
A Situation Theoretic Approach to

Computational Semantics

PhD Thesis

T
H

E

U N I V E R
S

I T
Y

O
F

E
D I N B U

R
G

H

Alan W Black

Department of Arti�cial Intelligence

Faculty of Science and Engineering

University of Edinburgh

1992

Foreword

This document consists of re-edited version of my PhD thesis, submitted to Department

of Arti�cial Intelligence, University of Edinburgh, December 1992.

An implementation of the computational language astl, described and used through-

out this thesis is available by anonymous ftp. The software is free and may be freely

redistributed (subject to the attached GNU General public licence). The software is

available from

scott.cogsci.ed.ac.uk [129.215.144.3]:pub/awb/astl-0.4.tar.Z

Note that this is still an experimental version, later versions will be better. The above

version includes the example astl descriptions described in Chapters 4, 5 and 6 (which

are also reproduced in Appendix A).

Alan W Black

awb@ed.ac.uk

Centre for Cognitive Science

University of Edinburgh

March, 1993

ii

Abstract

This thesis presents an approach to the description of natural language semantic theo-

ries within a situation theoretic framework. In recent years, research has produced a

number of semantic theories of natural language that primarily deal with very similar

phenomena, such as quanti�cation and anaphora. Although these theories often deal

with similar data it is not always possible to see di�erences between theories' treat-

ments due to di�erences in the theories' syntax, notations and de�nitions. In order to

allow better comparison of theories, the idea of a general semantic meta-language is

discussed and a suitable language in presented.

Astl is a computational language which is formally de�ned. It is based on funda-

mental aspects of situation theory. It o�ers representations of individuals, relations,

parameters, facts, types and situations. It also o�ers inter-situation constraints and

a set of inference rules is de�ned over them. In order to show astl's suitability as a

computational meta-language three contemporary semantic theories are described wit-

hin it: Situation Theoretic Grammar|a situation semantic based theory, Discourse

Representation Theory and a form of dynamic semantics.

The results show that at least core parts of these semantic theories can be described

in astl. Because astl has an implementation, it directly o�ers implementation of the

theories described in it. The three descriptions can be closely compared because they

are described in the same framework. Also this introduces the possibility of sharing

treatments of semantic phenomena between theories.

Various extensions to astl are discussed but even in its simplest form it is powerful

and useful both as an implementation language and speci�cation language. Finally we

try to identify what essential properties of astl make it suitable as a computational

meta-language for natural language semantic theories.

iii

Acknowledgements

Firstly I would like to thank Robin Cooper. His comments and guidance through

this work has added greatly to it as well as helping me understand what I am doing.

Graeme Ritchie has now for many years given me help in my research (and career)

both at a high and low level, for which I thank him. Ian Lewin has also contributed to

my work through long discussions in which I would try to explain to him what I was

trying to do and more often he could tell me.

I am also indebted to various funding bodies who have made my studies possible. The

SERC funded the majority of this work through a postgraduate studentship (number

89313458). Also towards the end of this work I have been more than adequately funded

by Esprit Basic Research Action Project 6852 (DYANA-2). In addition to the major

contributions I also wish to acknowledge funding for travel from Esprit Basic Research

Action Project 3175 (DYANA) and Department of Arti�cial Intelligence which allowed

me to attend conferences and workshops at which some of this work was presented. At

these events I gained much useful experience and background. Thanks also go to Gail

Anderson of AIAI for arranging use of a workstation during most of this project.

I would also like to thank Richard Tobin and Je� Dalton who have put up with me

for some years now o�ering cheap accommodation, food and home based computing

services (both for work and diversion). I also cannot forget my fellow students who

I have served my time with: John Beaven, Matt Crocker, Fl�avio Corrêa da Silva,

Carla Pedro Gomes, Ian Frank, Ian Lewin, Nelson Ludlow, Suresh Manandhar, Dave

Mo�at, Keiichi Nakata, Brian Ross, Rob Scott, Wamberto Vasconcelos and others who

have passed through E17. Without them my time in Edinburgh would not have been

so enjoyable. There are others too who have contributed to my views and work in

my previous incarnations in the Edinburgh research community, I thank them. I am

grateful to have had the opportunity to be part of such a very stimulating community.

iv

Contents

Foreword ii

Abstract iii

Acknowledgements iv

1 Introduction 1

1.1 Outline of chapters : 2

2 Computational Semantics 4

2.1 Introduction : 4

2.2 Montague Grammar : 5

2.3 Some semantic phenomena : 7

2.4 Some semantic theories : 11

2.4.1 Discourse Representation Theory : : : : : : : : : : : : : : : : : : 11

2.4.2 Dynamic semantics : 13

2.4.3 Situation Theory : 15

2.5 A general computational semantic language : : : : : : : : : : : : : : : : 18

2.5.1 Feature systems : 20

2.5.2 Semantic abstraction : 22

2.6 Thesis aims : 23

2.7 Summary : 25

3 A Computational Situation Theoretic Language 26

v

3.1 Introduction : 26

3.2 astl|a situation theoretic language : 27

3.2.1 Syntax of astl : 28

3.2.2 Semantics of astl : 30

3.2.3 Inference in astl : 33

3.3 Extended Kamp Notation : 37

3.4 Simple example : 39

3.5 Some formal properties : 42

3.5.1 Soundness of astl : 42

3.5.2 Computational complexity : 44

3.6 Implementation : 46

3.7 Comparison with other systems : 51

3.7.1 astl and situation theory : 51

3.7.2 astl and prosit : 52

3.7.3 astl and feature systems : 54

3.8 Summary : 56

4 Processing Natural Language and STG 57

4.1 Introduction : 57

4.2 Situations and language processing : 57

4.3 A simple grammar fragment : 62

4.4 Situation Theoretic Grammar : 64

4.4.1 Quanti�cation : 69

4.5 Summary : 74

5 Discourse Representation Theory and Threading 76

5.1 Introduction : 76

5.2 Discourse Representation Theory : 76

5.3 DRT in astl : 80

5.3.1 DRSs in astl : 80

vi

5.3.2 Threading : 83

5.3.3 Constructing the threading information : : : : : : : : : : : : : : 89

5.3.4 Pronouns and accessibility : 91

5.4 Other instantiations of DRT : 93

5.5 Summary : 96

6 Dynamic Semantics and Situation Theory 98

6.1 Introduction : 98

6.2 Background and justi�cation : 98

6.3 De�nition of DPL : 100

6.4 DPL in astl : 101

6.4.1 Assignments : 102

6.4.2 DPL expressions in astl : 106

6.5 DPL and natural language : 118

6.6 Comparison of DPL-NL and DRT : 128

6.7 Summary : 132

7 Extensions 133

7.1 Introduction : 133

7.2 Extending DRT in astl : 133

7.3 Pronouns and Situation Theoretic Grammar : : : : : : : : : : : : : : : : 137

7.4 Extending astl : 141

7.4.1 Abstraction, parameters and anchoring in astl : : : : : : : : : : 141

7.4.2 Using semantic translations : 147

7.5 Summary : 149

8 Conclusions 150

8.1 Final comments : 155

Bibliography 156

A Examples 165

vii

A.1 Introduction : 165

A.2 Rooth Fragment : 165

A.3 STG description : 169

A.4 DRT description : 179

A.5 DPL-NL description : 195

viii

Chapter 1

Introduction

Since the development of computers one of the many areas of research has been the

automatic processing of human language. In the beginning it was hoped that natural

language processing would not be too di�cult and the expectations were high. The

translation of one natural language automatically into another was thought to be pos-

sible and many projects were started. However, it was quickly discovered that it would

not be as simple as �rst thought. First, better theories of natural language were nee-

ded and secondly better theories of programming were needed in order to implement

language theories e�ciently. It is not unconnected that during this time there was an

increase in the study of theoretical linguistics which o�ered theories of language more

suitable for computer implementation. Work in Arti�cial Intelligence however often

tried to develop its own computational theories of language, which were concerned

more with computation than with linguistics.

Although the overall goal of high performance automatic natural language processing

was shared between the theorists and the pragmatists di�erences of opinion did exist.

Many implementors believed that linguistic theory was not relevant to building prac-

tical computational systems. It was felt that too much theory in an implemented sy-

stem would do little to improve performance. There is the story, probably apocryphal,

of the speech processing group who would sack a linguist to make their system run

faster. Although both sides have their extremists what is really necessary is knowing

which parts of linguistic theory can bene�t practical applications and which should be

ignored for the present. However with the steady improvement in power of computer

systems more and more aspects can be reasonably implemented.

Initial theoretical work in natural language processing has concentrated on syntax, and

even today that area is probably the most studied. Although there are still many pro-

blems to solve, practical syntactic grammars, which have a �rm theoretical grounding,

exist for signi�cant fragments of some natural languages. Semantics, the meaning of

language, is still trailing a little behind, maybe because it is more di�cult or because

it is prerequisite to have a basic theory of syntax in which a semantic theory may be

described. Formal philosophy and logic has worried about the meaning of language

for thousands of years but it is only in the last thirty years or so that computational

1

2 CHAPTER 1. INTRODUCTION

issues have started to in
uence these theories.

It is important that formal semantics not be ignored in the development of practical

natural language systems. Although an implementation may ignore certain aspects

it is important to understand exactly what the consequences are in ignoring certain

aspects of theoretical semantics. Even if theories are not directly embodied in systems,

theories of semantics are important in order to give a better understanding of what

the limitations of implementations are.

Today, there are a number of computational semantic theories o�ering treatments of

a few interesting semantic phenomena. Mostly these theories concentrate on similar

aspects of language. Although many theories seem to be addressing similar issues it

is not always possible to give a detailed comparison of them because of di�erences in

notation, di�erences in emphasis, and even di�erences in versions of each theory. It

would aid the development of semantic theories of natural language greatly if there

were a theoretically based system in which contempory semantic theories could be

compared more easily. Also it is important to realise that developing computational

theories of natural language semantics is not obvious. Understanding the consequences

of an abstract de�nition is not easy. Computers should not just be seen as the ulti-

mate delivery agent, computers can also act as a useful tool in the development and

experimentation of theories.

This thesis takes a theoretical approach to the description and implementation of

aspects of contemporary semantic theories of natural language. Situation theory

([Barwise & Perry 83], [Barwise 89b]) is used as the basis for a computational lan-

guage called astl. Semantic theories can be described in astl and because astl

has an implementation, it o�ers an implementation for theories described in it. Be-

cause these semantic theories are described within the same environment di�erences

in notation, syntax etc. can be factored out and a very detailed comparison can be

made between them. Also as theories are described within the same environment the

prospect of sharing treatments of semantic phenomena becomes possible.

1.1 Outline of chapters

Chapter 2 discusses aspects of computational semantics. It gives brief descriptions of

some current semantic theories of natural language and some of the currently investi-

gated semantic phenomena. Situation theory is introduced and the notion of general

meta-language for semantics theories is discussed. Various possible frameworks wit-

hin which such a language could be developed are discussed and reasons for choosing

situation theory are given.

Chapter 3 introduces the situation theoretic language astl. It de�nes astl's formal

syntax and semantics as well as its inference rules. Simple examples are given and one

possible implementation of this language is described.

In order to justify astl as a computational meta-language for describing aspects of

semantic theories it is necessary to give detailed examples. Chapter 4 shows how

1.1. OUTLINE OF CHAPTERS 3

simple language processing is possible in astl and a simple syntactic framework is

introduced which will be used in later examples. Then the �rst of three astl de-

scriptions of semantic theories is given. The �rst is Situation Theoretic Grammar

(STG) [Cooper 89] which is a situation semantic theory. Although this theory is clo-

sest to the ideas built into astl it is important to show that astl is capable of descri-

bing basic situation semantics. The next two chapters deal with theories that address

much of the same phenomena and hence are suitable for close comparison. Chapter

5 gives a detailed description of Discourse Representation Theory (DRT) ([Kamp 81]

[Kamp & Reyle 93]). Chapter 6 discusses dynamic semantics as in Dynamic Predicate

Logic (DPL) [Groenendijk & Stokhof 91b]. A description in astl is given for the logic

DPL as well as a dynamic semantic treatment of the same simple language fragment

used in the preceding two examples. Comparisons are made between the DRT and dy-

namic semantics descriptions showing how closely they compare and what the actual

di�erences between these two theories are.

Chapter 7 shows how once in a framework of situation theory aspects of it can be

easily adopted into semantic theories described within in it. This chapter not only

discusses extensions to described theories but also useful extensions to astl itself to

make descriptions easier.

Finally, Chapter 8 again discusses why a situation theoretic based language like astl is

suitable as a meta-language and exactly what properties make it so. Also it re-iterates

the basic thesis arguments. The contributions are identi�ed and conclusions drawn.

Chapter 2

Computational Semantics

2.1 Introduction

In processing natural language by computer a number of techniques have been used to

try to capture the meaning of natural language utterances. In early natural language

processing systems meanings were often computed in a rather ad hoc fashion. SHRDLU

[Winograd 72], an early system, translated sentences into procedures whose evaluation

(i.e. execution) would achieve the desired interpretation of the utterance. As such there

was not really an abstract semantic representation language, let alone a formal de�ni-

tion of it. Semantics in natural language processing and arti�cial intelligence systems

were typically very speci�c to the task and embedded within the actual implementa-

tion. (A good description of the issues at the time is given in [Charniak & Wilks 76].)

Representational formalisms from that time have survived but much work has been

done to characterise these formalisms and give them a more formal semantics. For

example semantic nets at �rst were fairly arbitrary until [Woods 75] began to try

to de�ne them. Eventually they developed into KL-ONE [Brachman & Schmolze 85]

which does have a detailed formal semantics.

Another thread in the �eld of computational semantics, though not always separate,

is the substantial work already done in philosophy and linguistics on formal logic.

With the advent of computers computational systems based on logics appeared. The

whole area of logic programming was developed, part of which is devoted to language

processing. The idea of using a computer to translate natural language utterances into

a logical form is best typi�ed by CHAT-80 [Pereira 82]. CHAT-80 is a Prolog program

which parses English queries about world geography, the queries are converted into

simple logical forms and after some manipulation to optimise the query, checked against

a geographical database. However, early on it was feared that �rst order predicate logic

was not rich enough to capture all the various semantic phenomena found in natural

language utterances. Higher order logics would probably be required although they

are signi�cantly more di�cult to deal with computationally.

Within this chapter (and this thesis) the term computational semantics will be used for

4

2.2. MONTAGUE GRAMMAR 5

the �eld of study that primarily is interested in using formal logics in computational

natural language systems. By computational we mean those systems that are developed

with, at least, possible computer implementation in mind but more often those systems

that have actual implementations. Computational semantics can be seen as a bridge

between formal semantics (typically logic) and applied natural language processing.

There could be two aspects to computational semantics, �rst the translation of natural

language utterances into a semantic representation (and the choice of representation

language) and secondly the use of the translation and inferences we can draw from

it. Although we will touch on the second aspect primarily we will be dealing with the

translation and representation.

As the ultimate goal in computational semantic is a computational treatment which

we can actually use on a computer, semantic theories should be speci�cied in such a

way so that this is possible. The speci�cations we give of theories in later chapters do

meet that criterion.

However before we lay out the aims and methodology of this thesis we will outline some

of the major areas in computational semantics that have been studied, both theories

and phenomena. Montague Grammar [Montague 74] provided a basis from which much

of the current work in computational semantics derives (or at least is inspired by).

Speci�cally we will look at the areas of quanti�cation and anaphora. Characteristic

problems in semantics will be listed which are used as targets for theories. Some speci�c

theories will be described and which of the identi�ed problems they address (and fail

to address) will be given. The second part of this chapter will describe the work on

Situation Semantics and Situation Theory ([Barwise & Perry 83], [Barwise 89b]) its

motivation and its current state in the �eld of computational semantics. Then the

idea of a semantic theory meta-language is introduced and possible areas from which

such a language may be found are discussed. Finally a short discussion will be given

justifying the direction taken in the rest of this thesis.

2.2 Montague Grammar

Montague Grammar was probably the �rst example of a semantic system for natural

language which had a detailed formal de�nition. It shows how a formal logic treatment

of language can be made for a non-trivial subset of English. Although, of course,

not fully comprehensive it still has set a \standard" for more contemporary systems

for certain semantic phenomena. Montague's original papers from the 60's and 70's

are unfortunately di�cult to read (many are collected together in [Thomason 74]).

Later introductions ([Thomason 74], [Partee 75]) helped make the rest of the logic and

philosophy community aware of his work. However [Dowty et al 81] is probably the

most accessible description.

A short description of Montague Grammar is given here as it is a good example of

the basic model for computational semantics used within this thesis. The basic idea is

that a natural language utterance can be translated into an expression in a semantic

representation language. Using an interpretation function de�ned for that semantic

6 CHAPTER 2. COMPUTATIONAL SEMANTICS

representation language the meaning of the utterance can be found. In the case of

Montague Grammar the representation language is Intensional Logic, while the inter-

pretation function is the semantics for Intensional Logic. The basic notion in Montague

Grammar is that the meaning of a sentence is a function from worlds to truth values.

That is in order to know the meaning of a sentence one must know the circumstances

in which it is true or false. The semantics of the Intensional Logic translation of an

utterance re
ects this. Note that the Intensional Logic translation of an utterence is

merely an intermediate form but not in itself the semantics.

A much simpli�ed example follows. Here we simply use �rst order logic and the lambda

calculus rather than full Intensional Logic in order to make the example a little more

readable.

An important aspect of Montague Grammar is that the semantic rules are related

to syntactic grammar rules thus o�ering a strict compositional treatment of semantics.

That is for every syntactic constituent in the grammar fragment there exists a semantic

translation. In order to achieve this a liberal use of lambda abstraction is necessary.

A typical analysis of a simple sentence \every man walks" would be as follows. The

syntax and semantic translations are shown for each node.

every

�P�Q[8x P (x)! Q(x)]

man

�y[man(y)]

walks

�y[walk(y)]

NP

�Q[8x man(x)! Q(x)]

S

8x man(x)! walk(x)

@

@

@

�

�

�

@

@

@

@

�

�

�

�

In this example the translation of the mother node is achieved by functional application

of the translation of the daughters. Computationally this can be implemented by

applying the semantic translation of one daughter to the other and using beta reduction

to �nd the normalised form.

Montague Grammar actually uses Intensional Logic for its semantic representation.

This includes modal operators, intensional operators (up arrow and down arrow) and

lambda abstraction. [Montague 74] presents a fragment of English with both syntax

and semantics. In many ways this example sets the target for later semantic theories.

Montague's work showed not only how to represent some examples of natural language

utterances in logic but also how to construct a logical translation from syntactic parse

trees. Montague concentrated on a number of speci�c semantic phenomena. Within

his fragment he gave treatments for simple declarative sentences, quanti�ers, bound

anaphora and others. Treatments of intensional aspects of language were also included.

2.3. SOME SEMANTIC PHENOMENA 7

Montague's fragment is by no means fully comprehensive but does o�er a �rm ground.

Much development has since taken place both in its formal aspects and increasing

its coverage. Although inference in Intensional Logic is in general computationally

undecidable, Montague Grammar does o�er a method for implementation and has

been used as a semantic basis in a number of implemented systems (e.g. [Cli�ord 90]).

Since the original work on Montague Grammar a number of new theories and exten-

sions have been developed. Some of the motivation of this later work was to address

speci�c problems in semantics which could not be dealt with in Montague Grammar's

original form. Sometimes these have been extensions to Montague Grammar itself,

as in [Muskens 89] where partiality is added to possible worlds, or new theories as in

Discourse Representation Theory [Kamp 81].

2.3 Some semantic phenomena

Many of these extensions and new theories were motivated by particular problems

in semantics. We will look at two particular areas of semantics: quanti�cation and

anaphora, and identify some problems. These problems were either treated by Monta-

gue's original fragment, and hence have become points with which other theories are

compared; or were missing or inadequately treated, and required extensions or new

theories.

Quanti�ers, such as \every", \a", \at least three" etc. are common in natural language

utterances but their interpretation is sometimes tricky. When more than one quanti�er

appears in an utterance there can be an ambiguity.

Every man loves a woman

is normally taken to be ambiguous between there being one particular woman who all

men love and all men loving some (possibly di�erent) woman. This ambiguity is shown

clearly in the two possible logical forms for this sentence. The �rst represents the case

where each man loves some woman (but not necessary all the same) while the second

case is where there is one particular woman loved by all.

8x man(x)! [9y[woman(y) ^ love(x; y)]]

9y woman(y) ^ [8x[man(x)! love(x; y)]]

As we can see the order of the quanti�ers is crucial in di�erentiating the two cases.

This phenomenon is referred to as quanti�er scope.

Unfortunately it is not simply the case that all readings of a sentence can be found

by �nding all permutations of the quanti�ers in its resultant translation. Some com-

binations are not permitted. Various solutions have been proposed to �nd all possible

scopings. In the original work of Montague di�erent scopings were achieved by di�erent

8 CHAPTER 2. COMPUTATIONAL SEMANTICS

syntactic analyses of the same utterance. Later work, [Cooper 83], proposed that the

alternative scopings could be generated non-deterministically during semantic analy-

sis. Even later work has further partitioned o� the work of �nding quanti�er scopings

from building semantic representations. The idea of a representation that does not yet

have its scopings resolved has been used in a number of actual systems. Most typical

is the Core Language Engine (CLE) where a quasi-logical form (QLF) is generated

and later processed to �nd the possible scopings [Alshawi 92]. Various algorithms have

been proposed for �nding the possible scopings given a QLF or similar representation

([Lewin 90], [Hobbs & Shieber 87]).

A second problem in quanti�cation can be shown as follows. In basic Montague Gram-

mar the representation for the determiners \every" and \a" are

every | �P�Q[8x P (x)! Q(x)]

a | �P�Q[9x P (x) ^ Q(x)]

There are other quanti�ers, \few", \most", \at least three" etc. If the above framework

were to be followed all would require their own unique form. In order to make the

representation of quanti�ers more consistent we can view all quanti�ers as two-place

relations between properties. Thus determiners would be represented as

every | �P�Q[forall(P;Q)]

a | �P�Q[exists(P;Q)]

most | �P�Q[most(P;Q)]

where P and Q would be some form of property such as lambda abstractions as in

�x[man(x)] and �x[mortal(x)]. This representation for quanti�ers removes the need

for specialised logical operators within the representations (i.e. ! and ^ in the ex-

amples above). This allows a more consistent treatment. It also makes possible a

treatment for quanti�ers like most|as most must be de�ned as a relation between

the sets de�ned by the two arguments rather than a simple logical operator between

the two. This form of representation for quanti�ers is called generalised quanti�ers.

The �rst argument (P) is sometimes called the range while the second (Q) is someti-

mes called the body (or scope) of the quanti�er. Generalised quanti�ers are more fully

discussed in [Barwise & Cooper 82].

There are other phenomena which although not directly related to quanti�cation can

be treated in a similar form. Comparatives have been given a treatment within a

framework of generalised quanti�ers [Pulman 91]. Also a number of adverbs can also

be treated like quanti�ers (e.g. \usually", \sometimes", \always" etc.) [Chiercha 92].

The second area of phenomena we will identify is various forms of anaphora (or pronoun

use). There is already a large selection of data on various forms of anaphora found

in natural language (see [Hirst 81] for a good review). One of the simplest forms of

anaphora can been seen in the following examples.

A man

1

walks. He

1

talks.

2.3. SOME SEMANTIC PHENOMENA 9

The \He" in the second sentence can refer to the man identi�ed in the �rst

1

. This we

will call inter-sentential anaphora where a pronoun refers to an object in the discourse

introduced in an earlier sentence.

A second form of anaphora is what is termed bound anaphora where a pronoun appears

within the scope of a quanti�er and refers to the object(s) introduced by the quanti�er.

That is the pronoun acts like a bound variable. For example

Every student

1

revised his

1

paper.

where \his" refers to each student. This relation between anaphora and quanti�ers

they are within the scope of, is a major part of some syntactic theories|often termed

binding theory as in GB [Chomsky 81].

Another form of anaphora which has inspired a lot of study is what has come to be

called donkey anaphora due to the classic example sentence.

Every farmer who owns a donkey beats it.

Originally discussed in [Geach 62], the \it" in the above sentence does not (under at

least one reasonable interpretation) refer to one particular donkey but to the donkey(s)

belonging to each farmer. That is the referent for \it" is dependent on the quanti�er

introduced by \a donkey" which in turn is dependent on the quanti�er introduced by

\every farmer". This again shows how anaphora can be closely related to the treatment

of quanti�cation.

The problem can be further explained in looking at potential logical forms of the

sentence. One possible (and correct) form is

8x8y [[farmer(x) ^ donkey(y) ^ own(x; y)]! beat(x; y)]

Note that here we require a universal quanti�er to represent the inde�nite noun phrase

\a donkey" while in a simple sentence like

\a farmer walks" ; 9x [farmer(x) ^ walk(x)]

the inde�nite is represented by an existential quanti�er. Naive attempts to give a more

uni�ed treatment fail, as the simple translation of \Every farmer who owns a donkey

beats it" as

8x [[farmer(x)^ 9y donkey(y) ^ own(x; y)]! beat(x; y)]

1

We will sometimes use the convention of subscripting to show the referent for anaphora.

10 CHAPTER 2. COMPUTATIONAL SEMANTICS

is not a valid expression as the y in the right hand side of the implication lies outwith

the scope of the existential quanti�er that introduces y. Another possible translation

might be

8x9y [[farmer(x)^ donkey(y) ^ own(x; y)]! beat(x; y)]

but this, although logically well-formed does not capture the meaning of the English

utterance. The above is true in the following model

farmer(a) own(a; b)

donkey(b) cat(c)

where a owns a donkey but does not beat it.

As we can see we need to translate inde�nites to either universal quanti�ers (when

already within the scope of a universal quanti�er) or existential quanti�ers otherwise.

It would be more convenient if a uniform treatment of inde�nites could be given.

As well as simple anaphora for noun phrases there is also the phenomenon of verb

phrase ellipsis. As in

Hanako met Noriko and so did Taro.

Normally we would wish to treat this as Hanako met Noriko and also Taro met Noriko

2

.

However things are more complex when the verb phrase in the �rst clause contains a

quanti�er or a pronoun.

Hanako ate a pizza and so did Taro.

Hanako met her mother and so did Noriko.

The �rst is ambiguous as to whether Hanako and Taro ate the same pizza or not

(di�erentiated by the scope of existential introduced by the inde�nite \a pizza"). The

second is ambiguous as to whether Noriko met Hanako's mother (called the strict

reading) or her own mother (called the sloppy reading). This is to do with whether the

the verb phrase representation that is \re-used" contains the pronoun or its referent

from the �rst use. Examples like these are discussed in detail in [Gawron & Peters 90].

Their descriptions are within the framework of situation semantics and hence it is

not always easy to see their relationship with the work on VP ellipsis in DRT (e.g.

[Partee 84]) and dynamic logic [Gardent 91].

In addition to semantic phenomena there are also aspects of computational semantics

that are to do with technique rather than merely linguistic adequacy. A characteristic

2

Throughout this thesis instead of the classic example proper names of \John" and \Mary" for

variety we will use Japanese examples. \Hanako" and \Noriko" are common Japanese female names

while \Taro" is a common male name.

2.4. SOME SEMANTIC THEORIES 11

which many consider to be essential in a semantic theory is compositionality. Basically

compositionality means that the meaning of an utterance is made from the meaning

of its parts. However it is actually di�cult to �nd any computational treatment for

semantics where this can be untrue (in general) (see [Zadronzy 92] for some formal

discussion on this point). A stronger de�nition that is sometimes imposed is that for

each syntactic constituent of an utterance there is a corresponding semantic translation

and that that translation is solely composed from a function of the semantic transla-

tions of the syntactic parts of that constituent. Even with this stricter de�nition it

is possible to convert almost any theory to this form by simply complicating either

the semantic components or the conjoining process (e.g. by checking for di�erent ca-

ses). Making the constituents more complex is not the intention of the proponents

of compositionality. In fact, compositionality is a property that is di�cult to de�ne

satisfactorily. Its status as a desired property is probably because it is a property of

Montague Grammar where semantic rules are directly linked to syntactic ones, while

in more contemporary theories an emphasis on compositionality should perhaps not

be so necessary or appropriate.

Another phenomenon which is often considered abstractly from the actual semantic

theory used is incrementality. This is where there is a representation for each initial

substring of an utterance. Again, like compositionality, it seems that incrementa-

lity can always be achieved at the expense of the complexity of the representation.

More detailed de�nitions can specify that the representation for each initial substring

must have a semantic denotation. Again it is unclear what the ultimate purpose is

in achieving incrementality. Such a direction really needs other justi�cations such as

psychological or human performance issues (see [Crocker 91] for more discussion of this

point).

As we have stated there are a number of aspects of quanti�cation and anaphora that are

closely related: quanti�er scope, various quanti�ers, plurals, inter-sentential anaphora,

VP ellipsis etc. Various solutions to these problems have been proposed but often

in quite di�erent frameworks. This can make comparisons of solutions to problems

di�cult as well as sometimes requiring duplicate research.

2.4 Some semantic theories

Now that we have seen a number of semantic phenomena we will brie
y describe some

semantic theories which have been designed to treat such phenomena. Each of the

three theories described are described in more detail in later chapters, so only a high

level overview of them and their motivation is given here. Also we try to highlight

aspects of them which justify the direction taken in this thesis.

2.4.1 Discourse Representation Theory

Discourse Representation Theory (DRT), as its name suggests, o�ers a representation

for discourses [Kamp 81], [Kamp & Reyle 93]. Only a brief description is given here,

12 CHAPTER 2. COMPUTATIONAL SEMANTICS

a more in-depth description being given in Chapter 5. The \state" of a discourse is

represented by a Discourse Representation Structure (DRS). DRSs are typically drawn

as boxes consisting of two parts: the top section contains discourse markers which

are introduced by nouns; and the bottom section consists of conditions about those

markers. A typical DRS for the sentence \A man walks" is

X

man(X)

walk(X)

Two important aspects of DRT can be shown by a simple example of how pronoun

resolution is achieved: that is the structural and dynamic aspects of the theory. Given

the context of the above sentence, a following sentence \He talks" would extend the

above DRS such that it would look like

X Y

talk(Y)

is(X,Y)

man(X)

walk(X)

(For the purpose of this example we will ignore that fact that sometimes we cannot

deal with the words in a sentence in exactly the same order as they appear.) In

the second sentence, the \He" introduces a new discourse marker (Y) and �nds some

previous discourse marker (of the right type) (X) which it can be related to, then the

processing of the verb adds the condition talk(Y). The extending of a DRSs through

the processing of the discourse shows the dynamic aspect of DRT. E�ectively we can

view this as the sentence adding to an incoming DRS to produce an outgoing DRS

(which is the treatment we will adopt in Chapter 5).

In Montague Grammar the denotations are simply truth values and functions. In DRT

there is a structural aspect to the semantics. DRSs themselves are said to be not just

intermediate representations built as a convenience in processing but as representations

of psychologically real structures necessary in the analysis of language. Although this

may be an extreme way to put it, it is true that the DRS structure is actively used in

analysis. In pronoun resolution, possible candidate referents are found by looking at

the current DRS itself. This structural (or it could be called informational) aspect is

relatively new to computational semantic theories.

As well as o�ering a representation for the content of discourses DRT also o�ers a

construction algorithm which shows how a DRS can be constructed from a parse tree

of an utterance. This aspect is important as DRT is not only concerned about semantic

representation but also with the computational processing required to construct such

a representation.

2.4. SOME SEMANTIC THEORIES 13

So we can see that DRT does o�er something new to computational semantics. It o�ers

both dynamic and structural aspects which are missing in the Montague Grammar

framework. It includes a construction algorithm as part of the theory, noting that

construction of representation is as important as the representation itself.

DRT does not just o�er representations for simple sentences: even in its simplest form

it deals with simple quanti�ers. \Every" is translated as a conditional, as a relation

between two sub-DRS. Inde�nite noun phrases are translated with implicit existentials.

This, and the way universals are treated, allows a uniform treatment of inde�nites

both within the scope of universal quanti�ers and without. Thus DRT o�ers a clean

treatment of donkey anaphora.

Later extensions to DRT [Kamp & Reyle 93] have included a treatment for generalised

quanti�ers which introduces a diamond-shaped box identifying a discourse marker and

relating two sub-DRSs. DRT has also been used as a basic framework for other pheno-

mena. Temporal anaphora, where events are introduced as discourse markers has been

described by [Partee 84] and others. However, also more general semantic phenomena

which do not directly depend on the basic features of DRT have been described within

a DRT framework (e.g. [Lascarides & Asher 91] on commonsense entailment).

2.4.2 Dynamic semantics

Dynamic semantics follows the basic idea that the meaning of an utterance trans-

forms some input \context" to produce a output \context" which will form the input

\context" of the next part of the discourse. This idea has come from the techni-

ques in theoretical computer science in de�ning the semantics of computer languages

([Harel 84]). For example, a \program" fx := x + 1g can transform an input state g

to an output state h that di�ers only from g such that the value of x in h is 1 larger

than the value of x in g. This transforming of state is the reason for the use of the

term dynamic.

Dynamic Predicate Logic [Groenendijk & Stokhof 91b] was developed as a reply to

DRT. DRT had been a move away from the classical logical perspective (and more

precisely away from Montague Grammar). Dynamic semantics is an attempt to bring

the semantic coverage of DRT back into a standard logical framework. To do this the

conventional syntax of logical expressions is used but the semantics is changed. A DPL

expression denotes a set of pairs of input and output states which represent the valid

input and output contexts the expression can appear in.

A typical example of a DPL expression representing the utterance \a man walks" is

9x[man(x)]^ walk(x)

Although the second x would in a conventional (non-dynamic) logic lie outwith the

scope of the existential quanti�er this is not the case in DPL. The semantics of DPL is

such that variable bindings introduced by an existential quanti�er are held in assign-

14 CHAPTER 2. COMPUTATIONAL SEMANTICS

ments which can be referred to later in the expression|the details of this are described

in Chapter 6.

DPL is a very simple logic which is basically �rst order. Dynamic Montague Grammar

(DMG) [Groenendijk & Stokhof 91a] is an attempt to deal with a richer logic (called

Dynamic Intensional Logic|DIL) in a dynamic way. Unlike DPL, DMG relates natural

language utterances to logical translations.

