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Abstract
This paper describes CMU’s entry for the Blizzard Challenge 
2008.  Our  eventual  system consisted  of a fairly conventional 
layered  cluster  based  unit  selection  system  using  the  most 
predictable  subset  of  the  whole  UK  speech  databases.  This 
paper describes the methods we used to find the most reliable 
subset  and the  techniques  used to  optimize the selection.  An 
additional technique that was used was to automatically detect 
“hard”  text  and  modify  the  phrasing  algorithm  accordingly. 
Although this technique was targeted at SUS utterances it was in 
place for all utterances. CMU’s entry is letter M in the results.

Index  Terms:  Speech  Synthesis,  Unit  Selection,  Database 
Pruning.

1. Introduction
This paper describes Carnegie Mellon University’s entry for the 
2008 Blizzard Challenge. The submitted system is a basic unit 
selection  synthesis  system;  however,  it  was  built  using  data 
obtained from a statistical parametric system. At the start of the 
effort,  we were unsure if our core CLUNITS [1] – a standard 
unit selection synthesizer – or our CLUSTERGEN [2] statistical 
parametric synthesizer would be best, so we carried out most of 
our  experiments  competitively between  the  two  options,  only 
deciding which system to submit as our entry towards the end of 
the training period.

This year’s challenge provided two new speech databases 
for voice building. The primary one is a UK English database. 
The  second  database  was  Mandarin  Chinese.  Although  basic 
builds were made, our group did not submit a Chinese system.

This paper describes the database, the selection of the best 
subset, the three level unit selection system, the weight tuning 
techniques, and the break predictor system for unusual text.

2. Database Pruning
The  core  UK  English  database  (Roger)  contains  9508 
utterances, consisting of around 16.5 hours of speech. From our 
experience  with  other  varied-style  databases,  we  know  that 
labeling accuracy is very important for both unit selection and 
statistical parametric synthesis. Our first stage was to find out 
how well we could label (and model) the different parts of the 
given databases. We split the data into different sections, News, 
Arctic,  Conversation  and  Emphasis.  Using  EHMM  [3]  we 
labeled the whole data as well as the different subsets. Using 
CLUSTERGEN [2], we built statistical parametric synthesizers 
for different subsets and tested how well we could predict held 

out  test  sets.  We  used  Mel-Cepstral  Distortion  for  spectral 
modeling, RMSE for F0, and Correlation for duration modeling. 
We quickly noticed that we were not getting good models for 
the  Conversation  and  Emphasis  data,  and  so  dropped  those 
subsets from our builds.

Thus,  for  our  further  tests we used only the News (2384 
utterances) and Arctic (1132 utterances) subsets, with just over 
7.5 hours of speech – less than half of the original data.

We  did  further  experiments  ordering  the  data  using  its 
maximum likelihood score from labeling, and checking if high-
ranking  utterances  provided  better  synthesis  than  random (or 
low-ranking)  ones.  However,  this  proved  not  to  make  any 
significant difference.

3. Phonemes and Post-lexical rules
The provided utterances already had some form of post-lexical 
rules  applied.  As it  was  not  clear  what  exactly that  was,  we 
investigated  generating  our  own  phonetic  strings  (and 
boundaries). We used the Edinburgh UniLex Lexicon [4],  but 
built  our  own  letter-to-sound  rules  with  it.  Again,  we  used 
CLUSTERGEN  models  to  measure  our  objective  success  in 
synthesis;  we  found  our  own  predicted  phone  streams  to  be 
better than the provided ones. 

We also noted the almost non-existent post-vocalic R due to 
the Roger voice’s accent, a somewhat classical British English 
RP.  After  several  experiments  to  find  the  best  solution,  we 
introduced a new phoneme “rr”, which we used explicitly in all 
post  vocalic-R  positions.  That  is,  we  did  not  implement  R-
deletion in our entry, which is a common method to deal with 
this dialect phenomenon. We re-labeled the data with the “rr” 
phoneme using EHMM.

4. CLUSTERGEN vs CLUNITS
As we were unsure if we wished to use CLUSTERGEN [2], 

a statistical parametric synthesizer technique, or CLUNITS [1], 
we  continued  to  have  internal  competitions  between  the 
approaches to find the better technique. 

CLUSTERGEN  has  since  added  maximum  likelihood 
parameter  generation  (MLPG)  to  its  arsenal,  but  testing  of 
Global Variance did not improve the quality. A second addition 
was  pruning  frames  from  the  training  data  whose  acoustic 
voicing  differed  from their  phonetic  voicing.  Using  standard 
voicing tools,  we labeled each acoustic  frame with  a voicing 
flag. We then compared that to the phonetic label and if they 
differed,  we  dropped  the  frame.  We are  aware  this  is  overly 
exact, and some unvoiced consonants  may be voiced in some 
context;  likewise,  some  voiced  consonants  may  be  validly 
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unvoiced.  This  technique,  which  we  referred  to  as  the  VUV 
system, made the synthesis substantially smoother and removed 
some huskiness from the output.

