus, then the sampling distribution is gradually
updated so that more related corpora would be sampled more
frequently. Eventually, only the target corpus would be sam-
pled from the training set as the target corpus is the most related
corpus to itself. While our approach differs from the pretrained
model and the fine-tuned model, we can prove that those models
are special cases of our sampling strategy.

To evaluate our sampling strategy, we compare it with the
pretrained model and fine-tuned model on 16 different corpora.
The results show that our approach outperforms those baselines
on all corpora: it achieves 1.6% lower phone error rate on av-
erage. Additionally, we demonstrate that our corpus-level em-
beddings are able to capture the characteristics of each corpus,
especially the language and domain information. The main con-
tributions of this paper are as follows:

1. We propose a corpus-level embedding which can capture
the language and domain information of each corpus.

2. We introduce the Corpus Relatedness Sampling strategy
to train multilingual models. It outperforms the pre-
trained model and fine-tuned model on all of our test
corpora.

2. Related Work

Multilingual speech recognition has explored various models to
share parameters across languages in different ways. For ex-
ample, parameters can be shared by using posterior features
from other languages [6], applying the same GMM components
across different HMM states [7], training shared hidden layers
in DNNs [3, 4] or LSTM [5], using language independent bot-
tleneck features [8, 9]. Some models only share their hidden
layers, but use separate output layers to predict their phones
[3, 4]. Other models have only one shared output layer to pre-
dict the universal phone set shared by all languages [10, 11, 12].
While those works proposed the multilingual models in differ-
ent ways, few of them have explicitly exploited the relatedness
across various languages and corpora. In contrast, our work
computes the relatedness between different corpora using the
embedding representations and exploits them efficiently.

The embedding representations have been heavily used in
multiple fields. In particular, embeddings of multiple granular-
ities have been explored in many NLP tasks. To name a few,
character embedding [13], subword embedding [14], sentence
embedding [15] and document embedding [16]. However, there
are few works exploring the corpus level embeddings. The main
reason is that the number of corpora involved in most experi-
ments is usually limited and it is not useful to compute corpus
embeddings. The only exception is the multitask learning where
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many tasks and corpora are combined together. For instance,
the language level (corpus level) embedding can be generated
along with the model in machine translation [17] and speech
recognition [18]. However, those embeddings are only used as
an auxiliary feature to the model, few works continue to exploit
those embeddings themselves.

Another important aspect of our work is that we focused on
the sampling strategy for speech recognition. While most of the
previous speech works mainly emphasized the acoustic mod-
eling side, there are also some attempts focusing on the sam-
pling strategies. For instance, curriculum learning would train
the acoustic model by starting from easy training samples and
increasingly adapt it to more difficult samples [1, 19]. Active
learning is an approach trying to minimize human costs to col-
lect transcribed speech data [20]. Furthermore, sampling strate-
gies can also be helpful to speed up the training process [21].
However, the goals of most strategies are to improve the acous-
tic model by modifying the sampling distribution within a sin-
gle speech corpus for a single language. On the contrary, our
approach aims to optimize the multilingual acoustic model by
modifying distributions across all the training corpora.

3. Approach

In this section, we describe our approach to compute the corpus
embedding and our Corpus Relatedness Sampling strategy.

3.1. Corpus Embedding

Suppose that C; is the target low-resource corpus, we are in-
terested in optimizing the acoustic model with a much larger
training corpora set S = {C1,Cz...C, } Where n is the number
of corpora and C; € S. Each corpus C; is a collection of (x,y)
pairs where x is the input features and y is its target.

language 1
phone

language 2
phone

language 3
phone

input feature corpus embedding

Figure 1: The acoustic model to optimize corpus embeddings.