An important aspect of dynamic logic is that it o�ers a simple compositional treatment

for sentences. In a conventional logic in order for a variable (or discourse marker)

introduced in one sentence to be referred to in the next (e.g. in the use of inter-

sentential anaphora) it is necessary that the second sentence appears within the scope

of any existential quanti�er introduced in the �rst. In dynamic logic two sentences can

simply be conjoined by a (dynamic) conjunction operator. For example, if we have the

following discourse

A man

1

walks. He

1

talks

a conventional (non-dynamic) logic representation of the �rst sentence must allow for

the possibility of including the succeeding sentence within the scope of the existential

introduced in the �rst. This might look something like the following

�p[9x [man(x) ^ walk(x) ^ p]]

talk(x)

But this is still inadequate as although we can now get the second sentence within the

scope of the existential in the �rst, the x in the second sentence is free and there is

no reason that it should be the same x as in the �rst sentence even after application.

Because of the dynamic treatment of existentials in DPL we can represent the �rst

sentence in DPL as

9x [man(x) ^ walk(x)]

and represent the two sentences in DPL as

9x [man(x) ^ walk(x)] ^ talk(x)

and still have the x in talk(x) be the same as the x introduced by the existential. We

can compare this with the non-dynamic expression, which for both sentences would

be

9x [man(x) ^ walk(x) ^ talk(x)]

2.4. SOME SEMANTIC THEORIES 15

Crucially we can see that in the non-dynamic case there is no sub-expression which

represents the �rst sentence. This aspect is argued as a reason why the non-dynamic

treatment is non-compositional. Of course in the dynamic case a rede�nition of the

conjunction operator is necessary in order to achieve compositionality.

With respect to DRT, DPL o�ers a conventional logical treatment of one of the ma-

jor di�cult semantic phenomenon covered by DRT|donkey anaphora. But unlike

Montague Grammar, DPL keeps the dynamic aspect of the translation.

2.4.3 Situation Theory

In the early 80s there was a group who proposed a new theory to natural language

semantics. Situation Semantics and what has later become known as Situation Theory

([Barwise & Perry 83, Barwise 89b]) were devised as an alternative to possible world

semantics. It was a move away from conventional logics which only have relatively

simple objects in the semantic domain to having much more complex semantic objects.

Within this movement, although at �rst there was little distinction, today there is a

split between situation theory: the formal aspects of the theory, mathematical, logical,

philosophical, logical, proof theoretic etc.; and situation semantics: the application of

situation theory to the semantics of natural language.

Some early motivation for the development of the situation theory was sentences of

the form

John saw Mary walk.

John saw Mary walk and Bill talk or not talk.

In a conventional classical logic (one that is rich enough to represent embedded senten-

ces), there is no way to distinguish between these two examples, they are semantically

equivalent|while intuitively there seems to be a di�erence.

Situation theory introduces the notion of a situation. Situations can intuitively be

thought of as parts of the world. Unlike possible worlds, situations are partial|they

do not de�ne the truth/falsity of all relations on all objects in the domain. Situations

support facts

3

. Facts have a polarity (1 or 0) representing whether the fact is positive

or negative (in some situation). A simple example would be

S

1

j=� walk;mary; 1�

which is used to represent the fact that Mary walks in the situation S

1

. With a notion

of polarity the truth and falsity of a fact is not dependent on the supports relation, so

that

3

There is sometimes some confusion in the terms infon, fact, possible fact and soa (state of a�airs).

Some proponents of situation theory make distinctions between these depending on whether they are

actual (part of the real world) or not. To continue this confusion I will not distinguish between these

terms but will typically use the term fact.

16 CHAPTER 2. COMPUTATIONAL SEMANTICS

S

2

6j=� walk;mary; 1�

does not imply

S

2

j= � walk;mary; 0�

This allows the two linguistic examples above to be have distinct representations

\John saw Mary walk." ;

S

1

j= � walk;mary; 1�

S

2

j= � see; john; S

1

; 1�

\John saw Mary walk and Bill talk or not talk." ;

S

3

j= � walk;mary; 1�

S

3

j= � talk; bill; 1� _� talk; bill; 0�

S

4

j= � see; john; S

3

; 1�

Thus the notion of a situation o�ers a way to deal with partial information and a way to

hold information in distinct places (a fact may be positive in one situation but negative

(or unknown) in another). An important aspect of the theory is that situations are �rst

class objects. They may be used as arguments in relations. This o�ers an important

level of power to the theory as relations can not just be in situations but also hold

between situations and other objects.

A second important aspect of situation theory is that of parameters. The idea of

parameters is to allow the representation of under-de�ned objects. In logic, variables

are syntactic expressions but in situation theory the idea is that these \variables"

should be in the semantic domain|although this has been considered by some to be

a di�cult direction to go in. This use of parameters and anchoring (analogous to

assignments to variables) allows situation theory to describe what would be called

variables and assignment within the theory itself rather than only in the meta-theory

used to describe the logic.

The distinction of situation theory versus situation semantics occurred as the area

matured. Situation theory concerns itself with the philosophical, mathematical and

logical aspects of the �eld while situation semantics concerns itself with de�ning a

situation theoretic account of natural language semantics. Although we talk about

situation semantics as a theory it is not true that there is one clearly de�ned situa-

tion semantic theory but a collection of theories which are all de�ned in (or at least

appeal to) aspects of situation theory. As we have a natural language semantic theory

(situation semantics) de�ned in terms of a general theory (situation theory) there is

the question whether other (non-situation semantic) theories might also be able to be

de�ned within a situation theoretic framework.

Although this question seems an appealing and interesting question to investigate, there

are problems. Situation theory is still a young area and it is constantly changing. The

early work [Barwise & Perry 83] is notoriously di�cult to read and not formally fully

2.4. SOME SEMANTIC THEORIES 17

speci�ed. As the �eld is still new there are many views on its best courses and many op-

tions even for the most fundamental aspects of the theory. So much so that there is even

a paper de�ning some of the possible questions about the basic theory [Barwise 89a].

However there is progress albeit sometimes slowly, both on situation theory such as

the work on inference [Barwise & Etchemendy 90], and in situation semantics such as

[Gawron & Peters 90] which shows a situation semantic treatment of quanti�cation

and anaphora. Other work in the �eld has shown a treatment of classically di�cult

logical representation problems like paradoxes as in [Barwise & Etchemendy 87] where

a treatment of the liar paradox is discussed. A more detailed and formal description

of some aspects of situation theory is given in Chapter 3.

Computationally, situation semantics is even more in its infancy. Because of its youth

�rm de�nitions have not been possible, making it di�cult to extract a fragment that

is suitable for implementation. However some small systems have been attempted.

The language Determiner-Free Aliass outlined in [Barwise & Perry 83, Ch 6] has been

implemented [Braun et al 88, Polzin et al 89].

One computational use of situation theory which has gained a number of followers is

situation schemata. Situation schemata [Fenstad et al 87] are a method for encoding a

form of fact (or infon) in an attribute-value matrix. A typical example for the sentence

\John walks" may look like

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

SITSCHEMA

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

REL walk

ARG:1

�

IND John

FOCUS

�

IND []

John

�

�

LOC

2

6

6

4

IND IND:1

COND

2

4

REL �

ARG:1 []

1

ARG:2 l

d

3

5

3

7

7

5

FOCUS

�

IND []

John

�

POL 1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

FSTRUC

2

6

6

6

6

4

SUBJ d

1

�

PRED

0

John

0

NUM SG

�

TENSE PRESENT

PRED

0

walk < []

d1

>

0

3

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Situation schemata can be built up in a conventional feature grammar using uni�ca-

tion of partial schemata. This is similar to the technique used to build a conventional

logical forms in a uni�cation feature grammar (as in [Shieber 86a]), but the semantics

of schemata is given in a situation theoretic way. Depending on the instantiation of

situation schemata it is possible to view schemata as equivalent to QLFs (quasi-logical

forms [Alshawi 92]) as they can have unresolved aspects such as quanti�cation. Situa-

tion schemata are probably the most accessible implementational device available in

situation semantics and have been used in a number of applications (e.g. see [Rupp 89]

18 CHAPTER 2. COMPUTATIONAL SEMANTICS

or [Cooper 90]).

The above computational treatments of situation semantics are interesting in that

they do not use their resulting representation in any active way. They use some other

processing (or computational formalism) to build situation theoretic representations,

but they do not de�ne any situation theoretic concept of inference.

A second class of computational situation theoretic systems are those that use situation

theory as their computational base rather than just using aspects of situation theory in

a representation formalism within some other theory. The prime example (before the

work presented here) is prosit ([Nakashima et al 88],[Frank & Sch�utze 90]). Prosit

is designed to be a general knowledge representation/programming language based on

situation theory in a similar way that Prolog is based on �rst order logic. Prosit

o�ers a representation of situations, facts, parameters and intra-situation constraints.

(A detailed description is given in Section 3.7.2.) What makes prosit di�erent from

the other treatments of situation theory is that it deals with more than simply repre-

sentation. Prosit o�ers a inference mechanism within a situation theory framework.

Thus it allows queries to be proved about systems of situations and constraints.

Primarily prosit has been used to look at problems of self-reference in knowledge

representation rather than its use for representing natural language semantics. The

fact that situation theory allows situations as arguments to facts means it is easy to

represent self-referential statements. For example suppose we wish to represent a card

game where there are two players. Hanako has the 3~ and Taro has the 5|. Both

players are displaying their cards, so both can see each other's cards and both can see

that they can see each other's cards, etc. This in�nite regression can be easily modelled

by self-reference.

S

1

j= � has; h; 3~; 1�

S

1

j= � has; t; 5|; 1�

S

1

j= � see; h; S

1

; 1�

S

1

j= � see; t; S

1

; 1�

It is this self-reference and ability to represent other's belief states that is exploited in

prosit examples such as the description of the \three wise men and the colour of their

hats" problem described in [Nakashima et al 91].

2.5 A general computational semantic language

Since the development of Montague Grammar a number of new semantic theories

have been developed either to augment Montague Grammar itself or as alternate

theories to deal with some problem not dealt with in the original de�nition. There

are many such theories but within this thesis we will be looking at only a few: Di-

scourse Representation Theory (DRT) [Kamp 81], Situation Semantics ([Cooper 89,

Gawron & Peters 90] and others) and Dynamic Logics ([Groenendijk & Stokhof 91a,

2.5. A GENERAL COMPUTATIONAL SEMANTIC LANGUAGE 19

Groenendijk & Stokhof 91b]). These theories, as we have seen above, use widely di�e-

rent notations to describe many of the same phenomena. For example a simple sentence

like \a man walks" might have representations as

Situation Semantics S j=� man;X ; 1�

S j=� walk;X ; 1�

Dynamic Logic 9x [man(x)] ^ walk(x)

DRT

X

man(X)

walk(X)

Even in the case of dynamic logic, the apparent similarity to standard logic is only

super�cial (as we will see in Chapter 6). Also, even after we look through the di�erent

syntactic form of these expressions there still are di�erences. Note how the dynamic

semantics translation has an explicit existential quanti�er while the others do not.

The problem with having a number of semantic theories all attempting to describe

similar phenomena (especially when their notations are so di�erent) is that treatments

of various phenomena may be given in one theory but cannot (at least not obviously)

be adopted by others. Also although these theories sometimes purport to deal with

the same phenomena they may do so in subtly di�erent ways which are not obvious

due to the notations and semantics of the theory. In order to e�ciently cross-pollinate

ideas and treatments as well as investigate the exact di�erences it would be useful to

have a computational environment in which such semantic theories could be described,

implemented and tested.

The idea of a general meta-theory for a number of apparently di�erent theories co-

vering very similar phenomena has already successfully been developed in the �eld of

computational syntax. In the early 80s a number of syntactic theories were develo-

ped which although apparently di�erent were o�ering treatments of similar syntactic

phenomena. These included Lexical Functional Grammar (LFG) [Bresnan 82], Gene-

ralised Phrase Structure Grammar (GPSG) [Gazdar et al 85] and Categorial Grammar

[Ades & Steedman 82]. Functional Uni�cation Grammar (FUG) [Kay 84] was the �rst

to try and �nd a general formalism in which other grammar theories could be described,

but PATR-II [Shieber 84] was really the �rst system in which speci�c grammar theories

were written (as opposed to borrowing ideas from others to form a new theory). De-

scriptions of GPSG [Shieber 86b] and Categorial Grammar [Uszkoreit 86] in PATR-II

helped to determine future grammatical theories in that it allowed them to see what

features of these theories are really signi�cant. Even though the descriptions were

rarely complete it was useful to identify which aspects of the theories were easy to

describe and which were not. HPSG [Pollard & Sag 87] which was developed later has

bene�ted from this comparison. Although it itself has not been described in PATR-II

it has been in
uenced by earlier comparisons of theories in PATR-II. It is easy to see

aspects of GPSG and Categorial Grammar within HPSG.

20 CHAPTER 2. COMPUTATIONAL SEMANTICS

It is perhaps too early in the development of semantic theories to hope for such a

well de�ned \PATR-II for semantics". The �eld of computational semantics is perhaps

not as stable as computational syntax was then. However there are strong analogies

between the two �elds. Today we have di�erent semantic theories covering similar

semantic phenomena in the same way we had ten years ago with computational syntax.

And if it is not possible to �nd such a language then it would be interesting to know

why not.

It should be noted that a general language in which other theories can be described

is already the subject of a number of pieces of research. Obviously general logic pro-

gramming languages in some sense o�er this. If it is possible to implement a semantic

theory at all it can be done in Prolog (and it may even be easy to do so) but of course

that is not quite what we are looking for. Prolog is too general and does not constrain

itself to features suitable for semantic theories of natural language. In implementations

of semantic theories in Prolog it is often di�cult to di�erentiate between parts of the

theory and the programming language itself. Something more speci�c to the task is

desired.

Within the �eld of logic programming there has already been work on de�ning general

systems in which various logics can be de�ned. Particularly socrates is a system in

which logics such as �rst order, modal, etc. can be abstractly de�ned and the system

will generate theorem provers from these de�nitions [Jackson et al 89].

With a view to �nding a general semantic meta-language let us look at some existing

frameworks which could o�er a framework within which such a meta-language might

be de�ned.

2.5.1 Feature systems

Feature systems (sometimes called attribute-value logics [Johnson 88] or feature logics

[Smolka 88]) are often used as a general mechanism for syntactic representation in na-

tural language systems. However they have also been used for semantic representation

too. Feature systems in their simplest form allow a representation of sets of features

(categories) where each feature can take either an atomic value or a category value.

This allows a simple but powerful representation which has been used in many syntac-

tic theories (e.g. GPSG [Gazdar et al 85]) and also for simple semantic representation

of logical forms (e.g. in [Shieber 86a]). Originally their use was quite informal but

much work has been done on formalising the theory of features. Also many enhance-

ments have been added to the basic form as it was found not powerful enough to easily

represent many syntactic phenomena (let alone semantic phenomena).

Various extensions to features have been considered. Apart from simple atomic or

category-valued features we can now have disjunctive features and set-valued features.

Also the speci�cation of feature structures can be made as sets of path equations

(possibly including regular expressions) instead of simple attribute-value matrices. For

example the following two descriptions represent the same feature structure. They are

representations of the sentence \Hanako seems to sleep".

2.5. A GENERAL COMPUTATIONAL SEMANTIC LANGUAGE 21

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

SUBJ

2

4

AGR

�

PERS 3rd

NUM sing

�

PRED hanako

3

5

1

COMP

2

4

SUBJ []

1

PRED sleep

TENSE none

3

5

PRED seem

TENSE pres

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

In path equation form (as used in PATR-II) the above could be written as

<SUBJ AGR PERS> = 3rd ^

<SUBJ AGR NUM> = sing ^

<SUBJ PRED> = hanako ^

<COMP SUBJ> = <SUBJ> ^

<COMP PRED> = sleep ^

<COMP TENSE> = none ^

<PRED> = sleep ^

<TENSE> = pres

Also note the cross indexing such that part of the structure is shared between two

parts of the feature structure.

At �rst it was felt that feature structures could only be acyclic but later it was realised

that cycles were useful and there were no reasons to exclude them. Later work made

more distinction between the syntactic expression of a feature matrix (or equations)

and the feature structure it denotes.

Work on the representation of set values for features posed a number of problems.

There is in fact a number of ways of interpreting set-valued features. First we can view

the values in a disjunctive way. That is the value of such a feature is one of a set of values

but at this stage it is not known which|this is consistent with the view of a feature

structure being an underdetermined description of feature graphs. The second view is

to deal with the values of a set-valued feature in a conjunctive way. That is the feature

value is all of the values in the set. These distinctions are detailed in [Rounds 88]. But

it turns out that these distinctions are not enough. Another treatment of set values

is possible and indeed useful in linguistic representation. [Pollard & Moshier 90] show

a treatment of set values that allows some values to be collapsed into one member

which they use in the treatment of slash categories (see [Gazdar et al 85, Ch 7]). All

this shows that there are many treatments possible and the required treatment can be

selected as required.

The main computational operation used with feature structures is uni�cation. Uni�-

cation allows the conjunction of two feature descriptions in order to �nd a description

of a new object (or objects) which are described by both descriptions. Uni�cation is

well researched but can be a computationally expensive operation, especially when sets

22 CHAPTER 2. COMPUTATIONAL SEMANTICS

and other extensions are admitted, although various relatively e�cient implementati-

ons have been found (e.g. [Ait-Kaci & Nasr 85]). In addition to uni�cation the use of

constraints has also been introduced. Originally only simple forms were required by

grammatical theories. Feature Cooccurrence Restrictions in GPSG [Gazdar et al 85]

are simple constraints within categories about which features may appear (or not ap-

pear) together. Others have considered constraints between categories ([Kilbury 87]

[Frisch 86]) which are more powerful, but computationally more expensive. Later work

[Hegner 91] has proven decidability for constraints restricted to horn clauses.

Head-driven Phrase Structure Grammar (HPSG) [Pollard & Sag 87] is a theory that

requires (probably) the richest form of feature systems. Although it is currently not

speci�ed in a fully formalised way it probably requires, at least, conjunctive and disjun-

ction features, set values, negation, cycles, and constraints|[King 89] gives a logical

formalisation of major parts of the theory. HPSG even requires representations of

situations for its semantic forms. With such a rich representation, it is quite pos-

sible that aspects of an implementation of HPSG would be undecidable (either con-

straint satisfaction and/or parsing) however cut down versions do exist (e.g. [Franz 90],

[Popowich & Vogel 91]).

Thus with all these various facilities a feature system (given the right choice of options)

could o�er a rich enough formalism within which semantic representation would pro-

bably be possible. However it would require careful selection of the right combination.

2.5.2 Semantic abstraction

Another approach to developing a general semantic meta-theory is semantic abstrac-

tion [Johnson & Kay 90]. In semantic abstraction a number of basic operators (called

constructors) are de�ned. The operators can be used within some grammar to de�ne

the operations necessary in building a semantic representation of an utterance. The

important aspect of this method is that depending on the semantic theory desired

(hopefully) only the de�nition of the operators need be rede�ned. The application of

the operators remains the same.

[Johnson & Kay 90] de�ne a (non-exhaustive) set of six basic operators: external, atom,

conjoin, new index, accessible index and compose. Each syntactic grammar rule is

related to some set of basic semantic operations. The evaluation of these de�ne the

construction of the semantic translation for that syntactic constituent. De�nitions for

these operators have been made for predicate logic, discourse representation structures

and a simple form of situation semantics.

This method does seem attractive and does seem to work for these simple cases, alt-

hough it must be said that the given examples are very simple and constructed so that

they illustrate the technique but in their present form would not scale up. Semantic

abstraction as it is de�ned in [Johnson & Kay 90] only concerns itself with the con-

struction of semantic forms and not with the semantics interpretation of these forms

but this is also true of most treatments of semantics in feature systems. It should not

be expected that all semantic constructors be used for all theories as it is expected that

2.6. THESIS AIMS 23

there are some di�erences between these theories. However it should be the case that a

large part of each theory would use the same constructors. Intuitively there does seem

to be overlap in the theories. For example conjoin might be simple uni�cation in one

theory and application in another, but the basic notion of joining two objects exists in

both.

What is important in this method is to ensure that the \core" constructors are used in

each description. If a non-intersecting set of constructors are used in the description of

di�erent theories this method ceases to have any interesting comparative properties and

is reduced to a usefulness like a general (though appropriate) programming language.

Also although considered, a semantics for the abstract constructors themselves is not

given.

2.6 Thesis aims

We have described a number of semantic phenomena and described a number of se-

mantic theories aimed at describing these phenomena. Then we identi�ed a number

of possible frameworks in which a general computational description of these theories

could be made.

Because situation theory has been proposed not only as a framework for natural lan-

guage semantics but also as a general all-encompassing theory of information content,

it was decided to investigate its use as a general semantic meta-theory in which other

semantic theories can be formally speci�ed, implemented and compared. Situation

theory seems to o�er more power than simple �rst order logic and because it o�ers

intensional objects, abstract descriptions should be possible. A language based on si-

tuation theory is also unlike simple Prolog as it already o�ers a formal semantics and

should restrict its descriptions to aspects of semantics and less to do with implementa-

tion. This is not to say that a semantic meta-language could not be achieved in a logic

programming language, a feature system or in a framework of semantic abstraction,

in fact it may be the case that a situation theoretic language can be de�ned within

these frameworks themselves. However as an initial stage we will try to develop a

meta-language based on situation theory but we will return to the wider issues of what

the necessary properties of a semantic meta-language are in Chapter 8.

First, it is necessary to de�ne a computational fragment based on situation theory.

This is done in Chapter 3 with the de�nition of the language astl. This requires

careful selection of various properties of situation theory and the de�nition of an in-

ference mechanism in order to obtain a usable language. In order to show that astl

is suitable as a general meta-theory for semantic theories it is necessary to show some

detailed examples. To be completely formal we should �nd full formal de�nitions of se-

mantic theories and prove equivalence with them and their formalisation within astl.

This extreme has not been done. Finding full formal speci�cations of natural language

semantic theories is not always easy and even when found that speci�cation may not

be the current accepted version. Instead we will encode theories by looking at paradig-

matic analyses. This is justi�ed because many natural theories typically concentrate

24 CHAPTER 2. COMPUTATIONAL SEMANTICS

on some speci�c semantic phenomena, and it is treatments of those phenomena which

are important to the theory. However this is not to say that the formalisation of a

theory within astl is just some arbitrary \program". Descriptions of theories in astl

are still a formal speci�cation but they are also suitable for execution. Because we are

concerned with computational semantic theories is seems reasonable, or even necessary,

that formal speci�cations can be used to show analyses of paradigmatic utterances ex-

hibiting speci�c semantic phenomena. The formal descriptions presented in the later

chapters of this thesis are directly executable via astl's implementation and they can

used to derive that theory's semantic representation from a given utterance.

Three theories are considered in detail, each is given an executable formalisation of key

aspects of the theory. Chapter 4 describes a form of situation semantics called Situation

Theoretic Grammar (STG) [Cooper 89] which shows that astl is at least suitable

for describing \conventional" situation semantics. Chapter 5 shows how Discourse

Representation Theory (DRT) [Kamp 81] can be described in astl. Not only can

Discourse Representation Structures (DRSs) be represented but also a \construction

algorithm" (the method of generating DRSs from utterances) can be de�ned within such

a situation theoretic language. Third, a description of dynamic semantics is given. A

description of Dynamic Predicate Logic (DPL) [Groenendijk & Stokhof 91b] is given

in astl. This di�ers from the other descriptions in that DPL is a logic rather than a

treatment of natural language. A separate description called DPL-NL shows how DPL

can be related to natural language utterances and o�er a dynamic logic treatment of

them.

The STG description is given really as a basic building block, showing how both syntac-

tic and semantic processing may be done in astl. The later two descriptions, DRT

and dynamic semantics, are given in order to allow speci�c comparisons between them.

Both these later theories deal with some speci�c problems in semantics and therefore it

seems justi�able (and interesting) to compare them closely. That such comparisons are

possible (and easy) shows one of the advantages of a general meta-theory for semantic

theories. That these descriptions are not just static descriptions but can actually be

run in an implementation of astl also allows comparisons to be made about their com-

putability and suitability in practical natural language processing systems. Examples

of the descriptions are given throughout the chapters but detailed examples are also

given in Appendix A.

At this stage is is worth noting that although astl is designed as a general language,

any such language will impose certain restrictions on the descriptions encoded within

it. Some of these restrictions are arbitrary and just factors which are necessary when

dealing detailed formalisations. Other restrictions are directly to do with the under-

lying aspects of astl and situation theory (the framework astl is in) and are worth

noting. At this stage, before astl is presented, we will not discuss examples of this

but will return to this issue in the �nal chapter.

2.7. SUMMARY 25

2.7 Summary

In this chapter we have identi�ed a number of semantic phenomena currently under

investigation in the area of formal and computational semantics. These lie primarily in

the area of quanti�cation and anaphora. A number of contemporary semantic theories

are brie
y described. The general idea of a computational mechanism in which these

semantic theories can be described and run is introduced and a number of possible

areas where such a mechanism might be found are described (logic programming,

feature structures and semantic abstraction). Finally the basic aim of the thesis is

proposed. That is to de�ne a computational situation theoretic language which is

adequate to describe formal (and executable) speci�cations of other semantic theories

and illustrate this by describing a number of theories in it.

Chapter 3

A Computational Situation

Theoretic Language

3.1 Introduction

In this chapter we will formally de�ne a computational language in which a number

of semantic theories of natural language can be de�ned. This language is called astl.

Astl relies heavily on basic aspects of situation theory

1

. This language is not simply

an abstract theoretic one but is designed speci�cally to be run on a computer. Formal

speci�cations of natural language semantic theories can be written in astl and run on a

conventional computer. An implementation of astl exists and results from descriptions

in astl will be shown throughout this thesis. The basic intended use of astl is that

aspects of semantic theories are speci�ed in astl such that it is possible to at least

derive the semantic representation for utterances with respect to that theory. Although

we do not spend much time discussing the interpretation and inference based on the

resulting semantic representations, astl does seem suitable for further investigation

in that area.

The suitability of astl as a language for describing natural language semantic theories

relies on the fact that it exploits some fundamental aspects of situation theory. The

concept of the situation and its status as a �rst class object which can be used as an

argument to arbitrary relations allows astl to o�er a high level of structure in its

representation of objects. Secondly, astl also exploits situation theory's mechanisms

for representing parameters and anchoring. This allows astl a method for describing

variables and assignments. It is this level of description which normally only exists in a

meta-language used to described semantic theories that makes astl a suitable tool in

the formal speci�cation and implementation of a number of natural language semantic

theories.

However, a language which only o�ers a method for representation of semantic objects

1

Note that the name \astl" is not intended to be an acronym, although a number have been

suggested.

26

3.2. ASTL|A SITUATION THEORETIC LANGUAGE 27

is not powerful enough in itself to allow computation. As well as a representation

for, individuals, parameters, relations, facts and situations, astl also o�ers a repre-

sentation of constraints. Constraints allow generalisations between situations to be

described. Finally in order for computation to be possible astl also includes a de�ni-

tion of inference with respect to basic situations and constraints.

Astl is not the �rst computational language to be based on situation theory, but it is

probably the �rst to be speci�cally designed for processing natural language utterances.

Prosit ([Nakashima et al 88], [Frank & Sch�utze 90]) is another example of a language

based on aspects of situation theory. (Prosit is described in detail in Section 3.7.2.)

In the work presented here we are primarily concerned with language processing and

representing semantic translations, and in its current form prosit does not include

an easy way to deal with grammar and language processing. Rather than extend

prosit to include such mechanisms it was felt better to de�ne a new language from

the start which would o�er only the facilities that appear necessary for a semantic

meta-language. Astl is the result.

3.2 astl|a situation theoretic language

In some uses of situation semantics the language in which the examples are given is

not fully de�ned. The reader is expected to build up an idea of the language just

based on the given examples. Equally so in AI, specialised programming languages

are also often poorly de�ned, speci�ed only by their syntax with no formal (or often

even informal) speci�cation of their semantics. To try to counter that, here we will give

both the formal syntax and semantics of astl. As we are dealing with a computational

language which has an implementation there will be times when the abstract de�nition

di�ers from the actual operational semantics|these occasions are indicated in the text

and justi�cation for the di�erence is given.

Here we continue with the idea used in model theoretic semantics for conventional logics

where the denotation of expressions in a language are objects in a model. However

here our model consists of more complex semantic objects, such as facts, types and

situations, where in the case of simple �rst order predicate logic the semantic objects

are simpler.

The language astl is fairly conservative in its use of situation theoretic objects, and

in fact fairly simple. Rather than de�ne a complicated language at this stage we will

start simply. Extensions are discussed later but we will see that even this simple form

is su�cient for the basic aspects of the semantic theories we are interested in.

The following two sections on the syntax and semantics of astl are rather formal and

perhaps di�cult to read. It is necessary to formally de�ne astl before we can discuss

it in any detail. However it is not necessary to follow these sections closely at this

stage. They may be skimmed and later referred to when it is necessary to understand

the semantics in more detail. Section 3.4 gives a full example of a description in the

language and shows how it can actually be used. The basic ideas of astl and its use

28 CHAPTER 3. A COMPUTATIONAL SITUATION THEORETIC LANGUAGE

can be understood from that section.

3.2.1 Syntax of astl

This section describes the syntax of terms and sentences in astl. Unlike many AI

programming languages which use typographical conventions (e.g. upper case letters to

identify variables) or context to distinguish types of symbol, astl requires its symbols

to be declared before their use. However for ease of reading astl expressions some

typographical conventions will be used.

Terms in astl fall into two classes:

atomic: individuals, relations, parameters and variables.

complex: i-terms, types, and situations.

Although there are no built in naming conventions for atomic terms we will use the

following conventions:

individuals: lower case letters (i.e. a, b, c, : : :).

relations: lower case words (i.e. walk, man, etc.).

parameters: upper case letters (i.e. A, B, C, : : :).

variables: upper case letters preceded by an asterisk (i.e. *A, *B, *C, : : :).

The syntax of complex terms are

if rel is a relation of arity n, and arg

1

; : : : ; arg

n

are terms and the polarity p is 0 or

1 then <<rel; arg

1

; : : : ; arg

n

; p>> is an i-term.

if Par is a parameter and i

1

; : : : ; i

n

are i-terms then

[Par ! Par != i

1

: : :

Par != i

n

]

is a situation type. (Later we will refer to the sub-parts of a type of the form

Par != i as conditions|although conditions are not terms.) Also if � and � are

situation types � & � is also a situation type.

if � is a situation name and � is a type then � is a situation term and �::� is a

situation term.

3.2. ASTL|A SITUATION THEORETIC LANGUAGE 29

A few comments seem relevant at this stage. Currently there is no syntactic speci�ca-

tion of appropriateness for arguments to a relation, although such a restriction could

be considered. Here we allow any term to be an argument to a relation and only state

that the number of arguments must be equal to the declared arity of the relation. A

second comment is about types. These are limited to situation types, although a more

general type system is described in terms of a generalised abstraction extension details

of which are given in Section 7.4.1.

Sentences in astl have the following syntax

If � is a situation name and � a situation type then �:� . is a proposition.

If �

0

; �

1

; : : : ; �

n

are situation names and �

0

; �

1

; : : : ; �

n

are situation types then

�

0

:�

0

<= �

1

:�

1

; : : : ; �

n

:�

n

. is a constraint.

Note that these sentences (propositions and constraints) are not terms and cannot be

used as arguments to relations. In Chapter 4 we will add to this a number of sentences

which are convenient abbreviations for propositions and constraints that make the

speci�cation of natural language processing easier but as they can all be de�ned in

terms of the propositions and constraints, the above represents a proper core of the

language.

Now that we have given the complete syntax for all the terms and sentences in astl

we can give the syntax for an astl description. A description is a set of declarations

and sentences which describe a system of situations and constraints|in some ways this

can be thought of as a program in the astl language. Optional sections are contained

within [...].

Individuals fi

1

; : : : ; i

n

g

Relations frel

1

=arity; : : : ; rel

n

=arityg

Parameters fp

1

; : : : ; p

n

g

Variables fv

1

; : : : ; v

n

g

Situations (<situation term>

...

<situation term>)

[Constraints <constraint>

...

<constraint>]

A full example astl description would look like

Individuals {h,t}

Relations {happy/1, smiles/1}

Parameters {S}

Variables {*S, *Y}

Situations

30 CHAPTER 3. A COMPUTATIONAL SITUATION THEORETIC LANGUAGE

;; Basic situations -- i.e. who smiles where

(SIT1 :: [S ! S != <<smiles,h,1>>

S != <<smiles,t,1>>]

SIT2 :: [S ! S != <<smiles,t,1>>])

Constraints

;; if they smile they are happy

*S : [S ! S != <<happy,*Y,1>>]

<=

*S : [S ! S != <<smiles,*Y,1>>].

Situation declarations really serve a dual purpose. They de�ne what the basic situati-

ons are in a description and also assert that these situation are of the speci�ed type.

That is, when we declare a situation

SIT1 :: [S ! S != <<smiles,h,1>>

S != <<smiles,t,1>>]

we are also asserting the proposition

SIT1 : [S ! S != <<smiles,h,1>>

S != <<smiles,t,1>>]

Comments may be included in descriptions in a Lisp comment style: characters from

a semi-colon to the end of a line are ignored.

3.2.2 Semantics of astl

This section describes the semantics of astl in terms of a model. A model M for an

astl description consists of the following

I a set of individuals.

R a set of relations.

P a set of parameters.

S a set of situations.

T a set of types.

F a set of facts.

Supports a set of pairs of situations and facts

2

constructed from the set S � F.

2

In other de�nitions of situation theory it would be normal to restrict facts to those that do not

\contain" parameters. This has deliberately not been done here.

3.2. ASTL|A SITUATION THEORETIC LANGUAGE 31

Relation of a function that given a fact will return its relation.

Argument of a function that given a fact f and an integer i will return the member

of I, R, P, S, T or F, which is the ith argument of f .

Polarity of a function that given a fact will return a 0 or 1, the polarity of the fact.

Facts of a function that given a type will return a subset of F.

Param of a function that given a type will return a member of P.

Func a function assigning, names, relation names, parameters names and situation

names, to members of I, R, P and S respectively.

It is possible to construct the members of F (the facts) and T (the situation types)

from the sets I, R, P, S, and T and F themselves but this has not been done here. We

also could have a notion of appropriateness for arguments to facts. In this de�nition

we will only enforce the number of arguments of a member of F to be the same as the

arity declared for its relation. Appropriateness is left as a matter for each description

within astl rather than the language itself.