In  CLUNITS,  we  investigated  changes  of  the  binding  of 
phone labels, and adding previous, next, and syllable-level tags. 
It should be noted that this is extending the number of units in 
the ASR triphone model (context dependent units), rather than 
lengthening the units. We also re-labeled with EHMM for each 
of these extensions (cf [5]).

4.1. Internal Listening Tests
We then conducted listening tests for each of the five systems – 
three CLUNITS voices, and two CLUSTERGEN voices, which 
we assigned the internal letters A through E.

● A – clunits baseline
● B – clunits with context name binding
● C – clunits with syllable level binding also
● D – clustergen baseline
● E – clustergen with VUV

Aware of the fact that unit  selection and statistical parametric 
synthesizers have dramatically different acoustic qualities, and 
that we wanted to choose between them, we opted to perform 
three sessions of AB-tie  listening tests.  Each session  asked a 
different question.

● Q1. Which is more human-like?
● Q2. Which is smoother?
● Q3. Which do you prefer?

The third question is the normal request of the listener – to 
weigh all factors in reaching a preference decision. The second 
question asks the listener to isolate the smoothness quality in the 
presented  samples.  This  concords  with  the  observation  that 
CLUSTERGEN voices  are  smooth  but  not  natural  sounding. 
Complementary to this we could have asked “which is spectrally 
brighter (richer/realistic)?” – keying on the observation that unit 
selection is capable of being highly natural but is often degraded 
due  to  bad  joins  –  but  decided  that  such  phrasing  was 
nonstandard and overly specialized. Instead the question asked 
about  human-likeness.  Feedback  from test  subjects  indicated 
that they considered the unit selection voices to be more human-
like in general, unless the effect of bad units and/or bad joins 
was  too  severe.  In  which  case  the  smoother  CLUSTERGEN 
waveform was considered more human-like.

Our goal in the listening tests was to quantify and relate these 
three dimensions, with the task of selecting the best system for 
submission.  For any presentation of wavefile pairs, if the user 
selects  A,  then  the  system that  synthesized  it  accumulated  1 
merit point. When the users selects “tie” then A and B split the 
point.  The  best  system,  CLUNITS  B  scored  65% on  all  the 
listening tests combined, followed by CLUSTERGEN E at 55%. 
B  was  then  developed  further  to  support  multilevel  unit 
selection (see Section 5), and submitted as our entry.

While computing a percentage score is straightforward, it has 
disadvantages.  It  does  not  take  into  account  the  difficulty of 
“opponent” that each system faces and the number comparisons 
against each one. Nor does it provide confidence bounds. These 
shortcomings  are  addressed  by  casting  the  AB-tie  tests  as  a 
Bradley-Terry problem.

Sys
Human
n=100

Smooth
n=100

Prefer
n=153

Comb.
n=353

LOS
(%)

Score
(%)

B 109 -4 106 143 93 65

E -32 81 48 96 92 55

D -70 90 -43 51 82 47

C 39 -62 -66 21 75 43

A -47 -105 -44 0 – 39

Table 1. Ratings of five systems according to the 3 questions, 
and combined.  The Combined  column has been rescaled so 
that  the  worst  system  E  has  a  rating  of  0  and  has  90% 
confidence intervals of ±40. LOS is “likelihood of superiority” 
over the next best system. 

The  Bradley-Terry  model  is  a  simple  and  much  studied 
means to describe the probabilities of possible outcomes when 
individuals  are  judged  against  each  other  in  a  set  of  paired 
comparisons [6]. The central idea is to convert the results of all 
A versus B comparisons into a scalar rating for each system. 
The rating represents the system's overall strength, where equal 
differences in  ratings  imply an  equal  difference in  outcomes. 
The  probability  that  A  beats  B  obeys  a  logistics  sigmoid 
function. In our calculations p(A beats B) = 0.5, p(A ties B) = 
0.26 and p(A loses to B) = 0.24 when A is 100 rating points 
above B. Efficient algorithms exist to maximize the likelihood 
of the data given the model. The ratings of the five systems are 
listed  and  Table  1.  Also,  the  ratings  for  the  two  dimensions 
Smoothness versus Humanness are plotted in Figure 1.

Figure 1. Ratings of the five candidate systems on smoothness 
versus humanness scales. The CLUNITS points are on the left 
hand side (not smooth). The CLUSTERGEN points are in the 
lower right quadrant (smooth but not human-like).