Our purpose here is to compute the embedding e; for each
corpus C; where e; is expected to encode information about its
corpus C;. Those embeddings can be jointly trained with the
standard multilingual model [5]. First, the embedding matrix £/
for all corpora is initialized, the i-th row of E is corresponding
to the embedding e; of the corpus C;. Next, during the training
phase, e; can be used to bias the input feature x as follows.
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h = Encoder(x + e;; W, E) (1)

where (x,y) € C; is an utterance sampled randomly from
S, h is its hidden features, W is the parameter of the acous-
tic model and Encoder is the stacked bidirectional LSTM as
shown in Figure.1. Next, we apply the language specific soft-
max to compute logits 1 and optimize them with the CTC objec-
tive [30]. The embedding matrix E can be optimized together
with the model during the training process.

3.2. Corpus Relatedness Sampling

With the embedding e; of each corpus C;, we can compute the
similarity score between any two corpora using the cosine sim-
ilarity.
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As the similarity reflects the relatedness between corpora in
the training set, we would like to sample the training set based
on this similarity: those corpora which have a higher similarity
with the target corpus C¢ should be sampled more frequently.
Therefore, we assume those similarity scores to be the sampling
logits and they should be normalized with softmax.

exp (T . score(Ci,Ct))
>_;exp(T - score(Cj,Ct))

where Pr(C;) is the probability to sample C; from S, and T’
is the temperature to normalize the distribution during the train-
ing phase. We argue that different temperatures could create
different training conditions. The model with a lower tempera-
ture tends to sample each corpus equally like uniform sampling.
In contrast, a higher temperature means that the sampling dis-
tribution should be biased toward the target corpus like the fine-
tuning.

Next, we prove that both the pretrained model and the fine-
tuned model can be realized with specific temperatures. In the
case of the pretrained model, each corpus should be sampled
equally. This can be implemented by setting 7" to be 0.

exp (T - score(Ci, Cy)) 1

750 >, exp(T - score(Cj,Cr)) n

“

On the other hand, the fine-tuned model should only con-
sider samples from the target corpus C; , while ignoring all other
corpora. We argue that this condition can be approximated by
setting 7" to a very large number. As score(Ce,C¢) = 1.0 and
score(Ci,Cy) < 1.0 if ¢ # t, we can prove the statement as
follows:

exp (T - score(Ci, Ct))

Pr(C;) = Am >, exp(T - score(Cj, Ct))
(5)
)10 ifCi=0C
T 0.0 ifCi#C

While both the pretrained model and the fine-tuned model
are special cases of our approach, we note that our approach
is more flexible to sample from related corpora by interpolat-
ing between those two extreme temperatures. In practice, we



Table 1: The collection of training corpora used in the experiment. Both the baseline model and the proposed model are trained and
tested with 16 corpora across 10 languages. We assign a corpus id to each corpus after its corpus name so that we can distinguish the

corpora sharing the same language.

Language Corpus Name Domain  Utterance \ Language Corpus Name Domain  Utterance
English TED (ted) [22] broadcast 100,000 Mandarin Hkust (hk) [23] telephone 100,000
English Switchboard (swbd)[24]  telephone 100,000 Mandarin SLRI18 (s18) [25] read 13,388
English Librispeech (libri) [26] read 100,000 Mandarin LDC98S73 (hub) broadcast 35,999
English Fisher (fisher) [27] telephone 100,000 Mandarin SLR47 (s47) [28] read 50,384
Ambharic LDC2014S06 (babel) telephone 41,403 Bengali LDC2016S08 (babel)  telephone 60,663

Dutch voxforge (vox) read 8,492 German voxforge (vox) read 41,146
Spanish LDC98S74 (hub) broadcast 31,615 Swahili LDC2017S05(babel)  telephone 44,502
Turkish LDC2012S06 (hub) [29]  broadcast 97,427 Zulu LDC2017S19 (babel)  telephone 60,835

would like to start with a low temperature to sample broadly in
the early training phase. Then we gradually increase the tem-
perature so that it can focus more on the related corpora. Even-
tually, the temperature would be high enough so that the model
is automatically fine-tuned on the target corpus. Specifically, in
our experiment, we start training with a very low temperature
To, and increase its value every epoch k as follows.

Tiy1 = aly (6)

where T}, is the temperature of epoch k and a is a hyperparam-
eter to control the growth rate of the temperature.