The semantic values for expressions in astl can be described with respect to a model

M and a variable assignment function g.

The semantic values of basic terms are

If u is a variable then [[u]]

M;g

= g(u).

If � is an individual name, relation name, parameter name, situation name then

[[�]]

M;g

= Func(�).

If � is 0 or 1 then [[�]]

M;g

= 0 or 1 respectively.

The semantic values for complex terms are

If � is an i-term <<�, args, polarity >> then [[�]]

M;g

is a fact f , a member of F where

[[�]]

M;g

= Relation of(f), for each argument in args �

1

; :::; �

n

for i = 1 to n,

[[�

i

]]

M;g

= Argument of(f; i), and [[polarity]]

M;g

= Polarity of(f). If any

argument [[�

i

]]

M;g

is unde�ned then � is unde�ned.

If � is a (situation) type of the form [� | � |= �

1

: : : � |= �

n

] then [[�]]

M;g

= t,

where t 2 T such that f[[�

1

]]

M;g

; : : : ; [[�

n

]]

M;g

g is equal

3

to Facts of(t)

fParam of(t) = [[�]]

M;g

g, where Facts of(t) fParam of(t) = [[�]]

M;g

g is

Facts of(t) except that all occurences of Param of(t) are substituted with

[[�]]

M;g

. If �

1

&�

2

is a (situation) type then [[�

1

&�

2

]]

M;g

� [[�

3

]]

M;g

such

that �

3

is the conjunction of conditions in �

1

and �2.

3

The sets need to be equal rather than subset to ensure there is a unique t for each type. We use

sets rather than lists so that the order of the conditions is not signi�cant.

32 CHAPTER 3. A COMPUTATIONAL SITUATION THEORETIC LANGUAGE

If � :: � is a typed situation term then [[� :: �]]

M;g

= [[�]]

M;g

if [[�]]

M;g

is of type

[[�]]

M;g

otherwise it is unde�ned. [[�]]

M;g

is of type [[�]]

M;g

i� where [[�]]

M;g

= s

and [[�]]

M;g

= t, for each fact f

i

in Facts of(t), < s; f

i

fParam of(t)=sg > 2

Supports for each i, where f

i

fParam of(t)=sg is f

i

except that all occurrences

of Param of(t) in f

i

are substituted with s.

The semantic values of sentences in astl are

If � is a proposition � : � then [[�]]

M;g

is true if [[�]]

M;g

is of type [[�]]

M;g

. (The

de�nition of a situation being of a type is de�ned above in the semantics of typed

situations.) If any term in � is unde�ned � is false.

If � is a constraint of the form �

0

: �

0

<= �

1

: �

1

; :::; �

n

: �

n

and V

R

is the set of

all variables in the right hand side of � and V

L

is the set of all variables in �

minus V

R

then [[�]]

M;g

is true if for all g

0

such that g

0

is exactly the same as

g except possibly in the values it assigns to the variables in V

R

and such that

[[�

1

: �

1

]]

M;g

0

; ...,[[�

n

: �

n

]]

M;g

0

are true, then there exists g

00

such that g

00

is

exactly the same as g

0

except possibly in the values it assigns to the variables in

V

L

such that [[�

0

: �

0

]]

M;g

00

is true.

Some comment on this may be useful. In this framework situations may support

parametric facts. This perhaps is a little unusual in that most versions of situation

theory would not allow this. This is allowed here in order not to complicate the

language|such restrictions are left to descriptions in astl. Also there is no special

treatment of parameters built in to astl|except in their use as in identifying the

\abstracted" situation in a situation type. Parameters are just another simple class

of atomic individuals. The use of parameters as \variables" is possible within a user's

description but the notion is not built into the language itself.

Another aspect which is not covered by the semantics but deserves some comment is co-

herence. Speci�cally, the above de�nition does not make any restrictions on situations

which support con
icting facts. For example a situation of the following type

SIT1 :: [S ! S != <<happy,h,1>>

S != <<happy,h,0>>].

would be inconsistent within some de�nitions of situation theory but it is acceptable

in astl. Currently coherence is a notion which can only be speci�ed within an astl

description and is not de�ned within the model. It is true that the issue of coherence

is not yet dealt with in astl but future extensions may have some notion of coherence

built in.

A little further discussion about free variables will help clarify the semantics. Free

variables in propositions or the left hand side of constraints are e�ectively skolemized.

That is they are given an arbitrary constant as a value, hence we are treating free

3.2. ASTL|A SITUATION THEORETIC LANGUAGE 33

variables as being existentially quanti�ed. Queries however are treated slightly di�e-

rently. Although we have not given a formal semantics for queries, they are important

to the operational semantics of any implementation of astl. Free variables in queries

in the implementation discussed later in this chapter are given a universal treatment.

When a query is asked we want to �nd all ways that it can be made true, taking the

analogy of Prolog.

A further point that needs some mention is that in the version of astl de�ned above,

propositions and constraints are not �rst class objects. They could be but are not due

to the complexities this would introduce into any simple implementation, and it was

felt that it was not necessary for the examples given in later chapters.

3.2.3 Inference in astl

A static de�nition of the language astl is not su�cient to allow it to be used in

computation. We would like to compute what the consequences of a given set of

constraints and propositions are. The following set of inference rules are de�ned to

achieve this. Each rule is described as an equation, which should be read as, if we

have the sentences above the line we can conclude (prove) those on the bottom. Greek

characters are used as variables over expressions in the language (rather than variables

in the language).

Constraints containing (astl) variables can be viewed as shorthand for a number of

fully explicit non-variable constraints. The following de�nitions are given with respect

to fully expanded constraints so that variable binding need not be speci�ed in the rules.

Type reduction

A type with more than one condition may be broken down.

� :[� ! c

1

; : : : ; c

n

]

� :[� ! c

1

], : : :, � :[� ! c

n

]

For example if we have a situation

SIT1:[S ! S != <<happy,h,1>>

S != <<sings,h,1>>].

We can conclude that Sit1 is also of the following two types.

SIT1:[S ! S != <<happy,h,1>>].

SIT1:[S ! S != <<sings,h,1>>].

34 CHAPTER 3. A COMPUTATIONAL SITUATION THEORETIC LANGUAGE

Type combination

This rule is the reverse of type reduction above. Single condition propositions of the

same situation can be combined.

� :[�

1

! c

1

], : : :, � :[�

n

! c

n

]

� :[�

x

! c

1

; : : : ; c

n

] f �

1

; : : : ; �

n

/�

x

g

That is the parameters of the individual types are replaced with a new parameter used

in the new combined type.

This rule and the previous one e�ectively de�ne a subsumption relation between types.

Types can be broken down and built up such that any \subset" of conditions (in any

order) of a situation's type is still a type of that situation. For example if the following

proposition is true

SIT1:[S ! S != <<happy,h,1>>

S != <<sings,h,1>>

S != <<dances,h,1>>].

the following are also true

SIT1:[S ! S != <<happy,h,1>>].

SIT1:[S ! S != <<dances,h,1>>

S != <<sings,h,1>>].

As well as all other combinations and orders of conditions. Note that the result of these

two inference rules is that the order of conditions in types is semantically irrelevant.

Modus ponens

We have two cases, one when there is only one type on the right hand side of a constraint

and the other when there is more than one

�

0

:�

0

<= �

1

:�

1

�

1

:�

1

�

0

:�

0

�

0

:�

0

<= �

1

:�

1

, : : :, �

i�1

:�

i�1

, �

i

:�

i

, �

i+1

:�

i+1

,: : :, �

n

:�

n

�

i

:�

i

�

0

:�

0

<= �

1

:�

1

, : : : �

i�1

:�

i�1

, �

i+1

:�

i+1

,: : :, �

n

:�

n

For example if we have

SIT1:[S ! S != <<happy,h,1>>]

<= SIT2:[S ! S != <<sings,h,1>>].

SIT2:[S ! S != <<sings,h,1>>].

3.2. ASTL|A SITUATION THEORETIC LANGUAGE 35

we can deduce

Sit1:[S ! S != <<happy,h,1>>]

It should be emphasized at this point that there is a distinction between astl the

language and astl the implementation. Although the implementation attempts to

come as close as possible to the formal de�nition it does take some short cuts for the

sake of e�ciency. In particular the second part of the above de�nition allows the sub-

parts of the right hand side to be eliminated in any order. In the actual implementation

the rule is

�

0

:�

0

<= �

1

:�

1

, �

2

:�

2

; : : : ; �

n

:�

n

�

1

:�

1

�

0

:�

0

<= �

2

:�

2

; : : : ; �

n

:�

n

That is the clauses on the right hand side need to be proved in order. The e�ect of

this is that there may exist some sentences of the form �

0

:�

0

<= �

1

:�

1

; : : : ; �

n

:�

n

which are true but cannot be proved because of the ordering of clauses in the right

hand side. This is not seen as a problem as the possible goals in the implementation

are propositions rather than constraints.

Argument promotion

This is a rather unusual rule to allow a treatment of (typed) situations as arguments

in facts.

�

0

:�

0

<= �

1

:[� ! � != <<rel; arg

0::i

; �

2

::�

2

; arg

i+2::n

; pol>>]

�

1

:[� ! � != <<rel; arg

0::i

; �

2

; arg

i+2::n

; pol>>]

�

0

:�

0

<= �

2

:�

2

That is the argument �

2

:: �

2

is promoted from an argument to a clause. The informal

motivation is to move conditions about situations out of arguments and into the top

level of a constraint. For example from

SIT1:[S ! S != <<sees,h,SIT2,1>>].

SIT0:[S ! S != <<happy,h,1>>]

<=

SIT1:[S ! S != <<sees,h,

SIT2::[S ! S != <<happy,t,1>>],

1>>].

we can deduce

36 CHAPTER 3. A COMPUTATIONAL SITUATION THEORETIC LANGUAGE

SIT0:[S ! S != <<happy,h,1>>]

<=

SIT2:[S ! S != <<happy,t,1>>]

As with the modus ponens rule above there is also a rule to deal with multiple clauses

on the right hand side

�

0

:�

0

<= �

1

:�

1

, : : : , �

i�1

:�

i�1

,

�

i

:[� ! � != <<rel; arg

0::i

; �

2

::�

2

; arg

i+2::n

; pol>>]

�

i+1

:�

i+1

,: : : ,�

n

:�

n

�

i

:[� ! � != <<rel; arg

0::i

; �

2

; arg

i+2::n

; pol>>]

�

0

:�

0

<= �

1

:�

1

, : : :, �

i�1

:�

i�1

, �

i+1

:�

i+1

,: : :, �

n

:�

n

,

Again, as with the modus ponens rule, the implementation di�ers from the formal spe-

ci�cation in that the clauses are proved in order, and hence some constraint sentences

may not be provable.

Comment

It is important that cyclic structures be treated properly and not cause the inference

system to go into an in�nite loop. The consequences of the above de�nition of astl

and its inferences are that such loops will not occur. Because we use names to refer to

situations direct loops do not occur in expressions.

A simple example proof shows the use of the above inference rules. Suppose we have

the following (rather speci�c) constraint and basic proposition.

SIT1:[S ! S != <<happy,h,1>>] (C1)

<=

SIT1:[S ! S != <<see,h,*S,1>>

S != <<happy,t,1>>].

SIT1:[S ! S != <<happy,t,1>> (P1)

S != <<see,h,SIT1,1>>].

A proof for the proposition

SIT1:[S ! S != <<happy,h,1>>

S != <<happy,t,1>>].

would include the following steps

3.3. EXTENDED KAMP NOTATION 37

// by type reduction from (P1)

SIT1:[S ! S != <<happy,t,1>>]. (P2)

SIT1:[S ! S != <<see,h,SIT1,1>>]. (P3)

// by type combination from (P3) and (P2)

SIT1:[S ! S != <<see,h,SIT1>> (P4)

S != <<happy,t,1>>].

// by modus ponens from (C1) and (P4)

SIT1:[S ! S != <<happy,h,1>>]. (P5)

// by type combination from (P5) and (P2)

SIT1:[S ! S != <<happy,h,1>>

S != <<happy,t,1>>].

QED

3.3 Extended Kamp Notation

The basic notation for astl is not always easy to read, especially when an expres-

sion includes embedded situations. In other treatments in situation theory (e.g. in

[Gawron & Peters 90]) expressions are also di�cult to read because much use is made

of sub-scripting to add restrictions to objects, as in

� [x

subj

; yj � EATING; x; y

(sj=�BISCUIT;y�)

�]; x; 0�

This is used to represent a state of a�airs where x is eating a biscuit. Wishing to make

astlmore readable, an alternative formalism has been developed. A graphical notation

for situation theoretic objects is described in [Barwise & Cooper 93]. Extended Kamp

Notation (EKN) as it is called, owes something to the use of boxes in DRT. Within the

implementation of astl this graphical notation is available as an output mechanism.

It would be useful if EKN were also available as an input mechanism but that would

require signi�cant work on building some form of graphical editor which was not felt

worthwhile at this stage in the development of the language.

EKN is in fact a rich notation for representing many di�erent situation theoretic objects

including situations, abstractions, anchoring environments, etc. many of which are not

part of basic astl. In fact, in astl's box notation, there are only two forms which

are displayed as boxes. First is the form for situations, which actually are not given

their own notation in EKN as such. In astl, when the EKN output option is selected,

situations are displayed as boxes with double lines at the top and bottom, the situation

name appears in an inset box at the top left and facts that it supports are displayed

in a more convention predicate form. For example the situation

SIT56::[S ! S != <<happy,h,1>>

S != <<happy,t,0>>]

would be displayed in astl's box notation as

38 CHAPTER 3. A COMPUTATIONAL SITUATION THEORETIC LANGUAGE

SIT56

happy(h)

:happy(t)

In EKN, as de�ned in [Barwise & Cooper 93] the above would be as a situation with

a particular restriction. In their notation the above situation could be written as

SIT56

SIT56

S

S

happy(h)

:happy(t)

The astl notation can be viewed as an abbreviation for the above. The second form

which will be displayed as a box is situation types. Here the form is the same as that

used in EKN. If we have the situation type

[P1 ! P1 != <<happy,h,1>>

P1 != <<happy,t,1>>]

when the EKN output option is selected the above would appear as

P1

P1

happy(h)

happy(t)

The astl implementation prints the boxes using ASCII characters (|, - and =) but

here we will use special macros to display the boxes. The usefulness of a graphical

notation becomes much more apparent when facts include situations as arguments.

For example

SIT1 :: [S ! S != <<happy,h,1>>

S != <<happy,t,0>>

S != <<sees,h,SIT2 :: [P ! P != <<happy,t,1>>

P != <<happy,h,1>>],

1>>

S != <<sees,h,SIT1,1>>]

3.4. SIMPLE EXAMPLE 39

can also be displayed as

SIT1

happy(h)

:happy(t)

sees(h,

SIT2

happy(t)

happy(h)

)

sees(h,SIT1)

However although EKN expressions are easier to read than the simple linear form of

astl expressions it must be added that expressions in descriptions can easily become

so complex that even the EKN notation is not really a help. This is especially true

of representations of syntactic and semantic translations for utterances. In that case

other techniques must be used to make the output readable|the implementation allows

the user to specify that facts with certain relations should not be displayed when a

situation is printed.

3.4 Simple example

It is not always easy to understand the practical use of a formal system simply from

its formal speci�cation. Here we will give a short example. The example shows what

a full astl description looks like and what sort of computations are possible. This

example only uses simple propositions and one constraint, but is su�cient to illustrate

the basic capabilities of the system.

Individuals {h,t}

Relations {happy/1, smiles/1}

Parameters {S}

Variables {*S, *Y}

Situations

;; Basic situations -- i.e. who smiles where

(SIT1 :: [S ! S != <<smiles,h,1>>

S != <<smiles,t,1>>]

SIT2 :: [S ! S != <<smiles,t,1>>])

Constraints

;; if they smile they are happy

*S : [S ! S != <<happy,*Y,1>>]

<=

*S : [S ! S != <<smiles,*Y,1>>].

40 CHAPTER 3. A COMPUTATIONAL SITUATION THEORETIC LANGUAGE

That is we have de�ned two basic situations (SIT1 and SIT2). Both Hanako (h) and

Taro (t) smile in SIT1 but only Taro smiles in SIT2. Also we have a constraint that

states that if some object in some situation smiles then that object is also happy in

that situation.

We can load the above description, then at the top level we can ask to prove proposi-

tions about the system of situations and constraints. Thus if we ask the query

astl> query SIT2 : [S ! S != <<happy,t,1>>].

rather than just a simple \yes" or \unknown" answer the implementation prints out

any situations for which this proposition is true. In this case the only possible situation

concerned is SIT2. This proposition is true because the constraint is appropriate and

hence Taro is happy because he smiles in SIT2, so the system prints

SIT2

happy(t)

smiles(t)

If we ask the query

astl> query *S : [S ! S != <<happy,t,1>>].

This time we are asking about any situation where Taro is happy. In this case this is

true for both SIT1 and SIT2. Thus the result would be.

SIT1

happy(t)

smiles(t)

SIT2

happy(t)

smiles(t)

Notice that in SIT1 only the facts which were used in the proof are printed out.

SIT1 also supports the fact that Hanako smiles, and by way of the constraint that

she is happy too. That is when a situation is printed not all facts that it supports

are included, only those that are directly to do with the proving of the stated goal.

However an option is available in the implementation to allow all currently known facts

3.4. SIMPLE EXAMPLE 41

in a situation to be printed. It is important to realise that �nding all facts supported

by a situation may be undecidable, or at least ine�cient. The system is goal directed

and although it may �nd other facts not directly related to the actual goal it does not

attempt to �nd all true propositions. This allows the system to still produce results

even when some aspects of the described system may be undecidable. This issue is

returned to in Section 3.6 which discusses the implementation method used.

A second short example shows the cyclic use of situations (this example was also

discussed above in Section 2.4.3). Suppose we have a position in a card game where

there are two players (Hanako and Taro) and each are holding one card and both

players can see that they are holding their cards and what the other player is holding,

and that they can both see that they can see this. We can represent this as an astl

description

Individuals {h,t,5c,3h}

Relations {has/2, sees/2}

Parameters {S,P,R,Q}

Variables {*S, *Y, *T, *U, *V}

Situations

(SIT1 :: [S ! S != <<sees,h,SIT1,1>>

S != <<sees,t,SIT1,1>>

S != <<has,t,5c,1>>

S != <<has,h,3h,1>>])

We can then ask \cyclic" queries such as, does a situation support the fact that Hanako

can see a situation in which she has the three of diamonds

query *S : [S ! S != <<sees,h,*T :: [P ! P != <<has,h,3h,1>>],1>>].

This gives a result of

SIT1

sees(h,SIT1)

sees(t,SIT1)

has(t,5c)

has(h,3h)

Notice that although SIT1 appears as an argument to a fact only its name is printed

and not its full speci�cation. The full situation with its known facts is only printed

once. All later occurrences of it in a display appear as names. This stops the printing

mechanism from going into a loop.

We can continue our querying of the above situation with a query about a situation in

which Hanako can see a situation in which Hanako can see a situation in which Hanako

has the three of hearts.

42 CHAPTER 3. A COMPUTATIONAL SITUATION THEORETIC LANGUAGE

query *S : [S ! S != <<sees,h,*T::[P ! P != <<sees,h,

*U::[R ! R != <<has,h,3h,1>>],1>>],1>>].

And we of course can continue deeper

query *S:[S ! S != <<sees,h,*T :: [P ! P != <<sees,h,

*U::[R ! R != <<sees,h,*V::

[Q ! Q != <<has,h,3h,1>>],1>>],1>>],1>>].

This shows how such self-referential situations can be represented in astl and how an

in�nite number of queries can be proved about them.

3.5 Some formal properties

After that short interlude on the actual use of astl let us return to the formal pro-

perties of the language. In this section we will discuss a soundness proof for astl and

discuss astl's computational complexity.

3.5.1 Soundness of astl

In order to show that all propositions provable from a set of axioms using the inference

rules given above in Section 3.2.3 are in fact true with respect to the semantics of astl

we give the following soundness proof.

Astl has four inference rules:

(1) Type reduction

(2) Type combination

(3) Modus ponens

(4) Argument promotion

We will deal with each inference rule in turn.

Type reduction states that if a proposition consisting of some situation and a complex

type is true the propositions for that situation with a simple type for each condition

in the complex type are also true. For example if

� :[� ! c

1

: : : c

n

]

is true the rule states that for each condition

� :[� ! c

i

]

3.5. SOME FORMAL PROPERTIES 43

is also true. This can be proved from the de�nition of the semantics of propositions

and types. The proposition � : � is true if [[�]]

M;g

is of type [[�]]

M;g

, while each

reduced form of the proposition � : [� | � != �

i

] will be true if [[�]]

M;g

is of type

[[�

i

]]

M;g

. These will both be true in all models because for [[�]]

M;g

to be of type

[[�]]

M;g

it is necessary, by de�nition, that for each condition in � , [� | � |= �

1

: : : �

|= �

1

], < [[�]]

M;g

; [[�

i

f�=�g]]

M;g

> 2 Supports, where �

i

f�=�g is �

i

except that

all occurrences of � in �

i

are substituted with �. Therefore in any model where � : �

is true, the reduced propositions � : [� | � |= �

i

] for each condition in � must also

be true. Hence type reduction is sound.

Type combination states that propositions about the same situation may have their

types combined to produce new propositions. Again by the de�nition of semantics of

propositions, types are ultimately broken done into individual conditions. Therefore a

combined type made from conditions from true propositions about the same situation

will also be true. Therefore type combination is also sound.

Modus ponens, in its simplest form, states that given a constraint of the form �

0

:�

0

<=

�

1

:�

1

and a proposition �

1

:�

1

we can infer �

0

:�

0

. The de�nition of the semantics of a

constraint states that for a constraint �

0

:�

0

<= �

1

:�

1

be true when �

1

:�

1

is true �

0

:�

0

is

true also. Therefore by de�nition if a constraint �

0

:�

0

<= �

1

:�

1

and a proposition �

1

:�

1

is true then �

0

:�

0

must also be true. This argument likewise applies to constraints

with more than one proposition on their right hand side. Therefore modus ponens is

sound.

Finally, argument promotion states that if a fact in a proposition has a typed situation

as an argument then if that proposition can be proved with the argument as a situation

and the proposition formed from the typed situation can also be proved then the

original proposition is true. In order for a proposition of the form

�

1

:[P ! P != <<rel; �

2

:: �; 1>>]

to be true by de�nition the argument �

2

:: � denotes what �

2

denotes i� the proposition

�

2

: � is true. Therefore for the above proposition to be true it is necessary for the

following propositions to be true

�

1

:[P ! P != <<rel; �

2

; 1>>]

�

2

: �

This is exactly what the argument promotion inference rule states therefore it is sound.

The above shows brie
y how the four inference rules of astl are sound showing that

all inferences possible for a set of axioms using these will be true with respect to the

given semantics.

Proving completeness of astl is a lot harder. Completeness, for astl, would mean that

every proposition which logically follows from a basic astl description can be derived

by some application of the inference rules given above. Although astl is probably in

this sense complete, we will not give a formal proof.

44 CHAPTER 3. A COMPUTATIONAL SITUATION THEORETIC LANGUAGE

3.5.2 Computational complexity

The actual computational complexity of the astl system is di�cult to discuss in

isolation from the algorithms used in the actual implementation although perhaps some

de�nition of the theoretically \best" treatment might be made. In this section we will

outline a method for encoding arbitrary Turing machines in astl hence implying that

the system is, in general, undecidable (see [Hopcroft & Ullman 79, Ch. 7] for a full

discussion of Turing machines and proving equivalence).

The following outline of a Turing machine encoding is fairly standard. Similar descrip-

tions are given for encoding Turing machines in feature grammars (e.g. [Ritchie 85]).

A stage in the computation can be encoded as a situation. Each stage will support

facts about the current state of the Turing machine, the symbol in the current position

on the tape and encodings of the tape itself. The state of the tape will be encoded as

what are e�ectively two stacks related by the relations LeftTape and RightTape. The

relations take two arguments the �rst is the current stage-situation while the second is

a two-place relation Tape. Its �rst argument is a value on the tape at that point. Its

second argument is either the constant Nil or another Tape-fact. The representation

of the tape can be expanded whenever it �nds Nil at the left or rightmost point on

the encoded tape. The following astl constraints specify this

*T : [S ! S != <<LeftTape,S,<<Tape,Blank,Nil,1>>,1>>

S != <<RightTape,S,*Right,1>>

S != <<State,S,*State,1>>

S != <<Value,S,*Value,1>>]

<=

*S : [S ! S != <<LeftTape,S,Nil,1>>

S != <<RightTape,S,*Right,1>>

S != <<State,S,*State,1>>

S != <<Value,S,*Value,1>>]

*T : [S ! S != <<RightTape,S,<<Tape,Blank,Nil,1>>,1>>]

S != <<LeftTape,S,*Left,1>>

S != <<State,S,*State,1>>

S != <<Value,S,*Value,1>>]

<=

*S : [S ! S != <<RightTape,S,Nil,1>>

S != <<LeftTape,S,*Left,1>>

S != <<State,S,*State,1>>

S != <<Value,S,*Value,1>>]

The information about the Turing machine transitions themselves can be encoded

in a situation called TM. TM supports facts of the �ve place relation Transition. The

arguments are current state, current tape value, new state, new tape value and direction

(one of MoveRight, MoveLeft or Halt). For example a very simple machine may be

encoded thus. It moves left over a's on the tape until a b is found.

3.5. SOME FORMAL PROPERTIES 45

TM :: [M ! M != <<Transition,1,a,1,a,MoveLeft,1>>

M != <<Transition,1,b,2,b,Halt,1>>]

In addition to the tape expansion constraints we need two constraints to specify the

cases when the operation is move left or move right.

*T : [S ! S != <<LeftTape,S,<<Tape,*NewValue,*Left,1>>,1>>

S != <<RightTape,S,*Right,1>>

S != <<State,S,*NewState,1>>

S != <<Value,S,*NextValue,1>>]

<=

*S : [S ! S != <<LeftTape,S,*Left,1>>

S != <<RightTape,S,<<Tape,*NextValue,*Right,1>>,1>>

S != <<State,S,*State,1>>

S != <<Value,S,*Value,1>>],

TM : [M ! M != <<Transition,*State,

*Value,

*NewValue,

*NewSate,

MoveRight,1>>].

*T : [S ! S != <<LeftTape,S,*Left,1>>

S != <<RightTape,S,<<Tape,*NewValue,*Right,1>>,1>>

S != <<State,S,*NewState,1>>

S != <<Value,S,*NextValue,1>>]

<=

*S : [S ! S != <<LeftTape,S,<<Tape,*NextValue,*Left,1>>,1>>

S != <<RightTape,S,*Right,1>>

S != <<State,S,*State,1>>

S != <<Value,S,*Value,1>>],

TM : [M ! M != <<Transition,*State,

*Value,

*NewValue,

*NewSate,

MoveLeft,1>>].

The initial tape can be speci�ed as a basic situation and we can ask queries about the

existence of some state-situation which is in a halting state.

This encoding is simple and does not require computationally complex functions to

build the representation of any Turing machine and hence shows that astl is Turing

computable. This fact need not worry us and it is probably \a good thing" rather

than \a bad thing". One might want to consider such computational power as bad

because it implies that the theories of (human) knowledge representation and natural

language semantic comprehension are Turing computable which is unlikely to be true

46 CHAPTER 3. A COMPUTATIONAL SITUATION THEORETIC LANGUAGE

as humans have only �nite resources. However when we consider astl as a meta-

theory for implementing theories its computational power is an advantage. Theories

encoded within it need not necessarily be Turing computable but it is convenient, if

not necessary, for a tool to provide a high level of computational power.

3.6 Implementation

Some description of the implementation is useful. As we are interested not only in

describing theories but also in giving actual computational treatments on a computer,

an implementation of astl is useful or even necessary to show the suitability of astl

as an actual computational system.

This section describes a particular implementation of astl. It is important to realise

that there is a distinction between astl, the abstract situation theoretic language

and astl the implementation. Certain aspects of the abstract language have been

modi�ed to allow for simpler implementation (some of which were mentioned in the

inference section above). The implementation described here is in Common Lisp but

it should not be read that astl could not or should not be implemented in any other

programming language (e.g. Prolog or C). Lisp was chosen for reasons such as history

and the author's personal preference in writing Lisp rather than any computational

reason.

The technique used in the implementation for theorem proving deserves some mention.

Again it must be stressed that this is not the only way to implement astl but is a

relatively interesting way to do it.

Astl, as a computational system, basically deals with a set of propositions and con-

straints. Using the inference rules, queries (goal propositions) are proved by applying

the inference rules where appropriate and generating new propositions. All propositi-

ons are actually held as basic propositions consisting of a situation followed by a type

with one condition (i.e. the type reduction inference rule is applied before propositions

are \asserted" to the database).

Originally an implementation was attempted that closely followed standard Prolog

implementations. Proof trees were searched using depth �rst search with backtracking.

Although this initially seemed like a good strategy, because astl is di�erent from

standard �rst order logic, two basic problems exist. First, astl descriptions are more

likely to contain \left-recursive" constraints, and secondly constraints may contain

cyclic references|these two points are closely related. Both these conditions are likely

to put a simple depth �rst search with backtracking strategy into an in�nite loop. A

more robust strategy is necessary.

The implementation described here uses a technique reminiscent in many ways to a

chart parser. In fact the following description relies heavily on such a technique (see

[Winograd 83, pp 116-127] for a more general description of chart parsing). Edges in

this \chart" implementation represent sentences in astl (i.e. either basic propositions

or constraints). Complete edges represent proved propositions while incomplete ones

3.6. IMPLEMENTATION 47

represent constraints|which can be viewed as conditional propositions. For example

given the following proposition and constraint

Sit1:[S ! S != <<smiles,h,1>>].

Sit1:[S ! S != <<happy,h,1>>]

<=

Sit1:[S ! S != <<smiles,h,1>>].

The above two astl sentences give rise to the following two edges.

Edge1:

Label: Sit1:[S ! S != <<smiles,h,1>>]

Requires: nil

Edge2:

Label: Sit1:[S ! S != <<happy,h,1>>]

Requires: (Sit1:[S ! S != <<smiles,h,1>>])

Edges have a label, and a required list (as well as other �elds|see later). The label

and each member of the required list are propositions. Notably we do not (at this

stage) have any equivalent for vertices in this \chart". Edges e�ectively start and end

at the same point. Two global structures of edges are kept: the chart a list of edges

already processed and the agenda a list of edges that have yet to be processed. To

prove a query the following algorithm ProveProp is used

00 ProveProp

01 construct basic edges from basic situations

02 and add them to the chart

03 construct initial edge from the query

04 and add it to the agenda

05 while agenda is not empty do

06 remove top edge from agenda and make it current

07 if current is not already in chart

08 add current to chart

09 if current's required list is non-nil

10 �nd all constraints that might allow

11 the �rst proposition in current's

12 required list to be proved.

13 make edges from them and add to agenda

14 if current's required list is nil

15 (current is a complete proposition)

16 for all incomplete edges i in the chart

17 combine(current,i)

18 else if current's required list is non-nil

19 for all complete edges i n the chart

48 CHAPTER 3. A COMPUTATIONAL SITUATION THEORETIC LANGUAGE

20 combine(i,current)

21 �nd all situations that make the initial query true and

22 print them.

The check for constraints that could be used to prove the current proposition (lines

10-13) deserves a little more explanation. As we are proving top down, a check for

appropriate constraints only occurs when the current edge has a non-null required list.

The �rst proposition in the required list of current is looked at, all constraints that

could prove a proposition with the same relation as current's �rst required proposition

are used to create new edges on the agenda. (If current's �rst required proposition's

relation is a variable then, of course, all constraints must be selected.) In this way

slightly more work may be done than is absolutely necessary in proving the goal. It

may be that a proposed constraint may not in fact contribute to the proof but this

cannot be determined until we have actually proved the goal. However, this is not

always bad. Because all proved propositions are recorded in the chart, they may turn

out to be required later in the proof. This is directly analogous to what happens in a

conventional chart parser used with a syntactic grammar. For example when a noun

phrase is required at some point, all grammar rules which can form noun phrases are

proposed to the chart even though it may be only a third person singular noun phrase

that we are looking for.

4

A second part ofProveProp that requires further explanation is theCombine routine

(lines 17 and 20). This routine is the equivalent of the fundamental rule in a standard

chart parser. It is this function that applies the inference rules.

00 Combine(complete-edge, incomplete-edge)

01 if complete-edge's label matches the �rst proposition

02 in incomplete-edge's required list then

03 build a new edge from incomplete-edge minus the

04 �rst proposition from its required list

05 (modus ponens inference rule)

06 add new edge to agenda

07 if complete-edge's label matches the �rst proposition

08 in incomplete-edge's required list but

09 only up to situation arguments then

10 build a new edge from incomplete-edge minus the

11 �rst proposition from its required list plus

12 the unmatched situation arguments

13 (argument promotion inference rule)

14 add new edge to agenda

This \chart" technique has the advantage that because a check can easily be made

if a particular edge/proposition already exists in�nite loops can be avoided in many

4

Of course, not all chart parsers do this. Some do use top down prediction by instantiating some

variables to cut down parse time but the advantages and disadvantages of this depend very much on

the particular grammar being used and particular utterance being be parsed.

3.6. IMPLEMENTATION 49

cases where a simple depth �rst search strategy would not terminate. For example if

we have a basic situation and constraint of the form

*S : [S ! S != <<happy,h,1>>]

<=

*S : [S ! S != <<happy,*X,1>>].

SIT1 : [S ! S != <<happy,t,1>>].

(This can be summarised as Hanako is happy in a situation if someone is happy in that

situation.) The following query

*S : [S ! S != <<happy,h,1>>].

would succeed in �nding SIT1 as a solution but would not loop inde�nitely. In a depth

�rst search strategy, as used by default in Prolog, the above constraint could cause

a loop if naively implemented because in trying to prove the right hand side of the

constraint we could try to re-use the constraint (so called left recursive rule).

There are cases, however, where loops are unavoidable, that is where constraints ac-

tually do predict an in�nite number of distinct propositions. For example the basic

situation and constraint

Sit1 : [S ! S != <<happy,h,1>>].

*S : [S ! S != <<happy,h,1>>]

<=

*T : [S ! S != <<happy,h,1>>].

(This can be summarised as if Hanako is happy in one situation she is also happy in

another.) And we have a goal proposition

*S : [S ! S != <<happy,h,1>>].