As  expected,  the  CLUSTERGEN  voices  are  judged  much 
smoother  than  the  CLUNITS  voices.  Incorporating  voicing/ 
unvoicing  degraded  smoothness  by  9  points  but  improved 
humanness  by 38  points.  The  baseline  CLUNITS  voice  was 
judged neither smooth nor human-like. The CLUNITS voice B 
with contextual name binding was judged most human-like of 
the five, and moderately smooth. None of our systems secured a 
spot  in  the  coveted upper  right  hand  quadrant  –  smooth  and 
human-like.
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5. Build3 – Multilevel Unit Selection
Given the preference for CLUNITS, but also the limitation that 
some sentences could not be synthesized due to missing units, 
we  were  reminded  of  an  existing  script  in  the  Festvox  tools 
called build3. This was originally developed in 2000, but never 
fully explained in any other publication.

In  build3,  3  different  unit  selection  clunit  synthesizes  are 
built on the same data. At each level, different binding applies. 
In  the  top  level,  we  bound  each  phone  to  both  its  next  and 
previous phones (cf triphones),  the next synthesizer bound its 
units  only to  the  previous  phone  (cf biphones),  and  the final 
used just the phone itself. In order to be used, it was required 
that a unit had at least five examples.

At  synthesis  time,  the  first  (triphone)  synthesizer  was 
attempted.  However,  if  no  units  were  found,  the  biphone 
synthesizer was used, and if no biphone units were available, the 
phone synthesis was used. For most part, triphone units existed, 
but for cases where they did not, we have a well-defined back-
off strategy.

Further, before treating them as bi- or triphones, we bound 
all  vowels  with  stress,  and all  consonants  with  onset/coda.  A 
further  binding  was  made  after  listening  experiments,  where 
each phone followed by a “pau” was marked as such, in order to 
make stronger phrase final choices.

6. Build3 – Tuning
We also adopted a number of other tuning techniques that are 
optionally available in the CLUNITS tools. 

Duration pruning was used to remove all segments from the 
training set  whose actual  duration  differed from its  predicted 
duration by more than 1 standard deviation. This removed about 
10% of  the  units,  but  made the  synthesis  flow sound  better, 
though it likely also reduced its naturalness. 

Additionally,  a  substantial  amount  of  time  was  used  to 
individually  tune  the  join  weights  of  the  system.  We 
incrementally tested different weights in the standard system to 
find  optimal  relative  weighting  values  for  F0,  Cepstral,  and 
other  parameters by listening to  synthesized  test  sets.  This is 
quite  expensive  from  a  human  aspect,  but  did  substantially 
improve the quality of the system. We would like to claim that 
our  other  structure  pruning  most  improved  the  system,  but 
actually the  low-level  weight  tuning  by hand  had  more  of  a 
contribution.

7. Silence Insertion
Following  our  experience  in  speech-to-speech  machine 
translation,  we  are  aware  that  if  the  TTS input  text  is  more 
complex  than  expected,  the  TTS  system  will  typically  still 
produce it at speed that is appropriate for less complex material. 
Specifically in S2SMT the output of the MT may not even be 
grammatically fluent,  but  the synthesis  still  reads it  as if it  is 
fluent, making the resulting speech much harder to understand 
[7].  Therefore,  following  some  of  our  other  work,  we 
investigated adding in additional breaks to the text depending 
on  the  calculated  complexity  of  the  text  itself.  This  was  a 
deliberate attempt to improve scores on SUS sentences. Though 
this  did  make  more  of  a  difference  for  SUS  sentences  than 
others, the technique was applied to all test sentences, not just 

the SUS sentences. Using a hand optimized weight function of 
unigram, bigram, and mutual information scores for each word, 
tuned on test  sentences from Blizzard 2005 [8],  we added in 
silence  when  it  was  felt  the  understandability  would  be 
improved.

In  spite  of  what  we  think  is  a  useful  idea,  the  overall 
Blizzard  results  do  not  seem  to  back  this  up.  Our  relative 
position in the pack remains the same in both the MOS scores 
and the SUS scores.

8. Conclusion
The  CMU entry was  letter  M,  which  performed  about  sixth 
overall.  This  is  a  substantial  improvement  from  our  2007 
position. The system differences are really fundamentally due to 
taking much more care in labeling the data, and removing data 
that we were not confident about. 

Probably  the  most  significant  payback  from the  time  we 
spent on building our voices was on careful hand tuning of the 
weights.  We  were  disappointed  that  such  low  level  time-
intensive, database specific work was the most important thing 
in improving our synthesis. We would have preferred that new 
general  techniques  produced  important  advances,  but  our 
experience was that  careful  hand  tuning  is  still  significant  in 
building good unit selection synthesis voices.
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