4. Experiments

To demonstrate that our sampling approach could improve the
multilingual model, we conduct experiments on 16 corpora to
compare our approach with the pretrained model and fine-tuned
model.

4.1. Datasets

We first describe our corpus collection. Table.1 lists all corpora
we used in the experiments. There are 16 corpora from 10 lan-
guages. To increase the variety of corpus, we selected 4 English
corpora and 4 Mandarin corpora in addition to the low resource
language corpora. As the target of this experiment is low re-
source speech recognition, we only randomly select 100,000
utterances even if there are more in each corpus. All corpora
are available in LDC, voxforge, openSLR or other public web-
sites. Each corpus is manually assigned one domain based on its
speech style. Specifically, the domain candidates are zelephone,
read and broadcast.

4.2. Experiment Settings

We use EESEN [31] for the acoustic modeling and epitran [32]
as the g2p tool in this work. Every utterance in the corpora is
firstly re-sampled into 8000Hz, and then we extract 40 dimen-
sion MFCCs features from each audio. We use a recent multi-
lingual CTC model as our acoustic architecture [S]: The archi-
tecture is a 6 layer bidirectional LSTM model with 320 cells in
each layer. We use this architecture for both the baseline models
and the proposed model.

Our baseline model is the fine-tuned model: we first pre-
trained a model by uniformly sampling from all corpora. After
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the loss converges, we fine-tune the model on each of our target
corpora. To compare it with our sampling approach, we first
train an acoustic model to compute the embeddings of all cor-
pora, then the embeddings are used to estimate the similarity as
described in the previous section. The initial temperature T is
set to 0.01, and the growth rate is 1.5. We evaluated all mod-
els using the phone error rate (PER) instead of the word error
rate (WER). The reason is that we mainly focus on the acous-
tic model in this experiment. Additionally, some corpora (e.g.:
Dutch voxforge) in this experiment have very few amounts of
texts, therefore it is difficult to create a reasonable language
model without augmenting texts using other corpora, which is
beyond the scope of this work.

4.3. Results

Table 2: Phone error rate (%PER) of the pretrained model, the
baseline model (fine-tuned model) and our CRS(Corpus Relat-
edness Sampling) approach on all 16 corpora

Corpus Pretrain PER Base PER CRS PER
English (ted) 19.2 11.6 10.3
English (swbd) 24.9 15.3 14.1
English (libri) 12.1 6.5 5.4
English (fisher) 34.7 23.5 22.5
Mandarin (hk) 32.6 16.1 14.5
Mandarin (s18) 8.5 6.6 5.6
Mandarin (hub) 10.2 5.1 4.4
Mandarin (s47) 13.0 10.9 9.2
Ambharic (babel) 454 40.7 36.9
Bengali (babel) 47.0 41.9 40.0
Dutch (vox) 27.3 21.6 18.2
German (vox) 23.1 12.9 10.3
Swahili (babel) 17.7 16.1 14.5
Spanish (hub) 14.0 8.4 7.5
Turkish (hub) 49.2 45.6 44.9
Zulu (babel) 47.8 38.5 37.9
Average 26.7 20.1 18.5

Table.2 shows the results of our evaluation. We compare
our approach with the baseline using all corpora. The left-most
column of Table.2 shows the corpus we used for each exper-
iment, the remaining columns are corresponding to the phone
error rate of the pretrained model, the fine-tuned model and our



proposed model. First, we can easily confirm that the fine-tuned
model outperforms the pretrained model on all corpora. For in-
stance, the fine-tuned model outperforms the pretrained model
by 4.7% on the Amharic corpus. The result is reasonable as
the pretrained model is optimized with the entire training set,
while the fine-tuned model is further adapted to the target cor-
pus. Next, the table suggests our Corpus Relatedness Sampling
approach achieves better results than the fine-tuned model on
all test corpora. For instance, the phone error rate is improved
from 40.7% to 36.9% on Amharic and is improved from 41.9%
to 40.0% on Bengali. On average, our approach outperforms the
fine-tuned model by 1.6% phone error rate. The results demon-
strate that our sampling approach is more effective at optimizing
the acoustic model on the target corpus. We also train baseline
models by appending corpus embeddings to input features, but
the proposed model outperforms those baselines similarly.