(In which situations is Hanako happy.) The result is an in�nite number of situations

as the consequence of applying the constraint introduces a new situation to which the

constraint may apply again. Such a query would cause this astl implementation to

loop.

However the main advantage of a chart based proof strategy is that all propositions and

constraints proved during a proof remain in the chart so that if they are required again

during the same proof they do not need to be re-proved. This should provide for a more

e�cient proof. This technique of keeping proofs and partial proofs in a table is termed

the tableau method in the theorem proving literature ([Reeves 83]). In the AI literature

this technique has been described as Earley Deduction ([Pereira & Warren 83]). Ho-

wever there they are only showing how to treat grammars and utterances in a logical

50 CHAPTER 3. A COMPUTATIONAL SITUATION THEORETIC LANGUAGE

way rather than using such a theorem proving technique for proving arbitrary logical

propositions.

Although not exploited in the current version, another advantage of a chart based

theorem prover is that traces can be kept of how propositions have been proved, showing

the dependencies between propositions and constraints. This could be used to generate

a simple explanation of why a proposition is true. Also looking further ahead, if a

treatment of default constraints, or defeasible constraints are added to the language it

is important to keep track of interdependencies between propositions and constraints

so that consequences of retracted propositions may be dealt with e�ciently.

In the above explanation we stated that our edges in the astl chart do not have vertices

as in a normal chart parser. This is true for normal propositions and constraints.

However as was mentioned before astl is designed as a tool for language processing.

In the next chapter we will introduce extensions to astl to allow e�cient processing

of grammars and utterances. Although these extensions can be modelled completely

within the basic astl system special treatment has been built into the implementation

so that a more e�cient treatment can be given. These extensions are implemented

such that propositions about utterances have a notion of start and end points which

in this chart system are implemented with vertices. The addition of vertices to (some)

edges allows more e�cient indexing of propositions and constraints thus less searching

for appropriate edges is necessary.

Also to aid e�ciency, edges in the chart (both for utterance situations|i.e. with

vertices|and others) are indexed by their situation and relation name. We have not

yet really said anything about variables in edges. All edges are also associated with a

bindings list for variables that occur in them. Thus it is more correct to talk about

instances of constraints being represented by edges than the constraints themselves.

All unbound variables in complete edges are skolemised. This is justi�ed from the

semantics of a simple astl proposition containing a variable. The proposition

SIT1 : [S ! S != <<happy,*X,1>>]

states that SIT1 supports the fact that something is happy. As the scope of variables is

the sentence in which they appear this variable must be unique. The implementation

will assign an arbitrary constant to this variable. This means that even if the previous

proposition is true it is not su�cient proof that some particular object is happy in

SIT1. That is if we have

SIT1 : [S ! S != <<happy,*X,1>>]

we cannot prove (based only on this evidence)

SIT1 : [S ! S != <<happy,h,1>>]

3.7. COMPARISON WITH OTHER SYSTEMS 51

Situation theory (and astl) also o�ers parameters as a means of representing indeter-

minate objects. However no speci�c support is included within astl for parameters

thus the way they are treated is solely dependent on the particular astl description.

But it must be emphasised that variables in the language of astl are quite distinct

from the concept of parameters. Variables will denote some non-variable object in the

model while parameters denote parameters in the model.

3.7 Comparison with other systems

Now that we have introduced astl and given some discussion of its various properties

it seems useful to compare it with other systems. Here we will speci�cally compare

it in three ways. First with situation theory itself, then with prosit, an alternative

computational situation theoretic language, and �nally with the general computational

systems of feature systems.

3.7.1 astl and situation theory

Astl is designed as a situation theoretic language. Astl can be summarised as consi-

sting of the following features: a representation for individuals, relations, parameters,

situations, situation types, propositions and constraints. It also o�ers a set of inference

rules (and inference mechanism) to prove propositions about a system of propositions

and constraints. From a situation theoretic point of view this collection of objects is

rather conservative. All of these, except perhaps constraints, are part of almost any de-

�nition of situation theory. A notion of constraints is described in [Barwise & Perry 83]

and later in [Barwise 89b, Ch 5] but these descriptions are concerned more with the

philosophical aspects than the computational ones. More recent work, has introduced

the concepts of channel theory which o�ers an abstract characterisation of constraints

and information
ow([Barwise 92], [Barwise 93], [Barwise & Seligman 93]).

Although we can claim that all parts of astl have a situation theoretic basis we would

also like to claim that astl embodies all the fundamental aspects of situation theory.

However this is probably not the case. It is true that, as it will be seen in later

chapters, astl is su�ciently powerful to allow a number of other semantic theories to

be described in it but there are still aspects normally associated with situation theory

that are not contained within the current version of astl.

One aspect which is not dealt with within astl is coherence. It is normally stated as

part of situation theory that a fact and its dual (the fact with opposite polarity) may

not both be supported by a situation. In astl terms this would require the following

expression to always be false.

Sit1 : [S ! S != <<happy,h,1>>

S != <<happy,h,0>>]

52 CHAPTER 3. A COMPUTATIONAL SITUATION THEORETIC LANGUAGE

But within the current version the above can be true. However it may be possible to

give a useful treatment within a particular astl description. That is, some constraint

of the form

5

*S : [S ! S != <<actual,S,0>>]

<=

*S : [S ! S != <<*R,*A,1>>

S != <<*R,*A,0>>]

Although something more complex is really needed that would probably require actual

extensions to the astl language. The whole area of coherence in situations is non-

trivial and the ideas in it are closely related to those in other aspects of knowledge

representation: belief revision, non-monotonicity and truth maintenance.

Another important aspect of situation theory which is not explicitly part of astl is

that of parameters and anchoring. One of the major motivations for situation theory

was a requirement for a representation of parametric objects. The introduction of

parameters which have a denotation in the model|rather than simply variables|

allows the description of parametric objects. Anchoring is a facility which allows

parameters to be related to other objects in a way analogous to variable assignment.

Astl does o�er parameters and simple aspects of anchoring can be modelled within

astl by constraints and representing anchoring environments as situations. In Chapter

4 we will see such a technique but it is not really adequate in general. In Section

7.4.1 we will outline an extension to astl which allows for a better treatment of this

phenomenon.

Thus although astl is �rmly grounded within situation theory there are still some

aspects which are missing from the language. However astl does o�er a �rm base on

which we can build extensions and o�er a language which encompasses more of the

theory.

3.7.2 astl and prosit

Astl is not the only attempt at building a computational language based on situa-

tion theory. Prosit has very similar goals, [Nakashima et al 88],[Frank & Sch�utze 90].

Prosit is a programming/knowledge representation language based on situation theory

in a similar way that Prolog is based on �rst order logic. It o�ers a representation of

individuals, relations, parameters, situations and constraints. As it is currently imple-

mented it does not o�er a representation for types or abstractions but such extensions

are being considered.

Prosit is written in Common Lisp. When run it gives a new top level which o�ers

a Prolog-like interface (although prosit's syntax is Lisp-like). Statements can be

5

Of course, this is inadequate. It only deals with one form of fact|relations with one argument|

and requires that situations supporting an actual-fact be treated specially throughout the rest of the

description. However hopefully the general idea is illustrated.

3.7. COMPARISON WITH OTHER SYSTEMS 53

asserted or queried. Unlike Prolog, statements (basically infons) have to be situated.

That is, assertions and queries are with respect to particular situations (unlike Prolog,

which e�ectively only has one \situation"|the whole database). For example

<top> ? (! (!= S (sings hanako)))

This asserts in the global situation (top) that the situation S supports the (positive)

fact (sings hanako) So that,

<top> ? (!= S (sings hanako))

yes

<top> ? (!= S (sings taro))

unknown

Note that we assert the support infon to the global situation. As all things are situated

we could assert infons to di�erent situations say S1 and S2 or even we could assert these

assertions to di�erent situations thus S would or would not support (sings hanako)

depending on the situation it was queried in. As all assertions are situated, queries

depend very much on the \current" situation. One can view the \database" as a tree

of situations with the global situation at the top. One can traverse this tree explicitly

using the in and out relations, or implicitly using nested support relations. The paths

are always disjoint, thus there is no way to jump to a situation as the viewpoint is

always situated. This treatment of the supports relation as non-absolute distinguishes

prosit from other descriptions of situation theory. Their argument for taking this

direction is that it means that truth is locally determined and there is no need to

search some (probably very large) global list of supports relations.

Prosit also supports a form of constraint. Unlike astl which e�ectively o�ers global

constraints between situations, prosit's constraints are between factswithin situations.

Suppose we wish to state that in situation S anything that sings also dances.

<top> ? (! (resp S (<= (dances *X) (sings *X))))

yes

<top> ? (!= S (dances hanako))

yes

resp is a special relation used to cause the �rst argument (a situation) to respect

the second argument (a constraint). Notice that the fact that a situation supports a

constraint is also situated (in this case in top) thus depending on \where" a query is

made the constraint may or may not apply.

In astl, constraints are global over all situations so that if some situation is of the

appropriate type the constraint will apply. In prosit the situation is di�erent. Con-

straints will only apply if the fact that the situation respects a constraint is explicitly

54 CHAPTER 3. A COMPUTATIONAL SITUATION THEORETIC LANGUAGE

asserted. This has the advantage that unnecessary searching for appropriate con-

straints/situations does not occur but the disadvantage that some mechanism must

assert resp facts for each appropriate situation. These two views are extreme ends of

a spectrum. Ideally we would like some constraints to be (as in astl) global|using

the distinctions made in [Barwise & Perry 83, Ch 5] these would be called necessary

constraints. We would also like some to be local to a situation (as in prosit's con-

straints). But more importantly we would also like something in between. Barwise also

describes conditional constraints which apply to general classes of situations. Neither

astl or prosit o�er such constraints directly|though such constraints can be model-

led in either system. However merely modelling may not be enough. To check that a

constraint is appropriate requires work. If the domain of situations that the constraint

may apply to is pre-de�ned a more e�cient use of constraints should be possible.

Prosit also o�ers a simple form of anchoring for parameters although not really any

form of anchoring environment. Unlike astl, prosit o�ers a number of features which

are not normally within situation theory but do make the language easier to use. Such

operations as union and intersection of facts in a situation allow a more explicit and

procedural interpretation. Moreover, constraints can be speci�ed to be forward or

backward chaining thus stating if application should occur at assert time or query

time.

In summary, prosit also o�ers a computational language based on situation theory but

it also admits other features which, although useful to the language, are not normally

associated with situation theory. astl has been developed for experiments with natural

language processing while prosit is primarily aimed at the more general problems of

knowledge representation and probably �ts closer to the work of logic programming

than natural language processing (for example typical work in prosit can be seen

in [Nakashima et al 91]). Although initially an attempt was made to extend prosit

to include language processing features too many additions were necessary. Both the

treatment of constraints and the fact that prosit does not have a concept of abstraction

made it di�cult to augment prosit satisfactorily. This is not to say that the two

systems astl and prosit could never be combined, ideas from each could be used

together to build a language which would o�er the advantages of both.

3.7.3 astl and feature systems

In the initial investigation for a general computational system for implementing seman-

tic theories some time was spent looking at the possibility of using some form of feature

system to do this. Feature systems are now very general ([Johnson 88], [Smolka 88]).

They have been used in many theories mainly for syntactic representation (e.g. GPSG

[Gazdar et al 85]), but also they have been used for semantic representation. However

there now comes the question exactly what do we mean by feature systems. The pro-

blem is that there are many facilities which one can include in a feature system and

depending on your needs you can vary your selection.

With hindsight we can look at the de�nition of astl given above and �nd a parti-

3.7. COMPARISON WITH OTHER SYSTEMS 55

cular feature system which has the same computational and descriptive power. Astl

individuals, parameters, and facts can all be represented simply in a standard feature

system. The di�cult cases are types, situations and constraints.

Situation types require a form of set-valued feature. Representing facts within a type

by some form of list representation (using features like FIRST and REST cf. [Shieber 86a,

p 29]) is not powerful enough, as manipulation and testing of facts against situations

becomes too di�cult (if at all possible in general) because facts in situations are not

ordered while a FIRST/REST encoding enforces an order. What is needed is a repre-

sentation whose interpretation is not dependent on the order in which facts occur.

This can be done by set-valued features. In feature logics there are (at least) two

interpretations of set-valued features. Intuitively, �rst we can think about the value as

being underdetermined. That is the value for the feature is one of the values of the set

but as yet we cannot tell which. Alternatively we can view the value of a set-valued

feature to be all values of the set. The de�nition of uni�cation of such values also

di�ers. Hoare uni�cation must be used in the multi-valued case (e�ectively the values

are unioned by uni�cation) and Smythe uni�cation is used in the case where the value

is underdetermined (values are intersected). [Rounds 88] discusses these issues in more

detail. (There are other de�nitions of set-valued features too that di�er from this, as

in [Pollard & Moshier 90].) For a representation of situation types we require to use

set-values in a multi-valued way. A situation supports some set of facts. Hence the

multi-value de�nition and Hoare uni�cation are required.

Using set-valued features only o�ers a representation for types but not quite for situa-

tions. In situation theory, situations are �rst class objects. To represent situations in

feature logics, there are two possible alternatives. We can either have a structure that

represents a situation, containing a set-valued feature representing the facts it sup-

ports. All references to that situation would refer to that very structure. This would

introduce cycles in our structures where situations referred (directly or indirectly) to

themselves. Or, the second technique is to have names for situations and rely on the

model to equate names to structures. The second of these has a problem that assertion

(or unifying) has to trace names of situations to the situations themselves. Both these

are possible although the �rst seems closer to standard de�nitions of feature structures.

The third construction in astl which does not directly map on to any particular

feature structure are constraints. Some grammar theories which are described using

feature logics require constraints between features in a category (e.g. Feature Cooc-

currence Restrictions in GPSG [Gazdar et al 85]). Obviously grammar rules are really

a form of constraint but others have considered other constraints between categories

([Kilbury 87], [Frisch 86]) which is closer to the kind of constraints de�ned in astl.

Later work ([Hegner 91]) has proven decidability for constraints restricted to horn clau-

ses, while HPSG ([Pollard & Sag 87]) requires more powerful constraints. As we can

see constraints in feature logics are not new and we can easily �nd a de�nition that

comes close to the required de�nition of astl constraints.

What this comes down to is that a feature systems with sets, cyclic structures and

a form on inter-category constraint would come very close to what astl is. That

is a language of the computational and descriptive power of astl could be de�ned

56 CHAPTER 3. A COMPUTATIONAL SITUATION THEORETIC LANGUAGE

as a feature system. This begs the question: if we could have used such a feature

system, why do we actually describe the system in terms of situation theory rather

than features? The answer to that is in the end a subjective one. However even if

astl were described solely in terms of a feature system it should also be pointed out

that its characteristics are the fundamental characteristics of situation theory so even

as a feature system the close relationship with situation theory would still be there. If

such a de�nition were made it seems acceptable to describe it as an implementation

of astl in a feature system. Also because situation theory is described as a semantic

theory it seems consistent to describe our general semantic theory in such terms rather

than simply as a feature system.

3.8 Summary

This chapter has introduced a computational language called astl which is based on

aspects of situation theory. Astl is formally de�ned and some simple examples of the

language are given showing how it can actually be used. One possible implementation

is described. Astl is then described with respect to three other systems. First, it

is contrasted with situation theory itself showing that the basic parts of astl can be

found in all of the general descriptions of situation theory placing it legitimately in

that paradigm. Secondly, another situation theoretic language, Prosit, is described

comparing it with astl and showing where they di�er. Finally, feature systems are

discussed identifying which aspects of feature systems would be required to de�ne a

particular feature systems that would have the same computational and descriptive

properties as astl.

It should be noted that at this stage we have not yet justi�ed astl's characteristics as

necessary (or su�cient) for a system that is suitable for describing aspects of general

semantic theories. This we will do in the following three chapters|where we will look

at how three semantic theories can be speci�ed within astl. In Chapter 8, we will

also return to this issue of why the characteristics of astl are those that are necessary

in a system for describing semantic theories.

Chapter 4

Processing Natural Language

and STG

4.1 Introduction

In this chapter we will show how the situation theoretic based language, astl, can

be used as a medium for describing natural language linguistic grammars and how it

o�ers a mechanism that allows parses of utterances to be found with respect to such

grammars. A way of representing linguistic entities is also described. Grammar rules

can be de�ned as constraints over such objects. A simple fragment of English is given

within such a framework. That fragment is simple but includes enough syntax to allow

certain interesting semantic phenomena to be displayed. The syntax is su�cient for

simple examples of donkey anaphora, inter-sentential anaphora and quanti�cation.

The second part of this chapter is the �rst example of using astl to describe another

semantic theory, Situation Theoretic Grammar (STG) [Cooper 89]. Admittedly STG

should be one of the easiest theories to describe in astl as STG's ideas of grammar

processing are those that are embodied in astl. But STG is an example of situation

semantics and it is necessary that astl can at least deal with the semantic theories

closest to itself if astl is to be treated as a general semantic theory.

4.2 Situations and language processing

In this section we will explain how a situation theoretic representation can be given to

natural language utterances (and do so in terms of astl). We will show that language

and a conventional computational syntactic view of it can be naturally described within

a situation theoretic framework. Note that here we are not proposing a new syntactic

theory, only a method of encoding existing theories within situation theory and astl.

Some of the basic ideas of syntactic processing in a situation theoretic framework

presented here are basically those in Situation Theoretic Grammar (STG) given in

57

58 CHAPTER 4. PROCESSING NATURAL LANGUAGE AND STG

[Cooper 89].

The basic idea is that the actual utterance of a piece of language can be described as

a situation. That situation supports facts about the utterance such as the start and

end points as well as what was actually said (the phonology). The situation can also

support facts about the linguistic content of the utterance|its syntactic category, its

number, gender etc. as well as the semantics of the utterance itself. For example the

utterance of the noun phrase \Hanako" can be represented as

\Hanako" ;

SIT123

cat(SIT123,NounPhrase)

use of(SIT123,"Hanako")

start(SIT123,t234)

end(SIT123,t235)

Likewise the utterance of the verb \sings" in the same location, immediately following

the above utterance of \Hanako" may give rise to the following situation

\sings" ;

SIT135

cat(SIT135,VerbPhrase)

use of(SIT135,"sings")

start(SIT135,t235)

end(SIT135,t236)

Of course we can now consider these two utterances as part of a larger one. They were

both uttered at the same time (the end of the �rst is at the start of the second) and

hence we can also state that

4.2. SITUATIONS AND LANGUAGE PROCESSING 59

\Hanako sings" ;

SIT143

cat(SIT143,Sentence)

start(SIT143,t234)

end(SIT143,t236)

daughter(SIT143,

SIT123

cat(SIT123,NounPhrase)

use of(SIT123,"Hanako")

start(SIT123,t234)

end(SIT123,t235)

)

daughter(SIT143,

SIT135

cat(SIT135,VerbPhrase)

use of(SIT135,"sings")

start(SIT135,t235)

end(SIT135,t236)

)

lp(SIT143,SIT123,SIT135)

If we wish to state that a sentence-type situation occurs when we have a noun phrase

and verb phrase together we can, in the same way as we state normal (conventional

phrase structure) grammar rules, write an astl constraint which says just that

*S : [S ! S != <<cat,S,Sentence,1>>

S != <<start,S,*Start,1>>

S != <<end,S,*End,1>>

S != <<daughter,S,*NP,1>>

S != <<daughter,S,*VP,1>>

S != <<lp,S,*NP,*VP,1>>]

<=

*NP : [NP ! NP != <<cat,NP,NounPhrase,1>>

NP != <<start,S,*Start,1>>

NP != <<end,S,*M,1>>],

*VP : [VP ! VP != <<cat,VP,VerbPhrase,1>>

VP != <<start,S,*M,1>>

VP != <<end,S,*End,1>>].

There is nothing new or special going on here. Basically we are e�ectively encoding

conventional grammar rules within astl in a very similar way to how grammar rules

can be encoded in feature systems. There are perhaps some di�erences|speci�cally we

include an explicit reference to the start and end points of an utterance in its encoding

while in conventional feature grammars this would not normally be the case.

60 CHAPTER 4. PROCESSING NATURAL LANGUAGE AND STG

As discussed earlier (in Section 3.7.3) it may be possible to de�ne a feature system

which has most of the properties of astl. But we can also look at this in reverse, astl

is not unrelated to feature systems and there may be ways to encode feature systems

within astl. Let us brie
y look at this possibility. We can represent feature struc-

tures as situations and features as facts but with one important di�erence. Features

are functional while facts are relational thus there is nothing that restricts a feature

structure situation from supporting con
icting feature facts as in

SIT276::[S ! S != <<cat,S,sentence,1>>

S != <<cat,S,verbphrase,1>>]

What is necessary is a de�nition of feature relations. Although this cannot be done in

basic astl as it is currently de�ned, a simple extension could achieve this. We could

add the restriction that a situation may only support at most one positive fact for

any particular feature relation. The other di�erence between an astl grammar and

a conventional feature grammar is \uni�cation". In a conventional feature grammar,

constituent feature structures \match" grammar rule daughters using uni�cation, that

is as long as there are no con
icting features they may combine (more formally if the

sets of feature graphs of which they are types have a non-null intersection). In contrast,

in an astl grammar, daughters only \match" constituents when a situation has all

the \features" mentioned in the right hand side of rule. In uni�cation terms the astl

constituent must be an extension of astl grammar rule daughter.

Furthermore astl can not only o�er encodings for conventional phrase structure rules.

Syntactic theories such as GPSG [Gazdar et al 85] do not contain conventional phrase

structure rules but get the same e�ect through Immediate Dominance and Linear

Precedence rules. These rules collectively constrain a syntactic structure over the same

syntactic constituents rather than in a conventional phrase structure grammar where

rules de�ne a single hierarchical structure. Because of the form of astl constraints it

should not be very di�cult to de�ne ID/LP rules within astl.

In the simple example astl grammar rule above we state a daughter relationship

between the mother node and the daughters. We also specify a linear precedence

relation (via the relation lp). We do not, but perhaps should, explicitly state the

exact number of daughters allowed.

It is not the purpose of this thesis to introduce a new syntactic theory. All we wish to

show is that existing syntactic theories can naturally be modelled within astl. It is

no harder to specify a computational description of a syntactic theory in astl than it

is to do so in a feature system. In fact, because astl o�ers very general constraints, it

may even be easier to describe some theories which do not limit themselves to phrase

structure rules (e.g. GPSG and GB) in astl than in a feature system. It must be

noted that we are not really concerned with strictly de�ning feature systems within

astl and only wish to point to how this could be achieved. The grammar system

given here is simple and does not require the full power of a general feature system to

describe it, but it is adequate for the semantic phenomena we wish to examine.

There is an important extension to basic astl which makes the treatment of phrase

4.2. SITUATIONS AND LANGUAGE PROCESSING 61

structure grammars easier and more e�cient. Above we showed how a simple phrase

structure rule could be encoded as a constraint. This technique is also used in logic

programming. De�nite Clause Grammars (DCGs) [Pereira & Warren 80] use a very

similar method to the one outlined above for encoding phrase structure grammars in

�rst order logic (or more speci�cally in Prolog). In DCGs instead of a start and end

point the extra conditions are with respect to a list of words. More particularly a

category, represented by a predicate indicates its start position as one point in a list

structure and its end further down that list. This di�erence between this modelling of

the string of words uttered and that used by astl (points) is not important here.

However, more importantly what has been copied from Prolog DCGs is that DCGs in

Prolog can be speci�ed using a special syntax such that the utterance start and end

points need not be explicitly stated in the rules. This o�ers a much more readable

notation for rules. In astl we have also added a special syntax for grammar rules.

For example the astl constraint above that represents a phrase structure rule can be

re-written as the following astl grammar rule

*S : [S ! S != <<cat,S,Sentence,1>>

S != <<daughter,S,*NP,1>>

S != <<daughter,S,*VP,1>>

S != <<lp,S,*NP,*VP,1>>]

->

*NP : [NP ! NP != <<cat,NP,NounPhrase,1>>],

*VP : [VP ! VP != <<cat,VP,VerbPhrase,1>>].

Speci�cally we need not include the start and end relations and we have a di�erent

form of arrow.

Unlike DCGs, astl grammar rules are not translated into their underlying form with

explicit start and end points. In the implementation discussed here grammar rules are

interpreted directly. This allows for a much more e�cient implementation. The start

and end points, because they are known to exist for these situations can be built in

and used for e�cient indexing in the theorem prover.

In addition to a special form of constraint that acts as a grammar rule we also have a

special form which introduces basic situations that are used to represent utterances of

words. Word entries specify what type of situation is introduced by the utterance of a

word. As in

Hanako - [S ! S != <<cat,S,NounPhrase,1>>

S != <<use_of,S,"Hanako",1>>].

If we were to translate this to its expanded form it would look something like

*S : [S ! S != <<cat,S,NounPhrase,1>>

S != <<use_of,S,"Hanako",1>>

62 CHAPTER 4. PROCESSING NATURAL LANGUAGE AND STG

S != <<start,S,*Start,1>>

S != <<end,S,*End,1>>]

<=

use of "Hanako"

We include a way to \utter" words in a sequence which will introduce situations of the

type declared for each word.

A consequence of this is that e�ectively there can exist two types of situation in an astl

description utterance situations and normal situations. Situations introduced by word

entries and those predicted by grammar rules are called utterance situations. Grammar

rules can only apply to utterance situations but normal constraints can apply to both

types of situation. In the current system it is not possible to make a normal situation

into an utterance situation.

Both grammar rules and word entries are optional parts of an astl description. If

included they appear at the end of a description.

4.3 A simple grammar fragment

Throughout most of the rest of this thesis we will be looking at how particular semantic

theories can be described within astl. In order to do this we need some form of

syntactic backbone with which we can realise our descriptions and actually use them

to produce semantic representations of natural language utterances. To do this we will

use the same simple grammar fragment. The following fragment is based on that in

[Rooth 87] and includes su�cient syntax to give examples of the semantic phenomena

we are interested in.

As a conventional phrase structure grammar the Rooth fragment can summarised as

S ! NP; V P:

V P ! V; NP:

NP ! Det; N:

N ! N; PP:

PP ! P; NP:

D ! S:

D ! D; S:

We also include the category D for discourse to allow utterances of more than one

sentence. Lexical entries will slightly vary from description to description (pronouns

are not included in the basic STG description, though they are in the later descriptions

of DRT and dynamic semantics), however overall the following classes will be used.

Det: a, every.

4.3. A SIMPLE GRAMMAR FRAGMENT 63

N : man, donkey.

NP : he, she, it, Hanako, Taro.

V P : walks, talks, smiles, smiles.

V : beats, likes.

P : with, on.

The grammar rules can be simply translated into astl grammar rules as in

[S ! S != <<cat,S,Sentence,1>>

S != <<daughter,*NP,1>>

S != <<daughter,*VP,1>>]

->

*NP : [NP ! NP != <<cat,NP,NounPhrase,1>>],

*VP : [VP ! VP != <<cat,VP,VerbPhrase,1>>].

Likewise we can translate the other six rules. The full astl description is shown in

Appendix A.2. This grammar is su�cient to describe examples like the following

Hanako sings.

A man walks. He talks.

Every man with a donkey beats it.

The following is a example analysis for \a man walks" (this is shown for a sentence

rather than a discourse so that it can reasonably �t on a page).

64 CHAPTER 4. PROCESSING NATURAL LANGUAGE AND STG

SIT5397

cat(SIT5397,sentence)

daughter(SIT5397,

SIT5155

cat(SIT5155,nounphrase)

daughter(SIT5155,

SIT4991

use of(SIT4991,"a")

cat(SIT4991,determiner)

)

daughter(SIT5155,

SIT4981

use of(SIT4981,"man")

cat(SIT4981,noun)

)

)

daughter(SIT5397,

SIT5001

use of(SIT5001,"walks")

cat(SIT5001,verbphrase)

)

4.4 Situation Theoretic Grammar

Situation Theoretic Grammar (STG) [Cooper 89] is a situation semantic theory. Its

description includes a computational treatment in Prolog.

1

Not only does STG o�er a

semantic treatment of simple utterances but it includes a situation theoretic treatment

of syntax. As astl was developed partly as an attempt to generalise the computational

situation theoretic properties of STG it is not surprising that astl's treatment of

syntax is essentially the same. However although we have shown in the previous

section how to treat syntactic grammars in astl we have not yet dealt with describing

treatments of natural language semantics. In this section we will describe how STG

can be described within astl showing how situation semantic representations can be

constructed for simple utterances.

Although the term \situation semantics" is often used as if it refers to a single se-

mantic theory this is not actually the case. The term has been used to describe many

quite di�erent theories of natural language semantics|such as [Barwise & Perry 83]

[Gawron & Peters 90], situation schemata [Fenstad et al 87] etc. Probably the only

aspect that these theories have in common is the use of a situation object in their

1

Confusingly Cooper's implementation is called ProSit (note capitalisation to distinguish it from

prosit). Cooper's framework o�ers operators and predicates to deal with situation theoretic objects

within standard Prolog rather than the design of a whole new language.

4.4. SITUATION THEORETIC GRAMMAR 65

description. STG o�ers both a situation theoretic treatment of syntax as well as se-

mantics. Unlike other situation semantic theories STG is given with respect to a

particular grammar fragment thus making it easier to compare with more conventional

semantic theories (e.g. Montague grammar).

In the previous section we showed how astl can be used to describe syntactic theories.

The Rooth grammar fragment detailed above will be used as the basis for this descrip-

tion of STG. In the Rooth fragment utterances are represented by situations but the

semantics of these utterances (i.e. what these utterances describe) are not included in

the description.

Here, as in Cooper's original STG description, we will include a relation in each ut-

terance situation, relating the situation to a situation theoretic object representing its

semantics. An intransitive verb's semantics will be represented by a parametric fact

with one argument. Parameters in situation theory can be used to represent partially

determined objects. For example the representation for the intransitive verb \smile"

would be

<<smile,A1,1>>

(It is possible for the polarity to also be parametric but we shall ignore that possibility

in these examples.) In other semantic theories this would be similar to the simple

lambda expression

�A1 [smile(A1)]

However, unlike variables in a lambda expression, there is no explicit identi�cation of

the parameters in the parametric fact case. In a transitive verb's representation there

would be two parameters. The lambda representation is required to order those in

some way while the parametric fact representation is not. Within astl as we have

de�ned it, a parametric i-term simply denotes a fact containing parameters. How a

parametric semantic object (in astl's model) relates to the real world is not de�ned

here. The above case could be de�ned as the set of all possible smile-facts or as an

abstraction over them. Such philosophical issues do not impinge on the descriptive or

computational aspects of astl therefore we can ignore them for the present. However

the issue of whether astl's representation as a parametric fact or extending astl to

include an explicit representation for abstractions is returned to in Section 7.4.1.

In STG, we allow parameters to be anchored and labelled. These are ways of relating

parameters to other objects. We hold anchoring and labelling facts in a situation that

we call an anchoring environment. Anchoring is analogous to variable assignment (or

substitution) in other theories. Each utterance situation is related to both a parametric

semantic fact and an anchoring environment. For example, in a verb phrase utterance

situation all parameters except the one representing the subject of the sentence will

be anchored (as the subject parameter is as yet undetermined). In order to identify

which parameter is related to which grammatical argument, parameters are labelled

66 CHAPTER 4. PROCESSING NATURAL LANGUAGE AND STG

with grammatical functions

2

(e.g. subj, obj, etc.). According to these de�nitions the

basic lexical entry for \smiles" would be

smiles -

[VP ! VP != <<cat,VP,VerbPhrase,1>>

VP != <<use_of,VP,"smiles",1>>

VP != <<sem,VP,<<R1,A1,1>>,1>>

VP != <<env,VP,SmileEnv::[S ! S != <<label,R1,pred,1>>

S != <<anchor,R1,smile,1>>

S != <<label,A1,subj,1>>],1>>]

The semantic entry is fully parametric and the associated anchoring environment an-

chors the parameter R1 to the relation smile.

The semantic content of an utterance is de�ned with respect to the utterance's ancho-

ring environment and parametric fact. The content is that fact where all the parameters

in it are replaced by the objects anchored to them by the anchoring environment. This

is analogous to beta reduction. For example the content of the \smiles" entry above is

<<smile,A1,1>>

In an utterance situation representing \Hanako smiles" we wish the content of the

related parametric fact and anchoring environment to be

<<smile,h,1>>

To do this the semantics of the sentence utterance situation can be the same parametric

fact as that in the verb phrase utterance situation but the anchoring environment also

needs an anchoring for the parameter A1. There are two ways to consider this. The �rst

is to have a constraint that adds to the anchoring environment that is related to the

verb phrase the extra anchoring relation for A1 such that the anchoring environments

on the sentence and verb phrase utterance situations are the same. A second view

is for the anchoring environment on the verb phrase to remain the same but state

that the anchoring environment on the sentence utterance situation support the same

anchoring and labelling facts as that on the verb phrase plus the new anchoring fact

for the parameter A1. That is we extend the anchoring environment of the verb phrase

with the anchoring relation creating a new situation. In situation theoretic terms we

can say the verb phrase's anchoring environment is part-of the sentence's anchoring

environment.

3

2

In [Cooper 89] parameters are labelled with their grammatical function and their respective ut-

terance situation.

3

Technically there is a possible distinction here between passing situation types and a part-of rela-

tion. A part-of relation between two situations A and B would be that all facts supported by A are

also supported by B, while linking situation types does not necessarily entail this. As although the

basic type is copied and all appropriate constraints will apply to both situations A and B it may be

that A will actually support more than B by virtue of A appearing in some relation in some other

situation which B does not.

4.4. SITUATION THEORETIC GRAMMAR 67

Both these forms can be speci�ed in astl. The �rst where the sentence and verb

phrase have the same anchoring environment is easier to specify

[S ! S != <<cat,S,Sentence,1>>

S != <<sem,S,*Fact,1>>

S != <<env,S,*Env ::

[Env ! Env != <<anchor,*X,*Y,1>>],1>>]

->

[NP ! NP != <<cat,NP,NounPhrase,1>>

NP != <<sem,NP,*Y,1>>],

[VP ! VP != <<cat,VP,VerbPhrase,1>>

VP != <<sem,VP,*Fact,1>>

VP != <<env,VP,*Env ::

[Env ! Env != <<label,*X,subj,1>>],1>>].

Note how we select the parameter to be anchored by �nding the one labelled by subj

in the anchoring environment. Also we are assuming that the semantics of the noun

phrase is simply a constant. The environments related to the verb phrase and sentence

will be the same because we name them with the same variable *Env.

The second method where we extend the environment is the actual one we use throug-

hout the following description. In this case the verb phrase's anchoring environment

does not contain any facts anchoring the parameter labelled subj. However this is a

little harder to specify in astl. The rule below uses a simple extension which allows

multiple types to be speci�ed for situations (separated by an ampersand). The rule

would be

[S ! S != <<cat,S,Sentence,1>>

S != <<sem,S,*Fact,1>>

S != <<env,S,*SEnv ::

*VPEnvType &

[Env ! Env != <<anchor,*X,*Y,1>>],1>>]

->

[NP ! NP != <<cat,NP,NounPhrase,1>>

NP != <<sem,NP,*Y,1>>],

[VP ! VP != <<cat,VP,VerbPhrase,1>>

VP != <<sem,VP,*Fact,1>>

VP != <<env,VP,*VPEnv ::

*VPEnvType &

[Env ! Env != <<label,*X,subj,1>>],

1>>].

In this case the two environments are distinct because they are referred to by di�erent

names

4

(*SEnv and *VPEnv). However we state that the type of *SEnv is *VPEnvType

4

Formally this may not be true. The rule only states that they are not necessary the same rather

68 CHAPTER 4. PROCESSING NATURAL LANGUAGE AND STG

which is also the type of *VPEnv therefore all facts that are supported by *VPEnv will

also be supported by *SEnv, but not necessarily the reverse. We also specify that the

type of *SEnv includes not only the type of *VPEnv but also the fact anchoring the

parameter labelled subj to the semantics of the noun phrase.

To see how an anchoring environment is built up from example utterances consider the

utterance situations for \Hanako" and \smiles".

SIT1007

sem(SIT1007,h)

use of(SIT1007,"Hanako")

cat(SIT1007,nounphrase)

SIT1011

env(SIT1011,

SMILEENV

label(A1,subj)

anchor(R1,smile)

label(R1,pred)

)

sem(SIT1011, R1(A1))

use of(SIT1011,"smiles")

cat(SIT1011,verbphrase)

Using the above grammar rule we get a sentence utterance situation of the form

SIT1211

cat(SIT1211,sentence)

sem(SIT1211, R1(A1))

env(SIT1211,

SIT1213

anchor(A1,h)

label(R1,pred)

anchor(R1,smile)

label(A1,subj)

)

The result is a situation related to a semantics which is a parametric fact, R1(A1)

and an anchoring environment where R1 is anchored to the relation smile and A1 is

anchored to the individual h.

We can view extending the anchoring environment as analogous to lambda application

in a lambda calculus based system. But application is not the whole story, we still

need something analogous to reduction to �nd the content of the parametric fact and

anchoring environment. To do this what we will do is use the information in the

than that they are di�erent. Also even if they have di�erent names within astl they may actually

denote the same situation within the model. However for the purposes of this explanation we can

think of them as being di�erent.

4.4. SITUATION THEORETIC GRAMMAR 69

parametric fact and anchoring environment to de�ne the described situation, that is

what the utterance describes.

*S : [S ! S != <<described,S,*DS :: [D ! D != <<*VR1,*VA1,1>>],1>>

<=

*S : [S ! S != <<cat,S,sentence,1>>

S != <<sem,S,<<*R1,*A1,1>>,1>>

S != <<env,S,*SEnv ::

[Env ! Env != <<anchor,*R1,*VR1,1>>

Env != <<anchor,*A1,*VA1,1>>],1>>].

That is we are �nger the values anchored to the parameters in the parametric fact.

*VR1 and *VA1 will be the values (e.g. smile and h). This technique is, of course,

inadequate for general beta reduction. We will return to this issue shortly. In the

above constraint we de�ne the described situation in terms of the parametric and the

anchoring environment. The full utterance situation for the sentence \Hanako smiles"

is

SIT1909

cat(SIT1909,sentence)

sem(SIT1909, R1(A1))

env(SIT1909,

SIT1911

anchor(A1,h)

label(R1,pred)

anchor(R1,smile)

label(A1,subj)

)

described(SIT1909,

SIT2310

smile(h)

)

4.4.1 Quanti�cation

The above describes how simple declarative utterances involving proper nouns can be

treated in STG. In this section we discuss the treatment of the simple quanti�ers every

and some.

In Cooper's original description quanti�ers were represented as a relation between two

properties. Properties are a form of abstraction over propositions.

[X j s j=� happy;X; 1�]

70 CHAPTER 4. PROCESSING NATURAL LANGUAGE AND STG

X is a parameter. Informally, for some object to have a property it must be the case

that the proposition in the property is true if the parameter is replaced with that

object. For example the above property is true for h if the proposition

s j=� happy; h; 1�

is true. There is no direct equivalent of properties in astl (though the concept of

abstractions discussed in Section 7.4.1 is very similar but a little more general). In

the astl description of STG we must �nd an alternative representation. Here we use

situation types (with parametric facts) to represent abstractions. As we may wish to

extend the description later to deal with generalised quanti�ers our astl representation

for quanti�ers is a three place relation between a variable (represented by a parameter),

and two (parametric) situation types. Thus the desired astl semantic representation

for the utterance \every man walks" is

SIT317

every(X,

S

S

man(X)

,

S

S

walk(X)

)

Each utterance situation is related to a described situation whose type is de�ned by

the (parametric) semantic fact and anchoring environment. This makes it possible

to deal with cases where more than one fact is necessary to represent the sentence.

Alternatively, we could introduce \logical" relations and and or and use these as in \a

man walks"

<<and,<<man,X,1>>,<<walk,X,1>>,1>>

but this seems to complicate the issue when even just a limited form of types are

available. It seems useful that an utterance describes some situation and that the

utterance determines the type of that described situation.

There is also question about what it means for a situation to support an every-fact.

We can paraphrase this with a constraint. Given the above situation SIT317 we could

capture its interpretation by the following astl constraint.

*S : [D ! D != <<walk,*X,1>>]

<=

*S : [D ! D != <<man,*X,1>>

D != <<every,*X,

[S ! S != <<man,*X,1>>],

[S ! S != <<walk,*X,1>>],1>>

4.4. SITUATION THEORETIC GRAMMAR 71

That is the interpretation of the every fact e�ectively quanti�es over its �rst argument

(a parameter) treating it like a variable.

Returning to our de�nition of quanti�ers, our lexical entries for the words \every" and

\a" in this schema would be

every -

[DET ! DET != <<cat,DET,Determiner,1>>

DET != <<use_of,DET,"every",1>>

DET != <<sem,DET,<<Q1,A1,A2,A3,1>>,1>>

DET != <<env,DET,EveryEnv::

[Env ! Env != <<label,Q1,quantifier,1>>

Env != <<anchor,Q1,every,1>>

Env != <<label,A1,var,1>>

Env != <<label,A2,range,1>>

Env != <<label,A3,body,1>>],1>>]

a -

[DET ! DET != <<cat,DET,Determiner,1>>

DET != <<use_of,DET,"a",1>>

DET != <<sem,DET,<<Q1,A1,A2,A3,1>>,1>>

DET != <<env,DET,AEnv::

[Env ! Env != <<label,Q1,quantifier,1>>

Env != <<anchor,Q1,some,1>>

Env != <<label,A1,var,1>>

Env != <<label,A2,range,1>>

Env != <<label,A3,body,1>>],1>>]

The parameters A2 and A3 labelled range and body will be anchored to the type of the

described situation of the nounphrase (without determiner) and the verb phrase. The

grammar rule for sentences with quanti�ers in their subject noun phrases is

[S ! S != <<cat,S,Sentence,1>>

S != <<tense,S,pres,1>>

S != <<sem,S,*Qexpr,1>>

S != <<env,S,*SEnv ::

*EnvType &

[Env ! Env != <<anchor,*Y,*Var,1>>

Env != <<anchor,*Body,*DSType,1>>],

1>>]

->

[NP ! NP != <<cat,NP,NounPhrase,1>>

NP != <<sem,NP,*Qexpr,1>>

NP != <<env,NP,*Env ::

*EnvType &

[Env ! Env != <<label,*Body,body,1>>

72 CHAPTER 4. PROCESSING NATURAL LANGUAGE AND STG

Env != <<label,*X,var,1>>

Env != <<anchor,*X,*Var,1>>],1>>],

[VP ! VP != <<cat,VP,VerbPhrase,1>>

VP != <<tense,VP,pres,1>>

VP != <<described,VP,*DS::*DStype,1>>

VP != <<env,VP,*VPEnv ::

[Env ! Env != <<label,*Y,subj,1>>],

1>>

VP != <<sem,VP,*Fact,1>>].

Also we need a rule for quanti�ed noun phrases

[NP ! NP != <<cat,NP,NounPhrase,1>>

NP != <<sem,NP,*Qexpr,1>>

NP != <<env,NP,*NPEnv ::

*EnvType &

[Env ! Env != <<anchor,*X,*A1,1>>

Env != <<anchor,*Range,*DSType,1>>],

1>>]

->

[DET ! DET != <<cat,DET,Determiner,1>>

DET != <<sem,DET,*Qexpr,1>>

DET != <<env,DET,*DetEnv ::

*EnvType &

[Env ! Env != <<label,*Range,range,1>>

Env != <<label,*X,var,1>>],1>>],

[N ! N != <<cat,N,noun,1>>

N != <<env,N,*Env ::

[Env ! Env != <<label,*A1,arg1,1>>

Env != <<anchor,*R1,*pred,1>>],1>>

N != <<sem,N,<<*R1,*A1,1>>,1>>

N != <<described,N,*DS::*DSType,1>>].

Thus a full analysis of the utterance \every man walks" would be,

4.4. SITUATION THEORETIC GRAMMAR 73

SIT3817

cat(SIT3817,sentence)

tense(SIT3817,pres)

sem(SIT3817, Q1(A1,A2,A3))

env(SIT3817,

SIT3819

anchor(WA1,MA1)

anchor(A3, walk(WA1))

anchor(A1,MA1)

anchor(A2, man(MA1))

label(Q1,quantifier)

anchor(Q1,every)

label(A1,var)

label(A2,range)

label(A3,body)

)

described(SIT3817,

SIT4317

every(MA1,

P12

P12

man(MA1)

,

P15

P15

walk(WA1)

)

)

There are a number of comments that should be made about the above. Here the

parameters used have names based on which word entry introduced them|i.e. WA1 is

introduced by the word \walks". Actually we should really have unique parameters for

each use of that word.

However there is a major problem with the above. If you look closely you will see

that the above is not quite right. The WA1 in the situation type whose parameter is

P15 should appear as MA1 as the anchoring environment states that WA1 is anchored

to MA1. The reason it does not is that the sentence rule given above states that the

parameter labelled body in the quanti�er relation should be anchored to the type of

the described situation of the verb phrase. At that point the anchoring of WA1 to MA1 is

not stated so no reduction takes place. This points to a fundamental problem in using

simple constraints to model reduction of parametric facts and anchoring environments.

Even to get the reductions needed for the STG description given here requires a large

number of speci�c rules. Basically a constraint is needed for each utterance type

(sentence, nounphrase, etc.) and for each possible arity of semantic parametric facts.

However in order to get the above right a constraint (or more probably a large number

of them) would be required that goes further than this and checks not only the fact

and its arguments but checks the values within arguments too. For example the key

constraint for the basis of a sentence utterance situation is

74 CHAPTER 4. PROCESSING NATURAL LANGUAGE AND STG

*S : [S ! S != <<described,S,*DS ::

[DS ! DS != <<*VR1,*VA1,*VA2,*VA3,1>>],1>>]

<=

*S : [S ! S != <<cat,S,sentence,1>>

S != <<sem,S,<<*R1,*A1,*A2,*A3,1>>,1>>

S != <<env,S,*SEnv ::

[Env ! Env != <<anchor,*R1,*VR1,1>>

Env != <<anchor,*A1,*VA1,1>>

Env != <<anchor,*A2,*VA2,1>>

Env != <<anchor,*A3,*VA3,1>>],1>>].

To get the above example correct we should really have the value of *VA3 (a type from

the described situation of the verb phrase) also reduced with respect to the anchoring

environment *SEnv. Although it may actually be theoretically possible to specify

such constraints in astl, it is obviously not easy. This fact suggests that some new

function should be added to the basic de�nition of astl to cover such reduction. Such

an extension is discussed in Section 7.4.1.

As we can see that although tricky in some cases, a basic treatment of STG in astl is

possible|the full astl description is given in Appendix A.3. We can encode the ideas

of anchoring and labelling of language and build simple situation semantic translations

of utterances. This treatment is reminiscent of using the lambda calculus in Montague

grammar where we have an expression with explicitly named parts that have yet to get

a value. In contrast with, say, a uni�cation approach where variables are used or as in

the next chapter where expressions are built only when all information is available.

STG in its original form does not deal with anaphora. We could try to add some

form to it but instead of a designing yet another treatment it seems sensible to borrow

from the work of other theories. The next chapter deals with Discourse Representation

Theory which has an adequate treatment of both bound and inter-sentential anaphora.

The relationship between DRT and STG will be discussed then.

Cooper's description also includes more complex syntactic (and semantic) forms than

those available in the Rooth fragment. Particularly it o�ers simple treatments for em-

bedded sentences and re
exive pronouns. This part is not reconstructed here although

should not be very di�cult to add.

4.5 Summary

In this chapter we have shown how a situation theoretic treatment of conventional

syntax can be given in astl. We showed how conventional phrase structure grammars

can be naturally encoded as situation theoretic constraints. Although we can explicitly

encode these \grammar rules" as constraints, astl also o�ers a built in mechanism

for such rules o�ering a more e�cient implementation. A small syntactic fragment is

introduced with some examples which is used as the syntactic backbone of the later

4.5. SUMMARY 75

Situation Theoretic Grammar description and also will be used in the following two

chapters.

A description of Cooper's Situation Theoretic Grammar is given. Although many of

the ideas in astl come directly from STG is it useful to see that a description of

STG, both its syntactic and semantics treatments of utterances can be fully described

in astl. Some examples and problems with the description are also identi�ed. The

above description in astl is just to show basic adequacy for astl. The following two

chapters discuss two other semantic theories which concentrate on the same semantic

phenomena and hence descriptions of them can appropriately be closely compared.

The STG description does not include a treatment of anaphora and hence cannot be as

closely compared but we will consider an extension to STG in Section 7.3 adopting the

treatment of pronouns from the following astl description of Discourse Representation

Theory.

Chapter 5

Discourse Representation

Theory and Threading

5.1 Introduction

In this chapter we look at a semantic theory which was originally thought of as being

quite distinct from situation theory. Kamp's Discourse Representation Theory (DRT)

is a general semantic theory aimed at o�ering a general semantic representation for na-

tural language discourses ([Kamp 81, Kamp & Reyle 93]). First, we will give a general

description of DRT and identify its essential properties. Then we will give a treatment

of DRT in astl showing how astl can be used to describe a non-situation semantic

theory. In this description of DRT in astl we will introduce and de�ne the concept

of threading showing how a structure other than the basic syntactic structure may be

de�ned over a discourse.

After the description of DRT in astl we compare it with other implementations of

DRT. Also we discuss some of the criticisms that have been made of DRT in terms of

this new description and see if a situation theoretic treatment o�ers any advantages.

Some of the discussion in this chapter has also appeared in [Black 92].

5.2 Discourse Representation Theory

Among the original motivations for DRT was a treatment for the problem of donkey

anaphora and a consistent treatment for bound anaphora and inter-sentential ana-

phora. Tense also played an important role at the beginning. Later work has expanded

DRT in a number of di�erent directions, o�ering solutions to a number of semantic

phenomena.

The essential structure in DRT is the discourse representation structure (DRS) which

is characteristically written as a box. A DRS consists of two parts: a set of discourse

76

5.2. DISCOURSE REPRESENTATION THEORY 77

markers called the domain; and a set of conditions. A DRS is used to represent the

current state of information obtained by processing a discourse. As the discourse

progresses more information will be entered in the corresponding DRS. Kamp has

made claims that an intermediate representation between the syntax and the meaning

of an utterance is a necessary part of natural language understanding and posits DRSs

as that level of representation. Hence DRSs, to him, are not just a convenient form

but psychologically real. However, such arguments are not relevant to the description

here.

A DRS is usually written as a box with discourse markers in the top part and conditions

on these markers on the bottom. A simple example will help illustrate their use. A

DRS for the utterance \a man walks" could be written as

X

walk(X)

Discourse markers are used to represent objects introduced in the discourse. In the

simplest form of DRT (for example as described in [Johnson & Klein 86]) conditions

can be simple predicates over discourse markers or can be the relation) over two

sub-DRSs. This relation is used in the representation of the determiner \every". A

DRSs for the utterance \every man owns a donkey" might be

X

man(X)

)

Y

donkey(Y)

own(X,Y)

The interpretation of DRSs is as follows. A DRS is said to be true in a model if there

exists a binding for the discourse markers to objects in the model that makes all the

conditions true. In the special case of the) condition: it is true if for all ways that

the left hand sub-DRS can be made true there exists an extension of the bindings that

makes the right hand sub-DRS true.

Another important aspect of DRSs is that they implicitly de�ne an accessibility con-

dition on markers|that is accessibility can be derived from the structure of a DRS.

In order for a discourse marker to be a candidate for pronominal reference it must be

the case that the marker is accessible from the point in the DRS where the discourse

marker corresponding to the pronoun is entered. The accessible relation can be de�ned

as

� A marker is accessible in the DRS whose domain it appears in.

78CHAPTER 5. DISCOURSE REPRESENTATION THEORY AND THREADING

� All markers accessible in a DRS are accessible in its sub-DRSs.

� All markers accessible in the left sub-DRS of the) relation are also accessible

in the right sub-DRS.

The above de�nition of accessibility allows such anaphoric references as (co-indexing

is marked by subscripts)

A man

1

walks. He

1

talks.

Every man with a donkey

2

likes it

2

.

but (properly) disallows the following (in the case where there is more than one

woman|as in 8x[man(x) ! [9y[woman(y) ^ loves(x; y)]]] that is wide scope for the

universal quanti�er introduced by \every")

*Every man loves a woman

3

. She

3

is happy.

Speci�cally the marker introduced by \a woman" lies within the scope of the \every"

and hence is not available for later anaphoric reference.

1

One basic problem that DRT solves is that in conventional logics a di�erent transla-

tion is required for inde�nite noun phrases depending on their context. In a simple

declarative sentence like \a man walks" any translation must introduce some form of

existential quanti�er for the inde�nite noun phrase. A �rst order logic translation

would be

9x[man(x) ^ walk(x)]

In the case of an inde�nite noun phrase embedded within a universal the required

translation is di�erent. A �rst order translation for \every man with a donkey walks"

is

8x8y [[man(x) ^ donkey(y) ^ with(x; y)]! walk(x)]

That is the translation for the inde�nite \a donkey" introduces a universal quanti�er.

DRT o�ers a uniform translation for inde�nites in either context (within or outwith

the scope of a universal). The DRS for \every man with a donkey walks" is

1

This restriction is often cited in the literature and is done so here as part of the description of

DRT. The \closing o�" of the scope of a universal quanti�er is important in DRT and also, as we

will see later in dynamic semantics. However there are good exceptions to these sentences, although

it seems that in the starred example there can only be one woman (i.e. wide scope for the existential

introduced by \a woman") and not the wide scope for the universal quanti�er introduced by \every"

there are good examples like

Every real man owns a car

1

. It

1

is red.

which naturally seems to be discussing more than one car.

5.2. DISCOURSE REPRESENTATION THEORY 79

X Y

man(X)

donkey(Y)

with(X,Y)

)

walk(X)

and for \a man walks" the DRS is

X

man(X)

walk(X)

Because DRSs have implicit existential quanti�ers on introduced discourse markers

and universal quanti�ers are not over variables but over DRSs (e�ectively properties

or types) the same translation for inde�nites is possible. This is one of the major

advantages of DRT.

Another important characteristic of DRT is that it is not just a representation forma-

lism, it also o�ers a construction algorithm which de�nes how a DRS may be formed

from a simple syntactic parse tree. The basic algorithm is speci�ed as a conversion

from a syntactic tree to a DRS. The processing is basically done top-down through the

tree, rewriting parts of the tree into DRSs. The exact form of construction algorithm

changes from implementation to implementation. We can identify three di�erent ways

in which the construction is achieved. First there is the \original" method where a

syntactic tree is re-written into a DRS. The intermediate structures consist of a DRS

box which may contain both conditions and partially converted syntactic trees. The

second method is the use of lambda abstraction and application (e.g. in [Pinkal 91])

where each syntactic constituent of a parse is related to an abstraction over a DRS.

Lambda application and beta reduction can be used to form the DRS component of

the mother node of a syntactic local tree from the DRS components of its daughters.

Unfortunately simple lambda application is not su�cient to compose all structures and

a special composition operator is also needed. The third method of implementing the

construction algorithm is with the use of threading (as in [Johnson & Klein 86]). This

is the method we also use here and is detailed below. However what should be noted is

that in DRT the construction of the representation from a natural language utterance

is rightly considered important enough to be part of the theory and not just a footnote.

In the description of DRT in astl given in the next section we will only consider

the basic parts of DRT. That is just enough coverage to deal with donkey anaphora.

Particularly we will deal with simple declarative sentences (and discourses) of transitive

and intransitive verbs whose arguments are proper nouns, pronouns or quanti�ed noun

phrases optionally followed by prepositional phrases. Only the determiners \every"

80CHAPTER 5. DISCOURSE REPRESENTATION THEORY AND THREADING

and \a" are included. In other words the syntax is exactly that of the Rooth fragment

described before in Section 4.3.

This coverage is essentially that in [Johnson & Klein 86]. But it should not be thought

that [Johnson & Klein 86] is the most complete description of DRT. That coverage

was aimed for here because it is adequate to show the translation of DRT in astl

(as well as the basic adequacy of DRT itself). There have been many extensions to

DRT. Generalised quanti�ers in DRT are detailed in [Kamp & Reyle 93]. Propositio-

nal attitudes are described in [Kamp 91]. Work on temporal anaphora has also been

carried out within a DRT framework ([Partee 84]). Also DRT has been used merely

as a framework in which to cast solutions of other semantic problems (for example

[Lascarides & Asher 91] on commonsense entailment). This shows DRT is not just a

semantic theory for donkey anaphora but does stand as a suitable semantic theory for

general semantic representation in its own right.

5.3 DRT in astl

There is other work on DRT in situation semantics particularly [Cooper & Kamp 91].

In that description they identify three possible ways in which we can consider DRT in

a situation theoretic way which can be paraphrased as:

1. Give a situation semantics for an already existing language for DRSs.

2. Give a model for DRSs as objects in situation theory.

3. Start from an existing situation semantics and incorporate the dynamic aspects

of DRT

Although any description of DRT in situation theory/semantics may relate to more

than one of these points, the description in [Cooper & Kamp 91] primarily takes the

approach given in 1 and give a situation semantics for an existing language of DRSs.

Here we will e�ectively take the second approach and de�ne DRSs as situation theoretic

objects.

The following description is in two parts. First we give a description of the repre-

sentation of DRSs as situation theoretic objects. Second we introduce and formally

de�ne a notion of threading which relates utterance situations in a way necessary for

the construction of DRSs throughout a discourse.

5.3.1 DRSs in astl

There are a number of possible ways to represent a Discourse Representation Structure

(DRS) in astl. The �rst consideration is the representation of discourse markers. As

these are objects which can be bound to objects in the world there is an obvious

relationship to a parameter. Conditions can be represented as i-terms (facts). DRSs

5.3. DRT IN ASTL 81

themselves will be treated as parametric situation types. DRSs as types, as we will see

below, allows an obvious route to interpretation of DRSs.

An example DRS for the utterance \a man walks" is

X

man(X)

walk(X)

while the astl representation of the same DRS is

P1

P1

man(X)

walk(X)

In the basic astl syntax this would be written as

[P1 ! P1 != <<man,X,1>>

P1 != <<walk,X,1>>]

The most important di�erence between a standard DRS and its astl representation

is that the discourse markers and conditions are not partitioned. We are treating pa-

rametric types e�ectively as abstractions over types and a more correct representation

should perhaps be (using the EKN notation)

P1 X

P1

man(X)

walk(X)

but at present astl does not support such objects (an extension that would introduce

such objects is discussed in Section 7.4.1). Treating discourse markers explicitly in the

abstraction gives a better representation of how we intend to treat them, but it is not

necessary.

We can discuss the interpretation of DRSs as parametric types in some model. For

example an utterance situation which is related to the above DRS would also be related

to a described situation (or model). We can capture that relationship by the following

astl constraint.

82CHAPTER 5. DISCOURSE REPRESENTATION THEORY AND THREADING

*S : [S ! S != <<described,S,

*DS :: [D ! D != <<man,*X,1>>

D != <<walks,*X,1>>],1>>

S != <<drs-anchor,S,

*A :: [AE ! AE != <<anchor,X,*X,1>>],1>>]

<=

*S : [S ! S != <<DRS,S,[D ! D != <<man,X,1>>

D != <<walk,X,1>>],1>>].

That is there exists an anchoring for the discourse marker in the DRS such that an-

choring the markers in the DRS makes it a type of the described situation. Note that

by changing the parameters (discourse markers) into astl variables we get the exi-

stential treatment of the markers. It should be noted that as astl is currently de�ned

the above translation from DRS to described situation cannot be given in general (in

astl) very easily|you cannot state one constraint to deal with all DRSs|but the

concepts of interpretation are expressible as astl objects.

Above we only gave an example with conventional conditions, we also treat the special

condition used to represent the universal quanti�er as a fact. Also if we were to extend

this description to include other non-basic conditions of DRT they may also require the

introduction of other special facts. An example astl DRS containing an every-fact

for the utterance \every man likes a donkey" is

P1

P1

every(

P2

P2

man(X)

,

P3

P3

donkey(Y)

like(X,Y)

)

Again we can represent the interpretation of such a fact by astl constraints. Again

the translation of parameters to astl variables gives the required treatment.

*S : [S ! S != <<drs-anchor,S,

*A :: [AE ! AE != <<anchor,X,*X,1>>

AE != <<anchor,Y,*Y,1>>],1>>]

<=

*S : [S !

S != <<described,S,

*DS :: [D ! D != <<man,*X,1>>],1>>

S != <<DRS,S,

[D ! D != <<every,

5.3. DRT IN ASTL 83

[D1 ! D1 != <<man,X,1>>],

[D2 ! D2 != <<donkey,Y,1>>

D2 != <<like,X,Y,1>>],

1>>],

1>>].

*DS : [DS ! DS != <<donkey,*Y,1>>

DS != <<like,*X,*Y,1>>]

<=

*S : [S ! S != <<described,S,

*DS :: [D ! D != <<man,*X,1>>],1>>

S != <<drs-anchor,S,

*A :: [AE ! AE != <<anchor,X,*X,1>>

AE != <<anchor,Y,*Y,1>>],1>>

S != <<DRS,S,

[D ! D != <<every,

[D1 ! D1 != <<man,X,1>>],

[D2 ! D2 != <<donkey,Y,1>>

D2 != <<like,X,Y,1>>],

1>>],

1>>].

That is for all ways that we can anchor X to something that is a man in the described

situation (i.e. all ways that the �rst argument of every can be made a type of the

described situation) there exists an anchoring for Y to a donkey which is liked by the

anchor of X. This will mean that an utterance situation may be related to a number

of anchoring environments but it will still only be related to one described situation.

Also note the obvious parallel here with the semantic representation used in the STG

description in the previous chapter (page 70)

In addition to a DRS we will also relate utterance situations to an accessibility situation.

This will identify all discourse markers which are currently accessible. In some ways

it may be thought of as the domain, in that its facts are all about domain markers.

Accessible markers are used primarily for identifying antecedents for pronouns hence

we also related them to a type, one of male, female or neuter re
ecting the gender

of English pronouns. However unlike the domain of a standard DRS the accessibility

situation may also include markers from the domains of DRSs which are accessible

from the current one. More will be said on this construct later in Section 5.3.4.

5.3.2 Threading

Before we can give the de�nition of how DRSs are related to each other at each stage

in a discourse we must introduce the concept of threading. Conventionally we think

of an utterance being made up of a single hierarchical tree of syntactic categories, but

here we wish to specify other structures over the same set of utterance situations.

84CHAPTER 5. DISCOURSE REPRESENTATION THEORY AND THREADING

The general idea is that as a discourse progresses a new DRS is constructed from the

DRS of the previous part of the discourse plus information form the current part of

the utterance. The path of utterance situations over which this DRS is extended is

called a thread. Threads are de�ned by the binary relation t-in. For example given

the following relation

<<t-in,S1,S2,1>>

we would say S1 is threaded to S2. The daughter relation de�nes a syntactic tree over

the utterance situations stating immediate dominance and linear precedence of the

parts of the utterance, while the threading relation states a di�erent structure over the

same set of utterance situations.

Each utterance situation appears exactly once as the second argument to the t-in

relation. That is each utterance situation has exactly one incoming thread. There

is one exception to this, the special utterance situation which is used to denote the

start of a discourse. It is basically a null context and is used at the initial thread of a

discourse (and the start of some sub-threads). There are no cycles in the threads but as

we will see there may be more than one thread in a discourse. The actual construction

of the threads will be discussed later (Section 5.3.3).

Although we have not yet fully de�ned threading, in order to justify it as a useful

structure to de�ne over utterances we will show how it can be used to de�ne DRSs for

a set of utterance situations. The basic idea in DRT is that as a discourse progresses

information is added to a DRS about the content of the current utterance. We can

de�ne this relationship using threading. Basically each utterance situation is related to

two DRSs, through the relations DRSIn and DRSOut. In addition the simple type of the

DRS we also relate each utterance situation to an incoming and outgoing accessibility

situation which supports facts about which discourse markers are accessible in that

utterance situation. An incoming DRS for an utterance situation is the outgoing DRS

for the utterance situation previous in the thread. This is represented by the following

constraint.

*S:[S ! S != <<DRSIn,S,*Access,*DRS,1>>]

<=

*TS:[TS ! TS != <<t-in,*S1,*S,1>>],

*S1:[S1 ! S1 != <<DRSOut,S1,*Access,*DRS,1>>].

The outgoing DRS of an utterance situation is the information in its incoming DRS

plus the information contributed by that part of the discourse itself. In the simplest

case consider a proper noun. A constraint can be written showing the relationship

between the incoming and outgoing DRSs.

*S:[S ! S != <<DRSOut,S,

*A :: *AType &

5.3. DRT IN ASTL 85

[A ! A != <<accessible,*X,*TYPE,1>>],

*DRSIn &

[D ! D != <<named,*X,*N,1>>],1>>]

<=

*S:[S ! S != <<cat,S,ProperNoun,1>>

S != <<use_of,S,*N,1>>

S != <<sem,S,*X,1>>

S != <<type,S,*TYPE,1>>

S != <<DRSIn,S,

*A1 :: *AType,

*DRSIn,1>>].

That is we add the DRS condition named for that proper noun. The output DRS is

de�ned to be an extension of the input DRS. The output is the type of the input (via

the variable *DRSIn) plus the new fact about the proper noun. Secondly we have also

added the discourse marker for the proper noun to the outgoing accessibility situation,

stating that that proper noun is available as an antecedent.

Consider the discourse \Hanako sings. Taro dances". Particularly consider the ut-

terance situation representing \Taro", the incoming DRS would be transformed as

follows

DRSIn DRSOut

P1

P1

named(H,"Hanako")

sing(H)

; \Taro" ;

P2

P2

name(H,"Hanako")

sing(H)

named(T,"Taro")

Information is monotonically increasing in DRSs as we traverse along a thread. Note

that we do not modify the incoming DRS but specify a new DRS with the type of the

incoming DRS plus information that may be added at that point.

We also have the condition that any argument or relation that appears in a DRS

condition must be related to some utterance situation by the relation sem previously in

the thread. The consequence of this is that arguments are threaded before predicates|

even though they may syntactically appear in a di�erent order. Thus object noun

phrases must be threaded before the predicate.

Although the DRT description in [Johnson & Klein 86] also includes a notion of threa-

ding the description given here is a little di�erent. We have tried to abstract the notion

of threading such that we have thread relations independent of the representation of

DRSs. DRSs are de�ned in terms of threading but the threads exist without the DRSs.

In [Johnson & Klein 86] each syntactic component also consists of an incoming DRS

and outgoing DRS but the basic threads still directly follow through the syntactic

86CHAPTER 5. DISCOURSE REPRESENTATION THEORY AND THREADING

structure, in a depth-�rst left-to-right manner. This is not the case here, although we

do hold \threading" information on each syntactic component about its constituents

the t-in relation itself de�nes a structure independent of the syntactic one. It could

be said that here we thread the threads.

Unfortunately threading is not quite as simple as is described above. When only simple

verbs, proper nouns and pronouns occur there exists only one simple thread through

all the utterance situations. But with the introduction of quanti�ers the threading

must be a little more complex. There is a third form of structural relation apart

from daughter and t-in. Each determiner utterance situation appears in exactly one

range-relation and one body-relation. The second argument of each of these relations

is an utterance situation that does not appear as a �rst argument to any t-in-relation

(i.e. they are ends of sub-threads). The relationship between the outgoing and incoming

DRSs related to a determiner utterance situation is that the outgoing DRS includes the

incoming DRS plus the information from the sub-threads. In the case of the determiner

\every" we have the following relation

*S:[S ! S != <<DRSOut,S,

*Access,

*DRSIn &

[DS ! DS != <<every,*RangeDRS,

*BodyDRS,1>>],1>>]

<=

*S:[S ! S != <<cat,S,Determiner,1>>

S != <<DRSIn,S,*Access,*DRSIn,1>>

S != <<sem,S,every,1>>],

*TS:[TS ! TS != <<body,*S,*Body::

[S ! S != <<DRSOut,S,*A1,*BodyDRS,1>>],1>>

TS != <<range,*S,*Range::

[S ! S != <<DRSOut,S,*A2,*RangeDRS,1>>],1>>].

That is we add an every condition to the outgoing DRS whose arguments are the out-

going DRSs of the utterance situations related by the relations range and body. Note

that the incoming accessible markers are simply passed forward unchanged as markers

introduced within the scope of the every-relation are not available for pronominal

reference.

The inde�nite article is actually easier (no sub-DRSs need be created). The following

constraint captures the relationship. In the inde�nite case the outgoing DRS consists

of the incoming DRS plus the outgoing DRSs of the range sub-thread and of the

body sub-thread. The accessible markers from the end of the range sub-thread are

passed on out of the determiner utterance situation because unlike the every case,

markers introduced within the scope of the inde�nite are available for future pronominal

reference.