One interesting trend we observed in the table is that the
improvements differ across the target corpora. For instance, the
improvement on the Dutch corpus is 3.4%, on the other hand, its
improvement of 0.6% is relatively smaller on the Zulu dataset.
We believe the difference in improvements can be explained by
the size of each corpus. The size of Dutch corpus is very small
as shown in Table.1, therefore the fine-tuned model is prone to
overfit to the dataset very quickly. In contrast, it is less likely
for a larger corpus to overfit. Compared with the fine-tuned
model, our approach optimizes the model by gradually chang-
ing the temperature without quick overfitting. This mechanism
could be interpreted as a built-in regularization. As a result, our
model can achieve much better performance in small corpora
by preventing the overfitting effect.

Table 3: The similarity between training corpora. For each tar-
get corpus, we show its most related corpus and second related
corpus.

Target | 1st Related Corpus | 2nd Related Corpus
English (ted) English (libri) Turkish (hub)
English (swbd) English (fisher) Mandarin (hk)
English (libri) English (ted) German (vox)
English (fisher) English (swbd) Mandarin (hk)
Mandarin (hk) Bengali (babel) English (swbd)
Mandarin (s18) Mandarin (s47) Mandarin (hub)
Mandarin (s47) Mandarin (s18) Dutch (vox)
Mandarin (hub) | Spanish (hub) Tkish (hub)
Ambaric (babel) | Bengali (babel) Swahili (babel)
Bengali (babel) Mandarin (hk) Ambharic (babel)
Dutch (vox) Mandarin (s47) Mandarin(s18)
German (vox) English (libri) Mandarin (s47)
Swahili (babel) Zulu (babel) Ambharic (babel)
Spanish (hub) Mandarin (hub) Turkish (hub)
Turkish (hub) English (libri) Mandarin (hub)
Zulu (babel) Swahili (babel) Amharic (babel)

To understand how our corpus embeddings contribute to our
approach, we rank those embeddings and show the top-2 similar
corpora for each corpus in Table.3. We note that the target cor-
pus itself is removed from the rankings because it is the most
related corpus to itself. The results of the top half show very
clearly that our embeddings can capture the language level in-
formation: For most English and Mandarin corpora, the most
related corpus is another English or Mandarin corpus. Addi-
tionally, the bottom half of the table indicates that our embed-
dings are able to capture domain level information as well. For
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Figure 2: Domain plot of 36 corpora, the corpus embeddings
are reduced to 2 dimensions by t-SNE

instance, the top 2 related corpus for Amharic is Bengali and
Swahili. According to Table.1, those three corpora belong to
the telephone domain. In addition, Dutch is a read corpus, its
top 2 related corpora are also from the same domain. This also
explains why the 1st related corpus of Mandarin (hk) is Bengali:
because both of them are from the same telephone domain.

To further investigate the domain information contained in
the corpus embeddings, we train the corpus embeddings with an
even larger corpora collection (36 corpora) and plot all of them
in Figure.2. To create the plot, the dimension of each corpus
embedding is reduced to 2 with t-SNE [33]. The figure demon-
strates clearly that our corpus embeddings are capable of captur-
ing the domain information: all corpora with the same domain
are clustered together. This result also means that our approach
improves the model by sampling more frequently from the cor-
pora of the same speech domain.

5. Conclusion

In this work, we propose an approach to compute corpus-level
embeddings. We also introduce Corpus Relatedness Sampling
approach to train multilingual speech recognition models based
on those corpus embeddings. Our experiment shows that our
approach outperforms the fine-tuned multilingual models in all
16 test corpora by 1.6 phone error rate on average. Additionally,
we demonstrate that our corpus embeddings can capture both
language and domain information of each corpus.
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