*S:[S ! S != <<DRSOut,S,

5.3. DRT IN ASTL 87

*Access,

*DRSIn & *DRSRange & *DRSBody,1>>]

<=

*S:[S ! S != <<cat,S,Determiner,1>>

S != <<DRSIn,S,*A1,*DRSIn,1>>

S != <<sem,S,some,1>>],

*T1:[TS ! TS != <<body,*S,*Body::

[S ! S != <<DRSOut,S,

*A2,*DRSBody,1>>],1>>],

*T2:[TS ! TS != <<range,*S,*Range::

[S ! S != <<DRSOut,S,

*Access,*DRSRange,1>>],1>>].

However what is actually done in the description here (as shown fully in Appendix A.4)

is that the beginning of the body sub-thread is threaded to the end of the range sub-

thread and the beginning of the range sub-thread is threaded to the incoming thread

of the determiner itself. This means the following simpler constraint achieves the same

result.

*S:[S ! S != <<DRSOut,S,*Access,*DRSOut,1>>]

<=

*S:[S ! S != <<cat,S,Determiner,1>>

S != <<sem,S,some,1>>],

*T1:[TS ! TS != <<body,*S,*Body::

[S ! S != <<DRSOut,S,

*Access,*DRSOut,1>>],1>>].

As it is not completely clear from the above examples how the syntactic structure

relates to the threaded structure a few simple but detailed examples are given.

Below is an annotated syntactic tree for \Every man likes Hanako" showing the threa-

ding relation. The t-in relation is shown as bold arrows.

H

H

H

H

H

H

H

H

�

�

�

�

�

�

�

�

@

@

@

�

�

�

@

@

@

�

�

�

S

NP1 VP

NP2VND

Hanakolikes

man

every

-

-

�

�

�

�

-

�

�

�

�

-

�

�

�

�

-

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

-

88CHAPTER 5. DISCOURSE REPRESENTATION THEORY AND THREADING

In addition, DS (the discourse start situation) is threaded to D, N and NP2. The main

discourse thread will go through D. There are two other threads ending at NP1 and S.

D will be related to NP1 by the relation range and to S by the relation body.

That is there are three threads in this discourse. The main thread goes from the

previous utterance in the discourse through the determiner \every" and on to the

next utterance. Two sub-threads also exist dealing with the range and body of the

determiner. DRSs are de�ned with respect to these threading relations. Abstractly

the DRS progression through these threads can be shown as

D

D

every

D7

D7

every(

D1

D1

man(X)

,

D6

D6

named(Y,"Hanako")

like(X,Y)

)

D

D

man

D1

D1

man(X)

NP

D2

D2

man(X)

and �nally the body sub-thread

D

D

Hanako

D3

D3

named(Y,"Hanako")

likes

D4

D4

named(Y,"Hanako")

like(X,Y)

VP

D5

D5

named(Y,"Hanako")

like(X,Y)

S

D6

D6

named(Y,"Hanako")

like(X,Y)

The obvious question is how come the outgoing DRS of the sentence utterance situation

does not contain any information about the determiner. The next section describes how

these threads are built and the exact relationships between each utterance situation.

5.3. DRT IN ASTL 89

5.3.3 Constructing the threading information

The threading structure is de�ned with respect to the syntactic structure such that the

grammar rules include constraints about how the utterance situations can be threaded.

Each utterance situation is related to a \threads" situation which holds the facts that

are speci�c to threading. Note that a t-in-relation for a particular utterance situation

may not be locally determined and hence the t-in-relation for a particular utterance

may not be in the \threads" situation for that utterance or even in the utterance

situation immediately dominating it. For example the incoming thread for a subject

proper noun will be some utterance situation in the previous sentence. The t-in-

relation for that proper noun will be determined somewhere further up the syntactic

hierarchy. Thus there will be a number of \thread" situations around and any one

of them may contain the t-in-relation for a particular utterance but the conditions

stated above for these relations will still be true|only one incoming thread for each

utterance situation.

In addition to the actual threading information there are other relations supported

by \thread" situations. The body and range relations are used to relate determiner

utterance situations to their sub-threads. Also there are a number of relations which are

used in the construction of the t-in relations. Facts with any of the relations t-out,

or t-need may also appear in \threads" situation. All utterance situations' thread

situation will contain a t-out and t-need relation. The t-out relation identi�es an

utterance situation which is syntactically dominated by the current utterance situation.

This t-out-situation is the last situation in the thread in that sub-tree. The t-need

relation identi�es the utterance situation that requires an incoming thread. This is

best illustrated by looking at the information in the threading situation related to a

sentence utterance situation for the sentence \Hanako sings".

SIT1

cat(SIT1,sentence)

sem(SIT1, R1(A1))

daughter(SIT1,SITNP)

daughter(SIT1,SITVP)

threads(SIT1,

TS

t-out(SIT1,SIT1)

t-need(SIT1,SITNP)

)

That is the t-need of the sentence utterance situation (the situation that needs a

thread) is the proper noun and the output, the situation that is to be threaded to the

next part of the discourse is the sentence utterance situation itself. In the case of a

sentence containing a quanti�er the threading is di�erent. In the case of \every man

walks", the t-out and t-need of the sentence is the determiner as it is that utterance

90CHAPTER 5. DISCOURSE REPRESENTATION THEORY AND THREADING

which adds the single condition (with relation every) to the DRS. That is the main

discourse thread goes through the determiner utterance situation.

SDET

cat(SDET,Determiner)

use of(SDET,"every")

DRSIn(SDET,DRSStart)

DRSOut(SDET,

S5

S5

every(*,*)

)

threads(SDET,

TDET

t-out(SDET,SDET)

t-need(SDET,SDET)

)

SN

cat(SN,Noun)

use of(SN,"man")

DRSIn(SN,DRSStart)

DRSOut(SN,

S1

S1

man(X)

)

threads(SN,

TN

t-out(SN,SN)

t-need(SN,SN)

)

SVP

cat(SVP,VerbPhrase)

use of(SVP,"walks")

DRSIn(SVP,DRSStart)

DRSOut(SVP,

S3

S3

walk(X)

)

threads(SVP,

TVP

t-out(SVP,SVP)

t-need(SVP,SVP)

)

SNP

cat(SNP,NounPhrase)

DRSIn(SNP,S1)

DRSOut(SNP,

S2

S2

man(X)

)

threads(SNP,

TNP

t-out(SNP,SDET)

t-need(SNP,SDET)

)

SS

cat(SS,Sentence)

DRSIn(SS,S3)

DRSOut(SS,

S4

S4

walk(X)

)

threads(SS,

TS

t-out(SS,SDET)

t-need(SS,SDET)

)

`

`

`

`

`

`

`

`

�

�

�

�

�

�

P

P

P

P

P

P

�

�

�

�

�

�

In [Johnson & Klein 86] they also have a notion of threading. A comparison between

their implementations may help this description. In J&K each syntactic component

(among other features) has in fact two incoming DRSs and two outgoing DRSs. They

call them current and super. In the astl implementation the standard incoming and

outgoing DRS are analogous to same as J&K's current DRSs, while t-need and t-out

relations exist in some way to capture the information made available in J&K's super.

Basically where J&K pass down the input DRS to an utterance, we pass up the ut-

terance that requires the input. J&K (and others) o�er a top-down de�nition of the

construction algorithm while the astl description is essentially bottom-up.

The apparent complexity of the threading is directly to do with the fact that the syntac-

5.3. DRT IN ASTL 91

tic structure of an utterance does not closely correspond to the semantic structure|

particularly in terms of of how quanti�ers are scoped. The syntactic structure of the

utterance \every man likes Hanako" can be written as

H

H

H

H

H

H

H

H

�

�

�

�

�

�

�

�

@

@

@

�

�

�

@

@

@

�

�

�

S

NP1 VP

NP2VND

Hanakolikes

man

every

while the logical structure is more like

H

H

H

H

H

H

H

H

�

�

�

�

�

�

�

�

@

@

@

�

�

�

8

x

!

likes(x;H)man(x)

which puts the quanti�er node (which is related to the syntactic determiner node) as

the dominating node. As we are building a logical structure which is in essence closer

to the second from the �rst we must �nd ways to related the nodes of one to the other.

The threading relation is intended to capture this alternative structure.

5.3.4 Pronouns and accessibility

So far our examples have not included any pronouns. The basic constraint for a pronoun

is that it can only refer to something that has already \appeared" in the discourse. In

DRT a pronoun introduces a new discourse marker but it also adds a condition relating

this new marker to an already existing accessible marker. Accessibility is de�ned in

terms of the incoming DRS (and the DRSs of which this may be a sub-DRS). Because

92CHAPTER 5. DISCOURSE REPRESENTATION THEORY AND THREADING

accessible markers are de�ned in terms of existing markers, pronoun referents (in DRT)

must appear earlier in the discourse and hence standard de�nitions of DRT cannot deal

with cataphora. The basic notion of pronoun use in our astl description can easily be

captured by the following constraint.

*S:[S ! S != <<DRSout,S,

*A,

*DRSIn &

[DS ! DS != <<is,*X,*Y,1>>],1>>]

<=

*S:[S ! S != <<cat,S,Pronoun,1>>

S != <<type,S,*TYPE,1>>

S != <<sem,S,*X,1>>

S != <<DRSIn,S,

*A::[A ! A != <<accessible,*Y,*TYPE,1>>],

*DRSIn,1>>].

That is we add an is-relation for the two discourse markers, one that was introduced

by the pronoun itself and the other some marker of the right type that is accessible

from the current context. In DRT the accessibility relation is de�ned as in Section 5.2

above. In the astl description, each utterance situation in addition to a DRS, is related

to an accessibility situation which supports facts about which discourse markers are

accessible at the point in the discourse. We can check the accessible situation to �nd

candidate antecedents.

The accessible situation is added to when any new discourse marker is introduced, (i.e.

by a common noun or proper noun). However it should be noted that the accessible

situation will not just contain the markers that have been introduced in the current

DRS, it will also contain markers from the DRSs which the current DRS is contained

within. For example the incoming assignment situation for the utterance situation

representing \it" is the utterance \every man with a donkey likes it" will be

ACC1

accessible(X,male)

accessible(Y,neuter)

even though the incoming DRS for that utterance situation will be the null situation

type representing the start of the sub-DRS that will be the second argument to the

every relation in the �nal representation of the whole sentence.

The whole astl DRT description is given in Appendix A.4. We can summarize the

description by identifying the following parts:

The basic Rooth fragment provides the syntactic backbone. The grammar rules de-

�ne a syntactic structure over a set of utterance situations using the daughter

5.4. OTHER INSTANTIATIONS OF DRT 93

relation.

A set of t-in relations de�ning a threading structure through the same set of ut-

terance situations. Each utterance situation is related to one incoming thread.

Determiner utterance situations are be related to range and body sub-threads.

Each utterance situation is related to an incoming DRS and outgoing DRS. The

outgoing DRS is de�ned as the incoming DRS plus information contributed by

that utterance situation. The DRSs are de�ned over the threading relation.

Each utterance situation is also related to a situation which supports facts about

which discourse markers are accessible as potential referents for pronouns.

Each utterance situation is related to an utterance situation by the t-out relation.

An utterance situation's t-out situation is either itself or one it syntactically

dominates. The outgoing DRS of the t-out situation is a representation of the

discourse after that whole syntactic tree has been processed.

We will see in Chapter 6 that the description of dynamic semantics in astl reuses the

same syntactic fragment and threading relation as the DRT description. Only the con-

straints dealing with the de�nitions of DRSs and accessibility change. This shows that

threading is a worthwhile notion to describe abstractly unlike other implementations

which only represent it implicitly.

5.4 Other instantiations of DRT

There are other instantiations of DRT both in description and actual implementation.

It is worth looking at these with a view to comparing them to the astl description

described above.

First we will compare the various methods of building a DRS from a syntactic structure.

In [Kamp 81] and [Kamp & Reyle 93] the construction algorithm works by rewriting

a syntactic tree into a DRS. For example we can see how this works in the following

intermediate structure. Using the de�nitions in [Kamp & Reyle 93], after processing

the subject noun phrase in the sentence \John owns a Porsche" the DRS would be.

94CHAPTER 5. DISCOURSE REPRESENTATION THEORY AND THREADING

x

named(x,"John")

H

H

H

H

�

�

�

�

@

@

�

�

@

@

�

�

@

@

�

�

S

VP

NPV

D N

x

owns

a

Porsche

Note how this intermediate structure is not a valid DRS (or tree) itself, but is some

combination of both. Various rules are de�ned which rewrite the tree into the DRS

box structure.

The implementation described in [Pinkal 91] is di�erent. Their implementation treats

seriously the notion of compositionality. For each syntactic component of a discourse

there is a related DRS object. Unlike the astl DRT description that DRS object only

contains information from the parts the node syntactically dominates. (In the astl

description the t-out DRS will contain information up to that point in the discourse

so may contain information from syntactic nodes that are not dominated by that node

but appear earlier in the discourse.) The DRS objects in Pinkal's implementation are

not simple DRSs. They are essentially lambda abstractions over DRSs. For example

the DRS representation for the noun phrase \every man" would be

�S

x

man(x)

) S(x)

And for the inde�nite noun phrase \a donkey" would be

�P

y

donkey(y)

� P (y)

The operator� is used to merge twoDRSs. Also beta reduction in this framework is not

quite the same as in the conventional lambda calculus. A DRS object, may, because it is

an abstraction, contain unresolved pronouns. It is necessary for any reduction function

to check that unresolved pronouns are either appropriately resolved by the reduction or

their conditions are passed up for further reductions. A valid DRS for a discourse must

5.4. OTHER INSTANTIATIONS OF DRT 95

have all its pronouns resolved. The checking of pronouns and their possible resolutions

must also be part of the de�nition of the � DRS merge operator. The result is that

Pinkal's system gives a compositional treatment of DRT|\compositional" in its classic

sense of a semantic representation for each syntactic component a simple compose

function (albeit slightly more complex that lambda application and beta-reduction).

Their ideas of a compositional DRT are similar to [Zeevat 89]. Pinkal's system has

many other aspects, it is not solely designed as an example of DRT it is designed as

a general natural language processing system. The system are also concerned with

quanti�er scope and have added a version of Cooper Storage, and an algorithm for

�nding possible scopings based on [Hobbs & Shieber 87].

The third treatment of the construction algorithm in DRT, apart from the one presen-

ted earlier in this chapter, is that described in [Johnson & Klein 86]. As a syntactic

backbone they use a simple DCG. Like the astl description, J&K use the technique of

threading|in fact the Johnson and Klein description was used as a base in designing

the astl description. However, J&K thread di�erently from our own description. Spe-

ci�cally DRSs are build up as the parse is made, from left to right. Therefore at certain

points in the construction of the DRS the representation at a node may not be a valid

DRS (in the strict sense). For example at the verb node in an analysis of the utterance

\a man likes a donkey" the DRS object would be

x

like(x,*Y)

man(x)

where *Y is a variable. The problem is that because *Y is some meta-variable rather

than an object within the DRS language itself, this structure has no denotation. This

in itself may not be considered a problem but if a formal semantic view is taken this is

an issue. It may be possible to recast such free meta-variables in structures into some

form of lambda expressions|probably similar to Pinkal's system.

This description of others' interpretation of the construction algorithm enables us to

look closer at the one used in the astl description. In the astl de�nition given above

all DRSs related to utterance situations (either by the DRSIn or DRSOut relation) are

valid DRSs. They do not contain any meta-variables or any form of lambda abstrac-

tions. At least not as part of their \structure"|discourse markers are represented by

parameters which could be considered a form of meta-variable but that is considered

di�erent. This fact could be a basis for an argument that the description of DRT in

astl is not compositional in the strict sense. The DRS related to an utterance situa-

tion may contain information from both what it syntactically dominates and whatever

appears before it in the discourse. However this does not seem to be wrong. The

semantics of an utterance does naturally seem to depend on not just its sub-parts but

also the context it appears in.

Although a basic idea of DRT is that utterances transform some input context to some

output context plus information from that utterance, it is not always made explicit in

96CHAPTER 5. DISCOURSE REPRESENTATION THEORY AND THREADING

implementations. However the J&K description does make this concept more explicit.

The astl description of DRT because of its explicit representation of threading also

takes the same viewpoint. As we will see in the next chapter on dynamic semantics the

idea of changing context through a discourse is common to both DRT and dynamic

semantics and we show how this can be abstracted from both semantic descriptions

and shared between them. It could be said that of the three other DRT descriptions,

[Kamp & Reyle 93], [Pinkal 91] and [Johnson & Klein 86] described above, J&K could

be said to be the most dynamic (in the dynamic semantic sense) because of the idea

of incoming and outgoing DRSs is built in while the astl description is (deliberately)

even more so.

There is also a question of incrementality. That is is there a DRS for all initial sub-

strings of a discourse. With such a strict de�nition of incrementality on the word level

it has to be said that DRT in general is not incremental, as there cannot be a DRS

representation for the substring \every man" without some concept of abstraction over

DRSs. However DRT, and the implementations discussed here, including the astl one,

is incremental at the sentence level. That is a DRSs exists (and can be calculated) for

each initial substring of sentences of a discourse.

An important aspect of DRT is that it is not only a representation for discourses but

also a mechanism that can build these representations from syntactic parse trees. With

respect to the construction algorithm it seems necessary for it to be carried out in a

left to right manner|markers must be introduced before they can be referred to by

pronouns. This processing aspect, speci�cally the order of processing, is e�ectively

included in the astl description. This is not achieved by de�ning an algorithm or

procedure but because of the dependencies of the constraints used to de�nition DRT

in astl we have given a declarative de�nition which requires a left to right ordering.

5.5 Summary

In this chapter we have described Discourse Representation Theory (DRT) which of-

fers a semantic theory for natural language utterances. A simple description is given

followed by a description of how DRT can be de�ned within astl. The basic repre-

sentational object in DRT is the Discourse Representation Structure (DRS). DRSs

are modelled as parametric situation types in astl. This seems a natural translation

which allows an easy method for interpretation of DRSs. A system of threading is

detailed which de�nes a di�erent structure over a set of utterance situations. Thus

a syntactic structure is de�ned by the grammar rules (though the daughter relation)

while threading o�ers a structure closer to the logical structure of the same utterance.

Two DRSs are de�ned for each utterance situation, one an input and the other an ou-

tput. The output DRS contains the information from the input DRS plus information

added to the discourse by that utterance situation. The DRSs are de�ned on top of

the threading relation which states what order the utterance situations must be taken

to correctly build the DRS. An accessibility condition is also de�ned allowing for the

same possible pronoun resolutions as in conventional DRT.

5.5. SUMMARY 97

A comparison of this astl description of DRT and other instantiations of DRT is given.

Particularly showing how compositionality is treated in each of the systems. Although

the astl description does not o�er strict compositionality it does provide a complete

DRS for each part of the utterance. Other aspects of a situation theoretic treatment

of DRT are also discussed.

This chapter shows that astl is not just suitable for describing situation semantic

theories of natural language such as STG (as shown in Chapter 4) but also suitable for

describing other theories which, at least before, were considered quite di�erent.

Chapter 6

Dynamic Semantics and

Situation Theory

6.1 Introduction

In this chapter we discuss dynamic semantics, in particular the work of Groenendijk

and Stokhof on Dynamic Predicate Logic (DPL) and Dynamic Montague Grammar

(DMG) ([Groenendijk & Stokhof 91b, Groenendijk & Stokhof 91a]). As an alternative

to the previous two chapters, where we have been looking at how to encode semantic

theories for natural languages in astl, here we will, at �rst, be looking at how to

encode a logic within astl. Dynamic Predicate Logic (DPL) is a simple �rst order

logic which displays the basic properties of dynamic logics. By encoding it in astl we

will see how its concepts relate to situation theory. Later we de�ne DPL-NL which

gives a dynamic semantic treatment for the Rooth language fragment. This description

is used to show the di�erences between DRT and a dynamic semantic treatment of the

same phenomena.

First we will give some background and justi�cation for the work in dynamic semantics

followed by a formal description of Dynamic Predicate Logic (DPL). We then show

how this logic can be best encoded within astl. Next we introduce DPL-NL which

o�ers a dynamic treatment of the same syntactic fragment we used in the previous

chapters. DPL-NL deliberately re-uses basic parts of the DRT description described

in the preceding chapter. This leads to some detailed discussion of where DRT and

dynamic treatments di�er in compositionality and representation.

6.2 Background and justi�cation

Dynamic Predicate Logic (DPL) was developed in response to Discourse Represen-

tation Theory (DRT) as an attempt to create a \logical" theory that approximates

the semantic coverage of DRT. Speci�cally DPL aims to be a compositional and non-

98

6.2. BACKGROUND AND JUSTIFICATION 99

representational theory for the same semantic phenomena covered by DRT. We will say

more about what is meant by the phrases \compositional" and \non-representational"

during this section.

The basic intuitions of DPL are based on the work done in the formal semantics

of (computer) programming languages (see [Harel 84]). The general idea is that an

instruction in a programming language transforms one state (assignment of values to

variables) to another. For example, a \program" fx := x + 1g can transform an input

state g to an output state h that di�ers only from g such that the value of x in h is 1

larger than the value of x in g.

It is this changing of state that is the reason for the term dynamic. In this framework

the denotation of a \program" is a set of pairs of states (assignments) each of which

are valid inputs and output states for the \program".

A conventional predicate logic (PL) treatment of an utterance like \A man

1

walks. He

1

talks." would be 9x[man(x) ^ walk(x) ^ talk(x)]. The problem with this, argued by

Groenendijk and Stokhof, is that there is no simple representation for the �rst sentence

\A man walks" in that the scope of the quanti�er extends outside the expression used

to represent that sentence. That is the existential quanti�ers introduced by inde�nite

noun phrases should not be \closed o�" at the end of a sentence but extend over the

rest of the discourse (to allow for later anaphora). The problem is that there is no

simple complete logical expression representing a sentence. Thus they argue that the

conventional (PL) translation of the utterance \A man

1

walks. He

1

talks" as

9x[man(x) ^ walk(x) ^ talk(x)]

is not as good, from the compositional viewpoint, as

9x[man(x) ^ walk(x)]^ talk(x)

which we will see later is the DPL translation. Note that in the second example the

second occurrence of x apparently lies outside the scope of the existential.

A second example is with the sentence \every man who owns a donkey beats it". The

PL translation is

8x8y[[man(x) ^ donkey(y) ^ own(x; y)]! beat(x; y)]

which is obviously not compositional as there is no obvious sub-expression which could

be seen to come from the relative clause \who owns a donkey". The DPL translation

8x[[farmer(x) ^ 9y[donkey(y) ^ own(x; y)]]! beat(x; y)]

does o�er an apparently more compositional analysis. However, this of course requires

a rede�nition of the semantics of such expressions.

100 CHAPTER 6. DYNAMIC SEMANTICS AND SITUATION THEORY

It is also argued that although DRT o�ers a treatment of such sentences (particularly

donkey-anaphora without the need for a universal quanti�er for the translation of the

inde�nite in the relative clause), DRT is still not compositional in the Groenendijk and

Stokhof sense. Translations of the above two example utterances in DRT would be

X

man(X)

walk(X)

and

X Y

man(X)

donkey(Y)

own(X,Y)

)

beat(X,Y)

But these also do not contain sub-expressions corresponding to \a man" and \who

owns a donkey" respectively.

Apart from compositionality the other explicit goal of DPL is, in contrast with DRT,

to give a \non-representational" theory. DRT, [Kamp 81], claims that DRSs are not

just structures generated during the process of analysing discourse but that DRSs are

structures that are psychologically real in human cognitive processing terms and hence

are necessary in such an analysis. DRSs are an intermediate representation between the

syntactic representation and the actual semantics, DPL claims that this intermediate

representation is not necessary (though perhaps useful in an implementation?).

6.3 De�nition of DPL

The syntax of DPL is almost the same as that for standard �rst order predicate logic. It

di�ers only in the de�nition of open and closed formulae. The semantics is however very

di�erent. According to [Groenendijk & Stokhof 91b] an expression in DPL denotes a

set of pairs of assignments, where an assignment is a function from DPL variables to

individuals.

A model M for DPL is a pair hD;F i where D is a non-empty set of individuals and

F is a function from constants to members of D and predicates to sets of n-tuples of

D. If � is a constant then F (�) 2 D. If � is a n-place predicate then F (�) � D

n

. An

assignment g is a function from variables to individuals: g(x) 2 D. [[t]]

g

= g(t) if t is

6.4. DPL IN ASTL 101

a variable and [[t]]

g

= F (t) if t is a constant. We will write k[x]g to mean that k and

g are assignments, where k di�ers from g only in that k speci�es an assignment for x

to some individual in D.

We can now de�ne the semantics of terms in DPL

[[R(t

1

; : : : ; t

n

)]] = fhg; hi j h = g ^ h[[t

1

]]

h

; : : : ; [[t

n

]]

h

i 2 F (R)g

[[:�]] = fhg; hi j h = g ^ :9k : hg; ki 2 [[�]]g

[[� ^]] = fhg; hi j 9k : hg; ki 2 [[�]] ^ hk; hi 2 [[]]g

[[� _]] = fhg; hi j h = g ^ 9k : hg; ki 2 [[�]] _ hg; ki 2 [[]]g

[[�!]] = fhg; hi j h = g ^ 8k : hg; ki 2 [[�]]) 9j : hk; ji 2 [[]]g

[[9x�]] = fhg; hi j 9k : k[x]g ^ hk; hi 2 [[�]]g

[[8x�]] = fhg; hi j h = g ^ 8k : k[x]g) 9m : hk;mi 2 [[�]]g

Although not immediately obvious from the de�nition above the semantics does allow

expressions like

9x[man(x)]^ walk(x)

to have the desired treatment where the second occurrence of x does in fact lie within

the scope of the existential. Assignments are e�ectively threaded through an expression

thus the values bound to variables within the syntactic scope of an existential are still

available later in the analysis. The consequences of such a semantics are somewhat

di�erent from conventional logics. The conventional logical equivalences are no longer

necessarily the same. Notably, conjunction is no longer commutative.

Unlike DRT, DPL does not de�ne a translation from natural language utterances to

logical form (that is there is no \construction algorithm"). It only deals with the logical

form itself. Although a natural language gloss is typically given for DPL expressions

no translation algorithm is given from one to the other. Also the natural language

glosses already have their pronouns resolved. Thus, a typical natural language gloss

for a DPL expression would be

A man

1

walks. He

1

talks

9x[man(x)] ^ walk(x)^ talk(x)

Admittedly DPL is only the �rst step towards a logical treatment of quanti�cation and

anaphora and other extensions have been discussed. Dynamic Intensional Logic (DIL)

extends DPL to cover (a form of) intensional logic. Dynamic Montague Grammar

(DMG), [Groenendijk & Stokhof 91a], is a major step in the direction of a semantics

and a relation to natural language syntax. Some discussion of DMG will be given later.

6.4 DPL in astl

There are a number of ways in which DPL could be translated into astl. The �rst

and most obvious is perhaps not the best but some mention of why may be interesting.

102 CHAPTER 6. DYNAMIC SEMANTICS AND SITUATION THEORY

Given a DPL expression

9x[man(x)]^ walk(x)

we could directly translate it into an astl representation of the form

<<and,<<exists,X,<<man,X,1>>,1>>

<<walk,X,1>>,1>>

However this would require de�nitions of the (dynamic logic) relations and, exists, etc.

To give a semantics for such relations within astl would rely a lot on the programming

properties rather than the logical properties of astl. As we would like DPL expressions

in astl to have a fairly natural semantics (with respect to the current semantics of

astl) an alternative representation would be better. But as the semantics of DPL

is so radically di�erent from classical logic semantics (and even situation theory) it

seems we cannot have both a natural translation for DPL expressions into astl and a

natural semantics. Therefore instead of representing the DPL expressions themselves

in astl we can represent the meta-language description of the expressions. In the

previous section we gave the semantics for DPL expressions. The language used to

describe the semantics is not dynamic but closer to the semantics of classical logic and

astl. Therefore we can give a representation for DPL expressions in astl but not as

the expressions themselves but as the meta-language equivalent thus giving a relatively

easy translation and allowing for a more natural interpretation of the result.

The technique however requires a more complex representation of a DPL expression.

As well as predicates, constants, variables and logical operators we must also give a

representation for assignment objects used in giving the semantics of DPL expressions.

6.4.1 Assignments

The denotation of a DPL expression is a set of pairs of assignments. An assignment

consists of a function from DPL variables to objects in the DPL model. In astl we will

represent DPL variables as parameters. The assignments themselves will be represented

as facts between parameters and individuals held in an assignment situation. (This type

of situation has obvious similarities to the anchoring environments that were introduced

in the STG description in Section 4.4.) Here we will di�er from the Groenendijk and

Stokhof semantics. Because we do not have a reasonable notation for representing sets

of pairs of assignments we will make the denotation a pair of sets of assignments. This

is di�erent but the di�erence is not important with respect to the dynamic aspects of

the theory. E�ectively we will thread sets of assignments through a DPL expression

reducing the set as we advance through the expression. An assignment is represented

by a situation while a set of assignments is represented by a situation type. Each

term in a DPL expression will be related to an incoming set of assignments and a set

of outgoing assignments. The relation between these depends on the meaning of the

6.4. DPL IN ASTL 103

term. Note that although this is not explicitly stated in DPL the sets of assignments

are monotonically decreasing as we progress through the expression. We will still

refer to the DPL semantics and the input and output assignments in the �rst order

representations (typically g and h) it should be seen that there is a close relationship

between these two denotations.

Looking at the semantics of DPL expressions more closely we �nd that it is not just the

simple assignment of a DPL variable to an object that is important in an assignment

function. There are also conditions on what the assignment is to. The semantics of

predicate terms and existentially quanti�ed terms is de�ned as

[[R(t

1

; : : : ; t

n

)]] = fhg; hi j h = g ^ h[[t

1

]]

h

; : : : ; [[t

n

]]

h

i 2 F (R)g

[[9x�]] = fhg; hi j 9k : k[x]g ^ hk; hi 2 [[�]]g

Given the following DPL expression

9x[man(x)]

The denotation (in DPL) of this expression would be a set of pairs of assignments of

the form hg; hi where the output assignment h would belong to

fh j h[[x]]

h

i 2 F (man)g

That is the assignment function assigns x to something that is a man. This last

condition is something which must also be modelled in the astl representation. There

are a number of ways to add such a restriction in situation theory. A basic astl

representation of h might be (we are really specifying a representation for all possible

hs)

[S ! S != <<assigned,X,1>>].

This is the type of any assignment function h. All we can really say about such an

assignment function is that the DPL variable X is assigned though at present we do

not know what to. But the semantics also requires us to place restrictions on what X is

assigned to. It is of course possible to infer from the above type that there must exist

some object that X is assigned to so we could expand this to be

[S ! S != <<assign,X,A,1>>

S != <<assigned,X,1>>].

We now need a way to restrict what A is, (although at this stage we will avoid saying

what sort of astl object A is). There are a number of ways to represent restrictions.

One way that has been used in other (non-astl) situation theoretic descriptions is (as

in [Gawron & Peters 90]) the use of restricted parameters. Here the A is typed

104 CHAPTER 6. DYNAMIC SEMANTICS AND SITUATION THEORY

A1 j=� assign;X;A

�man;A�

�

In EKN there is also a notation for restrictions on parameters. In EKN the above

would be written as

A1

assign(X,A)

S

man(A)

All of these require some conditions about where (i.e. in which situation) the restriction

is required.

In astl there are a number of ways to achieve this restriction. If we had some form of

abstraction (as outlined in Section 7.4.1) and allowed typing of objects (not de�ned in

the abstraction extension) we might wish to write something like

A1::[S ! S != <<assign,X,

A::[B ! T != <<man,B,1,>>],1>>].

That is we add a type to A stating that it must be a man in some situation T. Although

this looks as if it might be reasonable, some de�nition of situation T is also necessary.

Another similar technique which has been used in [Cooper 89] is the introduction of

an explicit restriction situation. Thus we would have our assignment plus conditions

in the special Restrictions situation.

A1::[S ! S != <<assign,X,A,1>>].

Restrictions::[S ! S != <<man,A,1,>>].

This also seems reasonable but we would need to relate each assignment situation

to its relevant restriction situation in order to ensure that the parameter A in A1 is

necessarily the same as the A in Restrictions. Alternatively we would have to allow

the restriction to apply everywhere in the description which may not be what is wished.

The problem with all of these representations is that they require an explicit reference

to what X is assigned to when we do not really know what that is. Therefore what we

will do here is merely state that the variable is assigned, that is

[S ! S != <<assigned,X,1>>].

Then in order to impose restrictions we will do so on the variable, assuming that

restrictions apply under the same assignment function thus DPL variables will be

anchored to their values. Thus the assignment under discussion will be represented as

6.4. DPL IN ASTL 105

[S ! S != <<assigned,X,1>>

S != <<man,X,1>>].

That is in an assignment function of this type X is assigned but also (with respect to

whatever X is assigned to) there is a restriction that the assignment is to something

that is a man. We are using X is a slightly di�erent way in each fact. In the assigned

relation the parameter is in some way quoted while in the restriction itself we wish the

X to be anchored to whatever X has been assigned to.

The above speci�es a basic type of assignment, but we can state more based on this

type. The above is a type of assignment which would act as the representation of the

possible output assignments for the DPL expression 9x[man(x)]. Of course we can

stipulate constraints on assignments. Any actual assignment function which supports

the fact that a DPL variable is assigned will also support an assign fact actually

relating the variable to its assignment.

*S : [S ! S != <<assign,X,*X,1>>]

<=

*S : [S ! S != <<assigned,X,1>>]

Second we must state that the general restrictions in an assignment function are with

respect to its own variable assignments. Therefore the described situation that would

be related to a situation representing the utterance \A man walks" would be captured

be the following constraint.

*D : [S ! S != <<man,*Y,1>>

S != <<walks,*Y,1>>

<=

*S : [S ! S != <<described,S,*D,1>>

S != <<Assignment,S,

*A :: [T ! T != <<man,*X,1>>

T != <<walk,*X,1>>

T != <<assign,*X,*Y,1>>

T != <<assigned,*X,1>>],1>>].

That is we are reducing the restrictions with respect to the assignments. At this point

it is worth noting the similarities here between assignment functions and the anchoring

environments discussed in the STG description in Section 4.4. Assignment functions

assign parameters to objects in exactly the way anchoring does. But the inclusion of

the restrictions make assignments more like a combination of anchoring environments

and the parametric fact used in the semantic translation in STG. Of course assignment

functions also have close similarities with DRSs, which we will discuss later.

In addition to simple assign-facts and restrictions we will also need a forall relation

which will be explained below. Formally we also need an exists too but this is actually

unnecessary as we can achieve the same treatment without it. Because of the semantics

of types in astl there is e�ectively an implicit existential before each fact.

106 CHAPTER 6. DYNAMIC SEMANTICS AND SITUATION THEORY

6.4.2 DPL expressions in astl

Note that as well as a representation for the semantics of a DPL expressions we would

like to o�er a treatment of DPL syntax within astl. Unlike the other descriptions in

the two previous chapters this time we are not dealing with a natural language but an

arti�cial language, namely DPL. DPL has its own syntax and we can write grammar

rules in astl which de�ne that language's syntax. The grammar rules are simple but it

is interesting that the syntax of logics typically is not written in the same explicit way

as grammar for natural language fragments. Syntax trees for a logical expressions will

often mark operators on mother nodes rather than give them their own pre-terminal

node. The grammar for DPL is an astl grammar based on the following context free

grammar

w� ! w� and w�.

w� ! w� or w�.

w� ! w� implies w�.

w� ! exists var w�.

w� ! forall var w�.

w� ! predicate.

For the sake of simplicity we will only allow predicates with one argument (walk, talk,

sing, etc.) and treat them as lexical forms. An astl grammar rule for one of the above

rules would be of the form

*S : [S ! S != <<wff,S,1>>

S != <<term,S,conj,1>>

S != <<conjunct,S,*C1,1>>

S != <<conjunct,S,*C2,1>>]

->

*C1 : [S ! S != <<wff,S,1>>],

[S ! S != <<terminal,S,and,1>>],

*C2 : [S ! S != <<wff,S,1>>].

Each of the above context free rules are translated like the above. An example syntactic

parse of the DPL expression

9x[man(x)]

is as below

6.4. DPL IN ASTL 107

SIT388

wff(SIT388)

term(SIT388,exists)

var(SIT388,X)

scope(SIT388,

SIT233

wff(SIT233)

terminal(SIT233,pred)

arg(SIT233,A)

sem(SIT233,man)

)

Here we relate each w� situation to two assignment types by the relations AssignIn

and AssignOut. We can de�ne constraints between the input and output assignments

related to a w� situation with respect to the semantic de�nitions of DPL expressions.

For the case of predicate terms the DPL semantics is de�ned as

[[R(x)]] = fhg; hi j h = g ^ h[[x]]

h

i 2 F (R)g

The corresponding astl constraint is

*S : [S ! S != <<AssignOut,S,

*Ain &

[T ! T != <<*Rel,*Arg,1>>],1>>]

<=

*S : [S ! S != <<terminal,S,pred,1>>

S != <<sem,S,*Rel,1>>

S != <<arg,S,*Arg,1>>

S != <<AssignIn,S,*Ain,1>>].

Here the output assignment carries forward the type of the input assignment plus

the restriction contributed by the predicate itself. Again we can see similarities with

the constraints used in the de�nitions of DRSs as described in the previous chapter.

(Though perhaps we should say that the DRSs de�nitions are similar to dynamic logic

rather than the reverse.) The above constraint follows the basic concept of dynamic

logic in that the expression transforms its input \state" to a new output \state".

The types will be monotonically increasing through the expression. Thus the set of

assignment situations that are of this type will decrease through the expression.

Let us look at a detailed example to see how the type of the assignment function is

built up. We will look at the DPL expression 9x[man(x)] ^ walk(x) which might be

used to represent the natural language utterance \a man walks".

For the sake of argument we will state that the incoming assignment to this expression

is unconstrained (i.e. e�ectively any assignment function). The type of which can be

represented as

108 CHAPTER 6. DYNAMIC SEMANTICS AND SITUATION THEORY

A0

A0

To be pedantic we could state that it supports the fact that it is an assignment function

as in

A0

A0

assignment-function(A0)

thus excluding any random situation as an input but for the sake of space we will just

start with an empty type. The DPL semantics for the top level conjunction is

[[� ^]] = fhg; hi j 9k : hg; ki 2 [[�]] ^ hk; hi 2 [[]]g

Thus the input to the top level expression becomes the input to the �rst conjunct. The

semantics for the �rst conjunct is

[[9x �]] = fhg; hi j 9k : k[x]g ^ hk; hi 2 [[�]]g

This time the constraints for the assignments are a little more complex. First from

the de�nition we see that k is the input assignment for the sub-term �. It is the input

assignment to the existential term plus the fact that X is assigned. This is captured by

the astl constraint

*T : [S ! S != <<AssignIn,S,*G &

[T ! T != <<assigned,*Y,1>>],

1>>]

<=

*S : [S ! S != <<term,S,exists,1>>

S != <<AssignIn,S,*G,1>>

S != <<scope,S,*T,1>>

S != <<var,S,*Y,1>>].

So the input assignment (k) to the sub-expression would be

A1

A1

assigned(X)

6.4. DPL IN ASTL 109

The term man(x) uses the constraint for predicates shown above. The output assign-

ment for that expression will be the combined type of the incoming type plus the type

for the restriction introduced by the predicate

A1

A1

assigned(X)

&

T

T

man(X)

which is reduced to

A2

A2

man(X)

assigned(X)

The output assignment for the expression 9x[man(x)] is the same as output from the

sub-expression which is captured by the constraint.

*S : [S ! S != <<AssignOut,S,*H,1>>]

<=

*S : [S ! S != <<term,S,exists,1>>

S != <<scope,S,

*Scope ::

[T ! T != <<AssignOut,*Scope,*H,1>>],1>>].

The output to this conjunct also acts as the input to the second conjunct walk(x),

which in turn gives an output (via the predicate constraint)

A3

A3

walk(X)

man(X)

assigned(X)

The above is a simple example but clearly shows the dynamic aspect of the theory.

The astl constraints are designed to directly re
ect the semantics of DPL expressions.

The assignments are extended through the expression. Particularly the threading of

assignments through the expression allows DPL variables to be referenced outside the

apparent scope of the existential quanti�er that introduced them.

110 CHAPTER 6. DYNAMIC SEMANTICS AND SITUATION THEORY

We will now look at a second example involving the universal quanti�er which re-

quires us to use slightly more complex restrictions in assignments. The example is

8x[man(x) ! walk(x)] which is a translation of the utterance, \Every man walks".

As before the initial incoming assignment will be the empty type

A0

A0

The semantics of the top level expression is stated as

[[8x�]] = fhg; hi j h = g ^ 8k : k[x]g) 9m : hk;mi 2 [[�]]g

The �rst stage is that the initial input assignment is extended to state that X is assigned

and that new assignment k is passed to the sub-expression �. The astl constraint

that re
ects this is

*T : [S ! S != <<AssignIn,S, [T ! T != <<assigned,*Y,1>>

T != <<of-type,T,*G,1>>],

1>>]

<=

*S : [S ! S != <<term,S,forall,1>>

S != <<AssignIn,S,*G,1>>

S != <<scope,S,*T,1>>

S != <<var,S,*Y,1>>].

The application of this to our initial empty assignment for this example would produce

A1

A1

assigned(X)

of-type(A1,

A0

A0

)

An important extra relation is used here: of-type. Although it might have be thought

that the type of input assignment to the sub-expression could be a simple extension of

the overall incoming type this is not the case. If we have a discourse \A man walks.

Every woman likes a donkey." the incoming type to the quanti�ed sentence would be

6.4. DPL IN ASTL 111

A1

A1

walk(X)

man(X)

assigned(X)

By simple extension the incoming assignment to the quanti�ed sub-expression would

be

A2

A2

assigned(Y)

walk(X)

man(X)

assigned(X)

Thus we would have no distinction between variables introduced by the quanti�er and

existential variables introduced earlier in the discourse. Therefore is it crucial to mark

the boundary between the two parts of the type. It is important to quantify only over

the changes to the incoming assignment not the whole assignment. Thus we have

A2

A2

assigned(Y)

of-type(A2,

A1

A1

walk(X)

man(X)

assigned(X)

)

All assignment functions that are of this type are also of the type

A2

A2

assigned(Y)

walk(X)

man(X)

assigned(X)

112 CHAPTER 6. DYNAMIC SEMANTICS AND SITUATION THEORY

We partition the type so that we can identify which assignments must be quanti�ed

over universally and which (the ones within the type related by of-type which must

merely be treated existentially.

Returning to our example, the next level of expression is an implication. The DPL

semantic de�nition is

[[�!]] = fhg; hi j h = g ^ 8k : hg; ki 2 [[�]]) 9j : hk; ji 2 [[]]g

We continue feeding assignments through the translation as shown above. The inte-

resting aspect is looking at the output assignment for the whole implication expression.

Trivially it is the same as the input expression (as h = g), but that ignores the internal

condition. As we are including restrictions in assignments as well as the actual assign-

ment of variables themselves, although it is true that no assignment of DPL variables

is passed out of this expression there is a condition on the internals of the implication.

Thus the output assignment for the implication expression will be the conjunction of

the input assignment plus a condition for the implication itself.

A1

A1

assigned(X)

of-type(A1,[A0 !])

6.4. DPL IN ASTL 113

&

A2

A2

forall(

A3

A3

man(X)

of-type(A3,

A1

A1

assigned(X)

of-type(A1,[A0 !])

)

,

A4

A4

walk(X)

man(X)

of-type(A3,

A1

A1

assigned(X)

of-type(A1,[A0 !])

)

)

which can be reduced to form a single type

114 CHAPTER 6. DYNAMIC SEMANTICS AND SITUATION THEORY

A5

A5

forall(

A3

A3

man(X)

of-type(A3,

A1

A1

assigned(X)

of-type(A1,[A0 !])

)

,

A4

A4

walk(X)

man(X)

of-type(A3,

A1

A1

assigned(X)

of-type(A1,[A0 !])

)

)

assigned(X)

of-type(A5,[A0 !])

Returning to our analysis of 8x[man(x)! walk(x)], the output of the whole expression

is the de�ned to be the same as the input, plus the condition for the sub-expression.

Thus the �nal output type is

6.4. DPL IN ASTL 115

A6

A6

forall(

A1

A1

assigned(X)

of-type(A1,[A0 !])

,

A5

A5

forall(

A3

A3

man(X)

of-type(A3,

A1

A1

assigned(X)

of-type(A1,[A0 !])

)

,

A4

A4

walk(X)

man(X)

of-type(A3,

A1

A1

assigned(X)

of-type(A1,[A0 !])

)

)

assigned(X)

of-type(A5,[A0 !])

)

This �nal output assignment is achieved by the following astl constraint

*S : [S ! S != <<AssignOut,S,

*G &

[T ! T != <<forall,*K,*M,1>>],1>>]

<=

*S : [S ! S != <<term,S,forall,1>>

S != <<scope,S,

*Scope ::

116 CHAPTER 6. DYNAMIC SEMANTICS AND SITUATION THEORY

[T ! T != <<AssignOut,*Scope,*M,1>>

T != <<AssignIn,*Scope,*K,1>>],1>>

S != <<AssignIn,S,*G,1>>].

Putting the syntactic treatment and semantic de�nition of assignments together we

can now parse DPL expressions and have assignments related to each term in the

expression. The following examples show the term situation for complete sentences of

DPL. Speci�cally the output assignment type contains the information necessary to

infer the type of the described situation.

exists x man(x)

SIT517

cat(SIT517,sentence)

AssignIn(SIT517,

A0

A0

)

AssignOut(SIT517,

A1

A1

man(X)

assigned(X)

)

forall x man(x)

6.4. DPL IN ASTL 117

SIT595

cat(SIT595,sentence)

AssignIn(SIT595,

A0

A0

)

AssignOut(SIT595,

A3

A3

forall(

A4

A4

assigned(X)

of-type(A4,[A0 !])

,

A5

A5

man(X)

assigned(X)

of-type(A5,[A0 !])

)

)

We now require a constraint to state the relationship between an assignment supporting

a forall-fact and the described situation (i.e. the model). The following constraints

state such a relationship for the example above

*S : [S ! S != <<dpl-assignment,S,

*A :: [AE ! AE != <<assign,X,*X,1>>],1>>]

<=

*S : [S !

S != <<described,S,

*DS :: [D ! D != <<man,*X,1>>],1>>

S != <<AssignOut,S,

[P1 ! P1 !=

<<forall,

[P2 ! P2 != <<assigned,X,1>>

P2 != <<of-type,P2,[P0 !],1>>],

[P3 ! P3 != <<walk,X,1>>

P3 != <<man,X,1>>

P3 |= <<assigned,X,1>>

P3 != <<of-type,P3,[P0 !],1>>],

1>>],

1>>].

118 CHAPTER 6. DYNAMIC SEMANTICS AND SITUATION THEORY

*DS : [DS ! DS != <<walk,*X,1>>]

<=

*S : [S ! S != <<described,S,

*DS :: [D ! D != <<man,*X,1>>],1>>

S != <<dpl-assignment,S,

*A :: [AE ! AE != <<assign,X,*X,1>>],1>>

S != <<AssignOut,S,

[P1 ! P1 !=

<<forall,

[P2 ! P2 != <<assigned,X,1>>

P2 != <<of-type,P2,[P0 !],1>>],

[P3 ! P3 != <<walk,X,1>>

P3 != <<man,X,1>>

P3 |= <<assigned,X,1>>

P3 != <<of-type,P3,[P0 !],1>>],

1>>],

1>>].

Notice how the above constraints compare with the constraints concerned with the

relation every for DRSs on page 82. They are e�ectively the same.

The threading of assignments through an expression is relatively simple when compared

with the threading in the DRT example in Section 5.3.2, before it was necessary to build

threads to order the parts of a natural language utterance. Here we are dealing with

an arti�cial language which is much better behaved. \Threads", where assignments

go, can be determined locally and usually simply go into the �rst daughter of a rule.

Outputs are determined by the type of term the node represents.

6.5 DPL and natural language

DPL as it is basically de�ned does not give a mechanism for translating natural lan-

guage utterances into logical forms (analogous to the construction algorithm in DRT).

However, in this section we outline such a translation, called DPL-NL, from a natural

language fragment to a dynamic predicate logic. Later work in dynamic semantics

([Groenendijk & Stokhof 91a]) describe a more complex form of dynamic semantics,

namely Dynamic Montague Grammar for the purposes of our description and compa-

rison with DRT a simpler form is su�cient. Of course, again the translation is for the

Rooth syntactic fragment introduced in Section 4.3.

In the DPL (and DMG) literature typically natural language glosses are given to dy-

namic logic expressions. For example

A man

1

walks. He

1

talks.

9x[man(x) ^ walk(x)]^ talk(x)

6.5. DPL AND NATURAL LANGUAGE 119

Note that the glosses already contain co-indexing of pronouns and their referents as

appropriate. In the example presented below we will convert utterances without inde-

xing into a dynamic form similar to the translation of DPL described in the previous

section.

There are (at least) two ways to do such a translation. DPL could be used as an

intermediate representation between natural language and the semantics (in this case

assignments). The description would then be required to construct a DPL expression

from the natural language utterance and then rely of something similar to the previous

description to relate it to the described situation. A second possible treatment, and

the route actually taken, is to translate directly from the natural language utterance

to the semantic form|threads of assignments.

The route of a non-explicit intermediate representation (no direct representation of

DPL expressions) could be argued by Groenendijk and Stokhof's claim of a non-

representational theory, although perhaps some of the advantages of DPL, particularly

compositionality, may be obscured by this method. Compositionality is proposed as an

important aspect of dynamic logic but the examples mainly deal with inter-sentential

compositionality rather than intra-sentential. Groenendijk and Stokhof argue that

conventional semantic treatments of discourses (including DRT) do not o�er simple

sub-expressions representing each of the sentences in the discourse. Consider the fol-

lowing discourse

A man

1

talks. He

1

walks

In simple �rst order logic would have a translation as

9x[man(x) ^ walk(x) ^ talk(x)]

while the DPL translation is

9x[man(x) ^ walk(x)]^ talk(x)

Importantly the DPL translation does have a simple sub-expression which represents

each sentence while the �rst order one does not (without the addition of something

like lambda abstractions). This fact should make natural language treatments in DPL

easier to specify. Unfortunately this compositionality does not always hold within

sentences. Particularly there is no DPL sub-expression which directly represents the

sub-sentential phrase \a man". The consequence of this is that the translation from

utterance to DPL is not as simple as would be hoped but by no means impossible.

Each utterance situation in the analysis of a natural language phrase will be related

to an input and output assignment type. Assignments are de�ned in the same form

as described in Section 6.4.1 above. Before the details are given the following example

will help to show what the desired treatment is. The analysis for \a man walks" is

120 CHAPTER 6. DYNAMIC SEMANTICS AND SITUATION THEORY

SIT486

cat(SIT486,sentence)

AssignIn(SIT486,

A0

A0

)

AssignOut(SIT486,

A1

A1

walk(X)

man(X)

assigned(X)

)

The output assignment is exactly as it would be for the astl DPL treatment of the

expression 9x[man(x) ^ walk(x)].

Note that we will be treating the sentence \A man walks" as 9x[man(x) ^ walk(x)]

rather than 9x[man(x)] ^ walk(x). This is a consequence of the threading relations

which are themselves a consequence of the way we wish to deal with DRT. The di�e-

rence is not signi�cant but we choose the existential to scope over the whole sentence

so the treatment can be as similar as possible to the DRT one. Of course the dynamic

aspects are still illustrated by inter-sentential anaphora.

The DPL-NL description is built directly using parts of the DRT description. First,

it uses exactly the same syntactic grammar (the Rooth fragment). Secondly it uses

the same threading relations. Syntactic utterance situations are threaded by the same

conditions as DRT description given in Section 5.3.2. The part that does change is

the removal of the constraints de�ning the relationship between incoming and outgoing

DRSs, and the de�nition of accessibility situations. In DPL-NL the semantics is de�ned

by types of assignment which are de�ned over the threading relations.

Each utterance situation is related to an incoming and outgoing assignment type.

The output assignment is the input assignment plus information contributed by the

semantics of the utterance situation itself. For example the output assignment of the

top node of a quanti�ed noun phrase is

*S : [S ! S != <<AssignOut,S,

*AssignIn &

[DS ! DS != <<*VR1,*VA1,1>>

DS != <<type,*VA1,*TYPE,1>>],1>>]

<=

*S : [S ! S != <<cat,S,NounPhrase,1>>

S != <<daughter,S,

*DS1 :: [DS !

6.5. DPL AND NATURAL LANGUAGE 121

DS != <<cat,DS,determiner,1>>],1>>

S != <<daughter,S,

*DS2 :: [DS !

DS != <<cat,DS,noun,1>>

DS != <<type,DS,*TYPE,1>>

DS != <<sem,DS,<<*R1,*A1,1>>,1>>],1>>

S != <<env,S,*SEnv ::

[Env ! Env != <<anchor,*R1,*VR1,1>>

Env != <<anchor,*A1,*VA1,1>>],1>>

S != <<AssignIn,S,*AssignIn,1>>].

That is the input assignment type is extended with two conditions. One from the

relation introduced by the head noun related to whatever the argument is assigned to.

The second fact identi�es the type of the noun (male, female or neuter) used in �nding

pronoun referents.

The constraint for the inde�nite determiner utterance situation shows how the trans-

lation to the dynamic existential quanti�er is treated. The output of the utterance

that introduces the existential is the output assignment from the thread it scopes over

(i.e. the DPL sub-expression). As the sub-expression already includes the information

that was an input to that utterance it does not need to be combined with the input

assignment

*S : [S ! S != <<AssignOut,S,*BodyOut,1>>]

<=

*S : [S ! S != <<cat,S,Determiner,1>>

S != <<sem,S,<<*Q,*X,*Y,*Z,1>>,1>>

S != <<env,S,*SEnv ::

[Env ! Env != <<anchor,*Q,some,1>>],1>>],

*T2 : [TS ! TS != <<t-body,*S,*Body ::

[S ! S != <<AssignOut,S,*BodyOut,1>>],

1>>].

*S : [S ! S != <<AssignMid,S,

*G &

[A ! A != <<assigned,*X,1>>],1>>]

<=

*S : [S ! S != <<cat,S,Determiner,1>>

S != <<sem,S,<<*Q,*X,*Y,*Z,1>>,1>>

S != <<env,S,*SEnv ::

[Env ! Env != <<anchor,*Q,some,1>>],1>>

S != <<AssignIn,S,*G,1>>

S != <<ind,S,*I,1>>].

The second constraint creates the intermediate assignment which introduces the fact

that the DPL variable is assigned. The assignment related by AssignMid is threaded

into the start of the sub-expression that this quanti�es over.

122 CHAPTER 6. DYNAMIC SEMANTICS AND SITUATION THEORY

The third example shows the constraint for the universal determiner. This again

requires the use AssignMid as above, but this time the we must introduce the of-type

relation.

*S : [S ! S != <<AssignMid,S,

[A ! A != <<assigned,*X,1>>

A != <<of-type,A,*G,1>>],1>>]

<=

*S : [S ! S != <<cat,S,Determiner,1>>

S != <<sem,S,<<*Q,*X,*Y,*Z,1>>,1>>

S != <<env,S,*SEnv ::

[Env ! Env != <<anchor,*Q,every,1>>],1>>

S != <<AssignIn,S,*G,1>>

S != <<ind,S,*I,1>>].

This time we will use the relation every rather than the forall relation we used in the

DPL translation given in the previous section. Every can be viewed as an abbreviation

for two forall relations. In the previous section we translated 8x[man(x)! walk(x)]

as

6.5. DPL AND NATURAL LANGUAGE 123

A1

A1

forall(

A3

A3

assigned(X)

,

A6

A6

forall(

A8

A8

man(X)

of-type(A8,

A3

A3

assigned(X)

)

,

A10

A10

walk(X)

man(X)

of-type(A8,

A3

A3

assigned(X)

)

)

)

while using every we abbreviate the above to

A1

A1

every(

A8

A8

man(X)

assigned(X)

,

A10

A10

walk(X)

man(X)

assigned(X)

)

thus we have reduced one level of quanti�er. This is justi�ed by the fact that quanti�er

124 CHAPTER 6. DYNAMIC SEMANTICS AND SITUATION THEORY

representing the natural language word \every" has the more speci�c semantics 8x[�!

�] rather that 8x[�]. This also of course makes the relation more similar to the DRT

every relation.

The constraint for the \every" determiner node in an utterance is

*S : [S ! S != <<AssignOut,S,

*AssignIn &

[DS ! DS != <<every,*RangeAssign,

*BodyAssign,1>>],1>>]

<=

*S : [S ! S != <<cat,S,Determiner,1>>

S != <<sem,S,<<*Q,*X,*Y,*Z,1>>,1>>

S != <<AssignIn,S,*AssignIn,1>>

S != <<env,S,*SEnv ::

[Env ! Env != <<anchor,*Q,every,1>>],1>>],

*T1 : [TS ! TS != <<t-body,*S,*Body ::

[S ! S != <<AssignOut,S,

*BodyAssign,1>>],1>>],

*T2 : [TS ! TS != <<t-range,*S,*Range ::

[S ! S != <<AssignOut,S,

*RangeAssign,1>>],1>>].

Proper nouns will be treated as a form of existential quanti�er. That is they introduce

a new DPL variable and assign it to a DPL individual that denotes the named object.

The constraint for a proper noun utterance situation is

*S : [S ! S != <<Assignout,S,

*AssignIn &

[A ! A != <<named,*X,*Name,1>>

A != <<type,*X,*TYPE,1>>

A != <<assigned,*X,1>>],1>>]

<=

*S : [S ! S != <<cat,S,ProperNoun,1>>

S != <<use_of,S,*Name,1>>

S != <<type,S,*TYPE,1>>

S != <<sem,S,*X,1>>

S != <<AssignIn,S,*AssignIn,1>>].

This treatment means that (wrongly) proper nouns are not available for pronominal

reference outside the scope of a universal quanti�er (this is true for the original DPL

and DMG descriptions not just of our astl description). Some more general treat-

ment of proper nouns should be given where, once introduced, they may be referenced

anywhere.

The last interesting aspect of the DPL-NL description that we will discuss is the

treatment of pronouns. As co-indexing of pronouns and their antecedents is marked

6.5. DPL AND NATURAL LANGUAGE 125

in DPL natural language glosses the treatment of pronoun resolution is not actually

discussed within DPL, we could just accept the DPL treatment and label our pronouns

and noun phrases but this would require a di�erent grammar (or at least di�erent

lexical entries) from the one used in the DRT and STG description. Here, we will try

to include a method for selecting possible referents for pronouns.

In this description, pronouns introduce new DPL variables which are related to suitable

DPL variable referents. In the following constraint, we add to the outgoing assignment

a new DPL variable and add the condition that it (i.e. its denotation) is the same as

some accessible referent of the appropriate type.

*S : [S ! S != <<AssignOut,S,*AssignIn &

[A ! A != <<assigned,*X,1>>

A != <<is,*X,*Z,1>>],1>>]

<=

*S : [S ! S != <<cat,S,Pronoun,1>>

S != <<type,S,*TYPE,1>>

S != <<sem,S,*X,1>>

S != <<AssignIn,S,*AssignIn,1>>

S != <<Accessible,S,

*Acc :: [A ! A != <<type,*Z,*TYPE,1>>

A != <<accessible,*Z,1>>],

1>>].

(*TYPE will be one of male, female or neuter.) The type of the situation related by

the Accessible relation is that of the incoming assignment

*S : [S ! S != <<Accessible,S,*Acc :: *AssignIn,1>>]

<=

*S : [S ! S != <<AssignIn,S,*AssignIn,1>>].

The important de�nition is that those items that are assigned in the incoming assign-

ment are exactly those that are accessible as referents. This is captured by

*S : [S ! S != <<accessible,*X,1>>]

<=

*S : [S ! S != <<assigned,*X,1>>].

The whole DPL-NL description gives a dynamic semantics for the Rooth fragment|

the full description is given in Appendix A.5. As stated above the description is based

on much of the same description as the DRT description, only the de�nitions of DRSs

and accessibility situations have been replaced with de�nitions for assignments.

The following examples show the output assignments for simple discourses.

126 CHAPTER 6. DYNAMIC SEMANTICS AND SITUATION THEORY

A man walks. He talks.

SIT587

cat(SIT587,fulldiscourse)

AssignOut(SIT587,

P7

P7

talk(PN1)

is(PN1,E1)

assigned(PN1)

walk(E1)

man(E1)

type(E1,male)

assigned(E1)

)

E1 is the DPL variable introduced by the existential. PN1 is the variable introduced by

the pronoun \it".

Every man with a donkey likes it.

SIT138

cat(SIT138,fulldiscourse)

AssignOut(SIT138,

P9

P9

every(

P6

P6

with(A1,E1)

donkey(E1)

type(E1,neuter)

assigned(E1)

man(A1)

type(A1,male)

assigned(A1)

of-type(P6,[P0 !])

,

P8

P8

like(A1,PN3)

is(PN3,E1)

assigned(PN3)

with(A1,E1)

donkey(E1)

type(E1,neuter)

assigned(E1)

man(A1)

type(A1,male)

assigned(A1)

of-type(P8,[P0 !])

)

)

In this example the main restriction is over two assignments. The interpretation sta-

tes that for all ways that the �rst assignment can be made true with an anchoring

6.5. DPL AND NATURAL LANGUAGE 127

environment there must be an extension of that anchoring that makes the second ar-

gument true. Notice that the full contents of the �rst type (with parameter P6) are

contained within the second (P8). This is because the type was formed as an extension

of the �rst. This means that assignments contain a \history" of assign-relations and

restrictions. Three DPL variables are introduced: A1 from the universal; E1 from the

existential and PN3 from the pronoun \it".

The DPL-NL description is interesting as it provides a dynamic semantics for a sim-

ple natural language fragment showing how such a translation can be made from an

utterance to assignments. There is no explicit representation of the dynamic logic

expression itself, only the �rst order representation of the semantics of the DPL ex-

pression.

Although in the original work on DPL, [Groenendijk & Stokhof 91b], no translation

from natural language to DPL is given there has been other work which attempts to do

this. In [Lewin 92], a similar translation to the one above is given. That translation is

not given in terms of situation theory but the similarities to the one here are obvious.

One di�erence is that Lewin gives a better treatment of proper nouns such that they

have scope over the whole discourse unlike the restrictive treatment given here.

The above translation is for Dynamic Predicate Logic. [Groenendijk & Stokhof 91a] in-

troduces a more complex dynamic logic|Dynamic Montague Grammar (DMG). DMG

is the application of Dynamic Intensional Logic to a natural language grammar to give

meanings for utterances. The use of lambda abstraction increases the descriptive power

signi�cantly and allows for a level of compositional treatment within natural language

sentences that is not available in DPL.

The essential di�erences in DMG are how the semantics of a sentence (and hence a

discourse) are treated, and the introduction of the sense of state. Again, like DPL, the

basic concept in DMG is that the semantics of an utterance transforms a state to a new

state. The basic representation of a natural language utterance with one existential

can be summarised as

[[�]] = �P [� ^ P]

where ^ is a dynamic conjunction operator and hence succeeding sentences can refer

to existentials introduced in �. But the whole discourse must be applied to true in

order to interpret it. This is not the whole story. The denotation of a sentence is with

respect to the current state which assigns values to discourse markers. Groenendijk

and Stokhof distinguish two types of variables, discourse markers and conventional

variables and justify why this distinction is required. The idea is that the bindings of

discourse markers are available outside the normal scope of certain existentials.

[Beaver 91] gives a reformulation of DMG which in turn has been given a situation

theoretic description in [Beaver et al 91] where a translation of DMG is given in EKN

(Extended Kamp Notation). The result depends crucially on the use of lambda ab-

straction and application, in situation theoretic terms these are abstraction, anchoring

128 CHAPTER 6. DYNAMIC SEMANTICS AND SITUATION THEORY

and reduction. We could reformulate this description in astl but only if we include

general abstraction and a better form of reduction (see Section 7.4.1).

The di�erence between DPL-NL and a treatment of DMG in astl is primarily in

power. DMG is a far more complex logic than what DPL-NL is based on and hence

can provide a translation for a much wider range of utterances. However that is

merely matter of scale. The second and perhaps more important di�erence is that

DMG relies heavily on (lambda) abstraction and hence allows a more \compositional"

treatment of meaning formation. The essential characteristic of dynamic logics (DPL

and DMG) is the notion of an expression changing state. Secondly, in the case of

natural language utterance interpretation both DPL and DMG exhibit the property of

threading discourse markers introduced by existentials, through the utterance.

6.6 Comparison of DPL-NL and DRT

It is important to remember that DPL was deliberately developed to have the same

semantic coverage of DRT so it is not surprising to �nd how similar these theories

are. Also because the de�nition of such theories always leaves some aspects open to

the interpretation of the implementor, there is some freedom in the actual method

of implementation. Because of this, and because it is the general intention of this

work to show similarities between theories the DRT description in Chapter 5 and the

description of DPL-NL given above lead to very similar representations. However there

are some important di�erences which can be highlighted.

First consider the DRT representation and DPL-NL representation of the same ut-

terance. The DRT representation for \Every man likes a pizza." is

SIT075

cat(SIT075,fulldiscourse)

DRSOut(SIT075,

SIT696

,

P7

P7

every(

P3

P3

man(MA1)

,

P4

P4

like(MA1,PA1)

pizza(PA1)

)

)

6.6. COMPARISON OF DPL-NL AND DRT 129

while the DPL-NL for the same sentence is

SIT225

cat(SIT225,fulldiscourse)

AssignOut(SIT225,

P8

P8

every(

P5

P5

man(A1)

type(A1,male)

assigned(A1)

of-type(P5,[P0 !])

,

P7

P7

like(A1,E1)

pizza(E1)

type(E1,neuter)

assigned(E1)

man(A1)

type(A1,male)

assigned(A1)

of-type(P7,[P0 !])

)

)

One interesting aspect of the dynamic translation is that all of the \previous" condi-

tions are held in the assignments. Thus the body of the quanti�er (every) includes a

\history" of conditions, but in the DRT case we only quantify over the minimal number

of conditions at that point. In logic terms we can view the DRT case as

8[�! �]

while in the DPL-NL case we could summarise this as

8[�! [� ^ �]]

From an implementation point of view although the above two expressions are logically

equivalent the second could be viewed as requiring more work to evaluate. Of course

making valid statements about the amount of time it takes to evaluate expressions is

di�cult. Because it is known that such a relationship exists in the DPL-NL repre-

sentation we could easily exploit that and optimise the expression (at interpretation

time) accordingly. However it should be stated that in the direct interpretation of

this dynamic semantic translation it will be the case that assignments will contain the

full history of the conditions. Of course it is arguable that this history is a conse-

quence of the representation of assignments, but the method used here does not seem

unreasonable.

If DPL were extended to deal with generalised quanti�ers this could be a problem.

Many quanti�ers have equivalent semantics for the following two expressions

130 CHAPTER 6. DYNAMIC SEMANTICS AND SITUATION THEORY

Q(�; �)

Q(�; �^ �)

but this may be a problem with the quanti�er only|though perhaps that should

not be treated as a generalised quanti�er. But even if we ignore only, [Lewin 92,

Chap. 6], who gives a dynamic treatment for generalised quanti�ers, argues that

unruly quanti�ers notwithstanding, the second form above will still cause problems

and hence requires an alternative to the standard dynamic semantic treatment. Other

dynamic treatments of generalised quanti�ers also exist [Chiercha 92].

Although this duplication of information may seem a disadvantage it also has a de�nite

advantage. In the DRT representation we explicitly state the accessible markers at

each point in the construction. This is done by threading the information through

the analysis in a separate situation. It is the case that the accessibility situation

will identify all discourse objects that are accessible at that point in the analysis.

That is it will contain the full history of introduced objects in the same way as the

DPL-NL assignment situations|though the DRT accessibility situations contain only

accessible relations not all the conditions. The di�erence is the accessibility situation

in the DRT treatment is not used in the DRS interpretation function only in checking

for pronoun referents, and so we do not have extra conditions to check. However it is

true that we still have to calculate (or \trace") that information. In the case of DPL-

NL assignments no extra calculation or de�nition of accessible objects is necessary as

the information is already directly available in the assignment.

Groenendijk and Stokhof argue that DPL has advantages over DRT as DPL is both

a compositional and non-representational theory. DPL's advantages were displayed by

the fact that the relationship between the natural language utterance and the DPL

expression were close and that we could easily map DPL sub-expressions to parts of

the utterance. For example in

A man walks.

9x[man(x)] ^ walk(x)

there is a DPL sub-expressions (9x[man(x)]) for the subject noun phrase (A man).

But in the DRS case there is no sub-DRS that can easily be identi�ed with the subject

noun phrase

A man walks. ;

X

man(X)

walk(X)

Because of this mis-match between the structure of expressions and the structure of

the utterance Groenendijk and Stokhof claim that DRT is not compositional. However

when we consider the following utterance

6.6. COMPARISON OF DPL-NL AND DRT 131

Every man walks

we already lose this direct relationship as neither the DPL representation or the DRS

one o�ers sub-expressions directly representing sub-utterances.

8x[man(x)! walk(x)]

X

man(X)

)

walks(X)

So according to Groenendijk and Stokhof's de�nition of compositionality DPL itself

fails when we look at the universal quanti�er. To be fair they only really concern

themselves with sentence-sentence compositionality and not intra-sentential. But one

of the objects of this exercise is to give a uniform treatment for inter-sentential and

intra-sentential anaphora so we cannot simply treat these as di�erent issues.

In DPL-NL the representation itself is not actually DPL but closer to a representation

of the �rst order meta-language that gives the semantics of a DPL statement. Therefore

the compositionality of expressions is partially lost. The representation given has the

same shortcomings as the DRS representation as in the example \A man walks. He

talks": there is no sub-expression of the representation directly related to the initial

sentence|unless we discuss the implicit conjunction in types (which is also true for

DRSs).

SIT622

cat(SIT622,fulldiscourse)

AssignOut(SIT622,

P6

P6

assigned(E1)

man(E1)

male(E1)

walk(E1)

assigned(PN1)

is(PN1,E1)

talk(PN1)

)

In summary the di�erences between DPL-NL and DRT seem only to be in the infor-

mation that is in the assignments/DRSs. The extra information in the assignments is

132 CHAPTER 6. DYNAMIC SEMANTICS AND SITUATION THEORY

not due to DPL being \non-representational" or \compositional". It would be possible

to give a treatment of DRT which would also carry around this extra information in

the right hand box of the => relation.

The description of DPL-NL in astl shows how close the relationship between DRT

and dynamic semantics is. This admittedly has partly been deliberate as the DRT

description given in Chapter 5 deliberately emphasizes the dynamic aspects of that

theory. Also the representation of DPL assignments has been chosen so that they are

very similar to DRSs. Such choices in representation although deliberate are not mis-

representing the close relationship between the two theories. They are both designed

to describe the same phenomena and both use the same fundamental techniques to

achieve this. Because of this closeness we should not view these as opposing theories

but alternative ways to achieve the same result. It should be possible extensions to

either theory to be adopted by the other.

6.7 Summary

In this chapter we have described dynamic predicate logic (DPL) and how such a

logic may be described in astl. Unlike previous chapters which deal with natural

language here we describe a logic within astl. Then we show how a DPL treatment

can be given to the Rooth natural language fragment. The translation re-uses much of

the description used in the previous chapter on DRT showing the similarities between

dynamic semantics and DRT. Finally a comparison between DPL-NL, the dynamic

semantic treatment of natural language, and the astl treatment of DRT is given

showing exactly the points where the theories di�er.

Chapter 7

Extensions

7.1 Introduction

We have proposed situation theory, or more particularly astl, as a meta-theory for

describing general natural language semantic theories. We have shown how various

aspects of contemporary theories can be encoded within astl (STG, DRT and dynamic

semantics). Given that these encodings are in the same system, detailed comparisons

are possible. However, as stated in Chapter 2, one of the ultimate goals in this work

is not just to o�er a general environment for implementing and comparing theories,

which is in itself useful, but also to be able to cross-pollinate ideas and techniques

between theories.

In this chapter we will extend our DRT description to include event discourse markers,

thus allowing pronouns to have sentence antecedents. Event discourse markers have

already been discussed as part of DRT (see [Partee 84], [Kamp & Reyle 93] and others),

but here we will show how they naturally �t into our description using properties

which are already part of astl. The second example shows how we take the treatment

of pronouns from our DRT description add it to our STG description, showing how

techniques can be re-used in what would previously have been considered di�erent

frameworks.

The third part of this chapter discusses what extensions to astl itself would be useful

to allow a wider coverage of treatments found in semantic theories and making existing

descriptions easier.

7.2 Extending DRT in astl

In this section we will show how a simple extension can be added to the basic DRT

fragment we described in Chapter 5. This extension is simple, and has been considered

before (see [Glasbey 91] for a brief history of a treatment of events in DRT), but it

shows how we can add to DRT by directly using aspects available in situation theory.

133

134 CHAPTER 7. EXTENSIONS

The extension considered here is adding event discourse markers, allowing sentence

anaphora. The intention is to deal with such examples as

Hanako sees Taro sing. Anna sees it too.

The important point that we wish to treat is that the referent of \it" is \Taro sing[s]",

a sentence rather than a simple noun. (We will not try to give any treatment for

the word \too".) In order for \it" to have a sentence referent we need to state that

sentences introduce event discourse markers.

It should be said that the following is not the only way to achieve the desired result

there are other possibilities but the exercise illustrates how useful and easy astl is in

developing theories. In the description of basic DRT we gave in Section 5.2, discourse

markers are introduced only for nouns. Here we wish to add that and introduce di-

scourse markers for sentences. We will call this new form of discourse marker event

discourse markers. Normal discourse markers are, in the interpretation of a DRS,

bound to individuals in the model, while event discourse markers need to be bound

to more complex objects. Within the astl framework we have an obvious candidate,

situations. Event discourse markers represent situations of a type as de�ned by some

DRS. Event discourse markers will only be introduced for sentences used as comple-

ments rather than all sentences. This seems to be partially linguistically justi�ed but

is primarily done to reduce extra ambiguity which would complicate our description.

In this extension to DRT the output DRS for the utterance \Hanako sees Taro sing"

is

P6

P6

see(H,E1)

is-of-type(E1,

P3

P3

sing(T)

named(T,"Taro")

type(T,male)

)

type(E1,neuter)

named(H,"Hanako")

type(H,female)

This requires a little explanation. First notice that E1 is a situation name (and also an

event discourse marker). Notice we specify the type neuter on E1 so that it may be

a referent for the genderless pronoun \it". The special condition is-type-of relates

situation to the DRS (a parametric situation type). The details of this relation as

described below.

7.2. EXTENDING DRT IN ASTL 135

To achieve this extension to our simple DRT description we �rst have to increase the

syntax of our fragment to allow for sentence complements. This is simply done by

adding an extra VP rule. We also have to worry about the form of the embedded

sentence, (it has no agreement). Such syntactic problems are not important to this

example and can trivially be dealt with by adding various \features" to the utterance

situations.

After adding the necessary syntax and threading information we have to add a con-

straint for sentence complement utterance situations.

*S : [S ! S != <<DRSOut,S,

*DRSOut :: *DRSIn &

[DS ! DS != <<*VR1,*VA1,*EDM,1>>

DS != <<is-of-type,*EDM,*DS,1>>

DS != <<type,*EDM,neuter,1>>],1>>]

<=

*S : [S ! S != <<cat,S,sentence,1>>

S != <<daughter,S, *D1 ::

[D ! D != <<cat,D,verbphrase,1>>

D != <<daughter,D,*D2 ::

[D2 ! D2 != <<cat,D2,sentence,1>>

D2 != <<threads,D2,*Y ::

[TS ! TS != <<t-out,*D2,*X ::

[T ! T != <<DRSOut,T,*DS,1>>],

1>>],1>>],1>>],1>>

S != <<DRSIn,S,*DRSIn,1>>

S != <<sem,S,<<*R1,*A1,*A2,1>>,1>>

S != <<env,S,*SEnv ::

[Env ! Env != <<anchor,*R1,*VR1,1>>

Env != <<anchor,*A1,*VA1,1>>

Env != <<anchor,*A2,*VA2,1>>],1>>].

This apparently rather complex constraint states that the DRSOut of a sentence contai-

ning an embedded sentence is the input DRS plus a condition about the main sentence.

This is made from the main verb phrase relation, the subject argument and an event

discourse marker (a situation name). We also use the relation is-of-type between

the event discourse marker and the output DRS of the embedded sentence. Thirdly

we have a condition noting the pronominal type of the event discourse marker.

In addition to a constraint dealing with the incoming and outgoing DRSs we also need

to make appropriate changes to the accessibility conditions. Now that a discourse

marker for the embedded sentence has been added to the DRS it allows later pronouns

to refer to that event. The DRSout for the utterance \Hanako sees Taro sing. Anna

sees it too" is

136 CHAPTER 7. EXTENSIONS

P11

P11

see(A,PN3)

is(PN3,E7)

named(A,"Anna")

type(A,female)

see(H,E1)

is-of-type(E1,

P3

P3

sing(T)

named(T,"Taro")

type(T,male)

)

type(E1,neuter)

named(H,"Hanako")

type(H,female)

Event discourse markers �t neatly into the situation theoretic framework however we

do need to add a constraint to say what it means to support an is-of-type fact. As

with the constraints given on page 81 which describe how the output DRS relates to

the described situation we need to state how the DRS parametric situation type relates

to the event discourse marker situation. For the above example we can capture this

with the following two constraints.

*A::[S ! S != <<anchor,T,*T,1>>]

<=

*S::[S ! S != <<DRSOut,S,

[P1 ! P1 != <<is-of-type,*E,

[P2 ! P2 != <<sing,T,1>>

P2 != <<named,T,"Taro",1>>

P2 != <<type,T,male,1>>],

1>>],1>>

S != <<drs-anchor,S,*A,1>>].

*E :: [S ! S != <<sing,*T,1>>

S != <<named,*T,"Taro",1>>

S != <<male,*T,1>>]

<=

*S::[S ! S != <<DRSOut,S,

[P1 ! P1 != <<is-of-type,*E,

[P2 ! P2 != <<sing,T,1>>

P2 != <<named,T,"Taro",1>>

P2 != <<type,T,male,1>>],

1>>],1>>

S != <<drs-anchor,S,

7.3. PRONOUNS AND SITUATION THEORETIC GRAMMAR 137

[A ! A != <<anchor,T,*T,1>>],1>>].

This can be read as for every output DRS with a condition is-of-type between a

situation e and a DRS d as described above there exists an anchoring for the discourse

marker T such that there exists a situation e which is of the type formed from anchoring

T in d.

Of course the above example has been simpli�ed drastically. There are obvious pro-

blems especially to do with the fact that objects introduced within the embedded

sentence will not be accessible to pronouns outside that sentence, but it is issues like

this which are easy to investigate in astl that make astl a useful tool in experimenting

with semantic theories.

Importantly we have not had to increase our ontology within the system to add event

discourse markers to our simple DRT fragment. The fact that situations are already

part of our model mean that they can easily be utilised as event discourse markers.

7.3 Pronouns and Situation Theoretic Grammar

In the work of Situation Theoretic Grammar (STG) there is no treatment of pronouns

given in the original de�nition [Cooper 89]. As stated, describing theories within the

framework of astl should allow the cross-pollination of treatments between theories.

Rather than devise a new treatment for anaphora within STG it would illustrate astl's

usefulness more if we could take the treatment of anaphora from our DRT description

(given in Chapter 5) and add it to the basic STG description (from Chapter 4). In

this section we will do just this.

In STG the utterance situation representing the utterance \A man walks" is related

to a number of semantically relevant objects. The semantics of the phrase itself is

captured through the relations sem and env. The argument to sem is a parametric

fact. The parameters are anchored by facts in the environment situation which is an

argument to the relation env. Thus the basic form of the utterance situation for \A

man walks" is

138 CHAPTER 7. EXTENSIONS

SIT4627

cat(SIT4627,sentence)

tense(SIT4627,pres)

sem(SIT4627, Q1(A1,A2,A3))

env(SIT4627,

SIT4589

anchor(WA1,MA1)

anchor(A3, walk(WA1))

anchor(A1,MA1)

anchor(A2, man(MA1))

label(Q1,quantifier)

anchor(Q1,some)

label(A1,var)

label(A2,range)

label(A3,body)

)

In addition to this, this situation is also related to a described situation of the form

SIT5376

some(MA1,

P12

P12

man(MA1)

,

P15

P15

walk(MA1)

)

We can continue with this basic representation for the semantics of a simple sentence

even when we treat pronouns. In order to give a treatment for pronouns we need to

record which possible referents are available when a pronoun is used. The feature we

must then adopt from our DRT description is the concept of accessibility. In the DRT

description each utterance situation, in addition to an incoming and outgoing DRS, is

also related to an explict incoming and outgoing accessibility situation. That situation

supports facts about all discourse markers which are accessible as pronoun referents at

that point in the discourse.

In order to give the same treatment for pronouns in STG we need to copy three things

from the DRT description. First we need the threading relations (t-in, t-body and

t-range) and the necessary parts that are used in the construction of these relations.

These de�ne an alternative structure over the utterance situations in a discourse. Be-

cause the threading relation (as discussed in Section 5.3.2) is given abstractly from the

DRSs, we can talk about copying it without also having to copy the threaded DRSs

too. The second feature we need is that of the accessibility situation. In the DRT treat-

ment we thread DRSs and an accessibility situation through each utterance situation.

7.3. PRONOUNS AND SITUATION THEORETIC GRAMMAR 139

Here we need only thread the accessibility situation. That is each utterance situation

will be related to an incoming and outgoing accessibility situation. The connection

between these will be de�ned with repsect to the threading relations. The incoming

accessibility situation will come from the outgoing accessibility situation previous in

the thread. This can be stated by the following constraint

*S:[S ! S != <<AccessIn,S,*Access,1>>]

<=

*TS:[TS ! TS != <<t-in,*S1,*S,1>>],

*S1:[S1 ! S1 != <<AccessOut,S1,*Access,1>>].

(We also need to ensure the correct threading at determiner nodes in the same way as

we do in the DRT (and DPL-NL) descriptions.)

In addition to the actual threading, every utterance situation for nouns has to add a

\marker" (actually the parameter introduced by the noun) to the accessibility situation.

This again can be copied from the DRT description. Such a constraint for proper nouns

would be

*S:[S ! S != <<AccessOut,S,

*A :: *AType &

[A ! A != <<accessible,*X,*TYPE,1>>],1>>]

<=

*S:[S ! S != <<cat,S,ProperNoun,1>>

S != <<use_of,S,*N,1>>

S != <<sem,S,*X,1>>

S != <<type,S,*TYPE,1>>

S != <<AccessIn,S,

*A1 :: *AType,1>>].

Notice, as with the DRT treatment, we also add typing information for the introduced

marker.

The third property we must borrow from DRT is that of determining the referent of a

pronoun. That is when we use a pronoun we wish to �nd possible referents from the

accessible markers at that point in the discourse. This can most simply be achieved

by the following constraint

*S:[S ! S != <<sem,S,*X,1>>]

<=

*S:[S ! S != <<cat,S,ProNoun,1>>

S != <<type,S,*TYPE,1>>

S != <<AccessIn,S,

*A1 :: [T ! T != <<accessible,*X,*TYPE,1>>],

1>>]

140 CHAPTER 7. EXTENSIONS

That is we �nd an accessible marker of the appropriate type (male, female or neuter)

and make that parameter the semantics for the pronoun. This of course is a slight

simpli�cation of the DRT treatment of pronouns where a new marker is introduced

which is related to the referent by the relation is. In order to get that generality in

our STG description we could introduce an anchor fact in the environment, related to

the pronoun utterance situation, anchoring the parameter introduced by pronoun to

the referent parameter from the accessibility situation.

After we add the above three aspects from the DRT description to our STG description

we have a simple treatment of pronouns. Given the initial sentence \A man walks",

the outgoing accessibility situation would be of the form

SIT923

accessible(MA1,male)

If the following sentence in the discourse is \He talks" the same accessibility situa-

tion will be the incoming accessibility situation to the pronoun utterance situation.

Using the constraint above this would make the sem relation in the pronoun utterance

situation

<<sem,S,MA1>>

The sentence utterance situation for the second sentence would then be.

SIT2705

cat(SIT2705,sentence)

tense(SIT2705,pres)

sem(SIT2705, R1(A1))

env(SIT2705,

SIT7106

anchor(A1,MA1)

label(R1,pred)

anchor(R1,talk)

label(A1,subj)

)

This is not quite the whole story though. We also have another aspect to deal with

in our STG description. In the examples given in Chapter 4 we did not discuss multi-

sentential utterances. To give the right treatment for the utterance \A man walks. He

talks" it is necessary to ensure that the second sentence falls within the scope of any

(top-level) existential quanti�er introduced in the �rst.

7.4. EXTENDING ASTL 141

Note that although we copied over DRT's treatment of pronouns to STG the result

is not the same as DRT. Even if we ensure succeeding sentences are in the scope of

existential quanti�ers, STG still does not provide a reasonable treatment of donkey

anaphora. This is due to the way the relation every di�ers in the DRT description

and the STG description. Other extensions would be required to deal with donkey

anaphora, if we wished to cover them.

However we have shown that we can adopt a treatment of pronouns from one theory into

another. The adoption was e�ectively done by simply copying a number of constraints

from the DRT description into the STG description (and some changes to the basic

grammar rules). But looking at the original de�nitions of DRT with its boxes and STG

with its situation semantic notation it was not obvious that transfering a treatment

from one to the other would be so simple. Astl has helped show how these theories

can be related.

7.4 Extending astl

Astl as described in Chapter 3 is very conservative in what it contains. There are

a number of aspects of situation theory which it does not contain. In this section we

will discuss some possible extensions. We give details of one particular extension and

discuss other in less speci�c terms.

7.4.1 Abstraction, parameters and anchoring in astl

In the basic de�nition of astl, parameters are not treated in any special way. They

are only distinguished from individuals in their declaration. The only case where they

are treated specially is in situation types where a parameter is used to identify the

object (situation) which has been abstracted over, other uses of parameters are only

by convention. In the Situation Theoretic Grammar description (in Chapter 4) we used

parametric facts to represent abstractions over facts. Speci�cally we would represent

the semantics of intransitive verbs as

<<R1,A1,1>>

where R1 and A1 are parameters. We treat these as something similar to the lambda

expression

�x�y y(x)

but in the parametric object case there is no ordering on the abstraction.

One problem with this current representation of parametric objects is in the scope of

the abstraction. For example consider the following expression:

142 CHAPTER 7. EXTENSIONS

<<R1,<<R2,A1,1>>,1>>

Is this an abstract over a one place relation whose argument is a one place relation,

(i.e. there are three parameters) or is this an abstract over a one place relation whose

argument is an abstraction itself (i.e. there is only one parameter)? The di�erence is

more obvious in lambda expressions, the above can \mean" either the �rst or second

of these expressions

� R1 [<<R1,(� R2, A1 [<<R2,A1,1>>]),1>>]

� R1, R2, A1 [<<R1,<<R2,A1,1>>,1>>]

(There are other distinct combinations too.) The di�erence can (though not always)

be important. In EKN ([Barwise & Cooper 93]) abstractions are represented in a form

more like lambda abstraction than astl ones. They are explicit about the parameters

they are abstracting over. There are two notations for abstraction: the �rst is the most

general

R1, A1

R1(A1)

The second case is when an abstract can be used as a relation.

R1, A1

R1(A1)

There is no real di�erence between these two notations but the distinction can be useful

in identifying their use.

Let us now propose an extension to astl and call that extended language astl+. The

following is directly extending the formal de�nition of astl given in Chapter 3. In

addition to the terms we previously de�ned let us add three new terms: abstractions,

anchoring environments and reductions. The �rst of these, abstractions, have the

following syntax

[P

1

; : : : ; P

n

| <term>]

where P

1

; : : : ; P

n

are parameters. So for example in the STG description we could now

represent the semantics of intransitive verbs as

[R1, A1 | <<R1,A1,1>>]

7.4. EXTENDING ASTL 143

The denotation for an abstraction term will be an abstraction in the model. This

requires us to enrich our model with a more elaborate set of types T as the present

set T contains only situation types, here we need to extend it to include types for all

objects. There are some consequences from such a semantics. The following two terms

have the same denotation.

[R1, A1 | <<R1,A1,1>>]

[R2, A2 | <<R2,A2,1>>]

Thus we have alpha equivalence between abstractions. Unfortunately this notation

does have a problem. As we wish to \apply" these abstractions to other objects and

\reduce" the results there must be some unique way to refer to the parameters appea-

ring before the vertical bar. The problem is, are the following two terms equivalent?

[R1, A1 | <<R1,A1,1>>]

[A1, R1 | <<R1,A1,1>>]

In astl+ we will say that they are. But because we do say that they are and wish to

say that the arguments (A1 and R1) are truly unordered there can be no reasonable

way to refer to the arguments from outside the abstraction|without actually using

the same name. Naming the parameters outside the abstraction and expecting them to

have the same semantics seems unreasonable, besides if we have alpha equivalence this

implies the parameters names are irrelevant. Using their position in the abstraction

requires some concept of ordering (which contradicts the immediate example above).

The way we solve this is by allowing the arguments in an abstraction to be labelled.

As the labels have a scope (actually global) wider than the abstraction themselves this

will allow them to be individually referenced.

1

A label (an astl individual) can follow

the parameter argument separated by an at-sign.

[R1@pred, A1@subj | <<R1,A1,1>>]

That completes the outline for a de�nition of abstractions as terms in astl+. At

this stage it should be stated that this form of abstraction is the same as that descri-

bed in [Aczel & Lunnon 91]. Although they use a di�erent syntax their treatment of

abstractions is e�ectively that same as the one presentedabove.

We also now need is a second term, that we will call an anchoring environment. This

is in fact not a new term but a special case of an already existing one. An anchoring

environment is a situation which supports facts with relation anchor-to. (We do

not restrict anchoring environment to only supporting anchor-to-facts as this seems

1

Examples like

[R1@pred, A1@subj | <<R1,A1,1>>]

[R1@verb, A1@arg1 | <<R1,A1,1>>]

are equivalent but not identical.

144 CHAPTER 7. EXTENSIONS

unnecessary but in all examples anchoring environments will only contain anchor-to

facts.) The relation anchor-to takes two arguments, a label and an arbitrary term.

An example is

A1::[S ! S != <<anchor-to,pred,sing,1>>

S != <<anchor-to,subj,hanako,1>>]

The third term we need is to allow us to relate an abstraction to an anchoring envi-

ronment and hence the reduced form. We can do this by introducing another term of

the form

<abstraction> // <anchoring environment>

An example is

[R1@pred, A1@subj | <<R1,A1,1>>] //

A1::[S ! S != <<anchor-to,pred,sing,1>>

S != <<anchor-to,subj,hanako,1>>]

Basically such a term denotes the same object as its fully reduced form. In this case

the above denotes the same as

<<sing,hanako,1>>

More formally a term of the form

<abstraction> // <anchoring environment>

denotes the same as the syntactic object that is formed by the following reduction:

for each label L

i

in the anchoring environment that is related to a term T

i

by the

relation anchor-to and appears as a label to a parameter P

i

in the arguments of

the abstraction, replace any occurrence of P

i

in the body of the abstraction with T

i

and remove that parameter from the argument list. If there are no parameters in the

abstraction's parameter list the whole expression can be replaced by the body of the

abstraction.

But, unfortunately such a simple de�nition of abstraction, anchoring and reduction

requires some more restrictions in computational environment. There are a number

of problem cases for which solutions have not been de�ned. First we have got to

add the restriction that a label may only appear at most once as the �rst argument

to an anchor-to-fact in any anchoring environment. That is the reduction must be

functional.

7.4. EXTENDING ASTL 145

The above de�nition does not imply that a reduction actually occurs. Because the

semantics of the unreduced form has the same denotation as the reduced form there

is no need to actually \calculate" it. As an analogy, even if we know 2 + 2 = 4 then

a perfectly valid answer to the question what does 2 + 2 equal, is 2 + 2. Therefore

what is also needed is an inference rule which states that if a situation supports the

unreduced form it also supports the reduced form. With such a rule we should be able

to infer the following. Obviously

Sit1:[S ! S != <<sings,hanako,1>>]

can be inferred from

Sit1:[S ! S != [R1@pred, A1@subj | <<R1,A1,1>>] //

A1::[S ! S != <<anchor-to,pred,sing,1>>

S != <<anchor-to,subj,hanako,1>>]

But the following can also be inferred as well

Sit1:[S ! S != [A1@subj | <<sing,A1,1>>] //

A1::[S ! S != <<anchor-to,pred,sing,1>>

S != <<anchor-to,subj,hanako,1>>]

Sit1:[S ! S != [R1@pred | <<R1,hanako,1>>] //

A1::[S ! S != <<anchor-to,pred,sing,1>>

S != <<anchor-to,subj,hanako,1>>]

Also note that if the following simple proposition is true

Sit1:[S ! S != <<sings,hanako,1>>]

then from the same inference rule we should be able to deduce

Sit1:[S ! S != [A@L1, B@L2 | <<A,B,1>>] //

Q::[S ! S != <<anchor-to,L1,sing,1>>

S != <<anchor-to,L2,hanako,1>>]

and in�nitely many other propositions. However in a computational system we would

wish to restrict inferences in the reduction direction only|at least this would be the

simplest way to implement it.

We have given the outline of an extension to astl which would make the writing of

descriptions of theories easier. Although we have not fully speci�ed the extension it

is hoped that the above gives the general idea and that there are not too many real

problems. With the above extension the STG description given in Chapter 4 could

146 CHAPTER 7. EXTENSIONS

be improved. In that description \reduction" of parametric objects and anchoring

environments was attempted using conventional constraints but this is not general

enough. Using the extensions described above we can replace the more complex rules

with something a little more readable.

[S ! S != <<cat,S,Sentence,1>>

S != <<sem,S,

*Fact // *A::*VPEnv &

[Env ! Env != <<anchor-to,subj,*Y,1>>],

1>>]

->

[NP ! NP != <<cat,NP,NounPhrase,1>>

NP != <<sem,NP,*Y,1>>],

[VP ! VP != <<cat,VP,VerbPhrase,1>>

VP != <<sem,VP,*Fact,1>>

VP != <<env,VP,*VPEnv,1>>].

The semantic form for the verb phrase would now be an abstraction, for example

\walks" would be of the form

[R1@pred, A1@subj ! <<R1,A1,1>>]

In addition to making the STG description more succinct the above extensions would

allow the description of DMG in [Beaver et al 91] to be easily implemented. Also other

work in EKN which also makes a heavy use of generalised abstraction and reduction

should then be describable. Some of the later work in EKN also appeals to Aczel-

Lunnon abstraction and hence such an extension to astl would allow more theories

to be described more easily.

Another aspect where abstractions would improve a description of a semantic theory

in astl is in the DRT descriptions. DRSs could perhaps better be represented as

abstractions over situation types rather than as at present parametric situation types.

The extensions described above are signi�cant in that they describe a way that may

remove the need for parameters to appear in any place other than abstractions. The

concept of parametric objects (indeterminates) seemed important. With a de�nition

of abstraction it seems that general \free" parameters are, at least, no longer needed

often and perhaps may be completely unnecessary.

The fact that the role of general parameters might be able to be replaced by abstrac-

tion is an interesting possibility. One of the original justi�cations of situation theory

was to allow parametric objects in the model. By using abstractions to represent in-

determinates we make the problem similar to the use of lambda abstractions for which

there is a well understood semantics (see [Barendregt 81]). However it should also be

noted that \traditional" parameters are very useful in writing general semantic theory

descriptions. The ability to use them as variables within the object theory makes si-

tuation theory useful as a meta-language. Although there probably is a way to re-cast

7.4. EXTENDING ASTL 147

all the techniques described in semantic theories that use parameters as variables it

is not right for us to force this to be the case. As there is not any computational or

implementational problems in having simple parameters in the model its seems unne-

cessary to remove them from the set of tools provided. This question of parameters

versus abstractions will unfortunately remain a philosophical one.

7.4.2 Using semantic translations

Throughout the three major examples described above we have only really been con-

cerned with de�ning (and constructing) semantic translations for utterances. We have

not concerned ourselves with using the results: for example asserting the results to

a database and drawing inferences from them. As one of the points, if not the most

important point, of building semantic translations, is to actually use them in a com-

putational system it would add further to astl's usefulness if we could give such

examples.

In all three cases the semantic translation is a parametric situation type and constraints

are speci�ed as to how it relates to the type of the described situation. Admittedly

some manipulation is required in order to treat quanti�ers properly but we can for the

sake of discussion view the semantic translation simply as a situation type.

Astl, in order to make using translation easier, requires some extensions. Allowing

constraints as terms would allow for more complex descriptions however it is proba-

bly adequate to introduce some distinguished relations with a special treatment (e.g.

every).

Let us brie
y look a simple discourse and see what might be required. Suppose we

wish to treat the following discourse

Every man sings.

Taro is man.

Who sings?

If we use a STG semantic treatment the described situation after the second sentence

would be

SIT56

man(t)

every(MA1,

P3

P3

man(MA1)

,

P4

P4

sing(MA1)

)

148 CHAPTER 7. EXTENSIONS

We of course need to consider a treatment of questions. As our description currently

stands we have no such treatment but we might consider something like the follo-

wing. Ideally we would like the semantic translation of a sentence to be some form of

parametric type. For example \Who sings" would translate as

P1

P1

sing(X)

The answer to our question is what can be anchored to X such that it becomes a type of

the described situation. Using the extension to astl described in the previous section

we might write

S

ds

: Q // Answer

The anchoring environment Answer would contain the information needed to generate

an answer. Of course generation of pragmatically useful answers is in its own right a

research topic.

Questions are still an active research area in computational semantics, and the above

is not intended to be a serious attempt at treating questions only a small illustration.

Work has been done in situation semantics of questions but as yet do not have an imple-

mentation [Ginzburg 92]. There is also work on questions within a dynamic semantic

framework [Groenendijk & Stokhof 92], but they do not depend of dynamic semantics

for their treatment of questions and use it only for treatments of quanti�ciation and

anaphora. If descriptions of such theories could be written in astl this would directly

lead to their implementation.

Because we are in a situation theoretic framework we can take advantage of the objects

available|particularly situations. It seems possible to have descriptions in astl (or

some reasonable extension of astl) where our \database" is more complex than simple

facts. Situations allow us to more easily represent phenomena like beliefs, attitudes, etc.

Perhaps borrowing from the knowledge representational descriptions given in Prosit

would allow interesting experiments to be made in higher level aspects of semantics

and discourse modelling. Of course this would be a signi�cant amount of work but

implementation should be possible through an astl-like language.

Another direction in which astl could be extended in coherence and defeasible con-

straints. At present there is no built in mechanism for ensuring that situations of the

form

SIT1 :: [S ! S != <<walks,hanako,1>>

S != <<walks,hanako,0>>]

are given no denotation. A treatment of coherence, ensuring a situation does not

support a fact and its dual, although not necessary is often included in basic aspects

7.5. SUMMARY 149

of situation semantics. A treatment of coherence would lead to a better treatment

of negation. Somewhat related to this topic are the notions of more complex con-

straints such as negative constraints and defeasible constraints. The area of defeasible

constraints and non-monotonic reasoning is in itself a research topic but it would be

useful if treatments could be brought together in the same framework as treatments of

natural language discourse.

All of the above show that astl has many directions in which it can be extended.

Although we have shown its basic competence in the �eld of computational semantics

there is still many useful extensions we could make.

7.5 Summary

In this chapter we have attempted to show two things. First that semantic descriptions

in astl can easily take ideas and techniques from other theories in order to provide

better overall theories. Describing theories in the same environment (i.e. astl) allows

not only for di�erences between theories to be identi�ed but for treatments of various

semantic phenomena to be copied.

Secondly future changes to astl are discussed. An extension to deal with abstractions

and reduction is detailed which would allow easier treatment of a number of techni-

ques used in various semantic theories. Also some discussion of how to use semantic

translations of utterances is given.

Overall this is intended to show that even as it currently stands astl is a useful

tool in development of natural language semantic theories but that there are obvious

extensions which can be made which would increase astl's usefulness.

Chapter 8

Conclusions

In this �nal chapter we will restate the major points of this thesis and try to draw

some conclusions from the work. We will identify what the characteristics of astl are

and why they are important in a computational language for representing semantic

theories. Finally some discussion is given of the future direction of this research and

how it contributes to the �eld of computational semantics.

After some general discussion of contemporary issues in computational semantics, in

Chapter 2 we discussed the idea of building a computational framework in which general

aspects of computational semantic theories of natural language may be described and

experimented with. Because of the broad similarities between some contemporary

theories this seems a useful direction in which to head and has been the subject of

other research (e.g. [Johnson & Kay 90]). A uniform environment for implementation

and experimentation should allow closer comparison of theories and help to identify

the exact di�erences and similarities between them. Also this hopefully will lead to

methods for sharing techniques and treatments between theories by extending theories

as well as the possibility of creating hybrids where no con
ict exists. A number of

possible areas from which a basis for a computational language for semantic theories

might be found are discussed, including logic programming (as in Prolog), feature

structures and situation theory.

In Chapter 3 we introduced the language astl. Astl is designed as a computational

language for describing natural language semantic theories. Astl is de�ned with res-

pect to basic aspects of situation theory. Its semantics is given in terms of a situation

theoretic model. The language o�ers representations for individuals, relations, para-

meters, situations, variables, situation types and constraints. Also a set of inference

rules are de�ned in order that we can draw inferences from a system of situations and

constraints. Importantly, astl is not just a theoretical language, it has an actual im-

plementation. We describe an implementation and give simple examples of how it can

be used.

In order to show that astl is a suitable implementation device for at least the basic as-

pects of contemporary natural language semantic theories the following three chapters

150

151

gave detailed example descriptions of three di�erent theories. By descriptions we mean

formal speci�cations of aspects of semantic theories. We could go further as try ensure

that formalisations of theories in astl are formally equivalent with axiomatizations of

the theories we are interested in. This was not done because it is di�cult to �nd axio-

matizations of theories due to them constantly changing and improving thus usually

making any axiomatization out of date. Instead we have looked at formalizations of

classic analyses of phenomena within the theory being described. After all it those

analyses of particular phenomena that we actually wish to compare.

First we introduced a method of representing syntactic structures and grammar rules

within astl. A simple semantics was added to this based on the work of Situation

Theoretic Grammar [Cooper 89]. This showed how a situation semantic theory can

neatly be described within astl. This set the scene showing how we can use astl as

an environment for describing semantic theories and use those descriptions to derive

semantic analyses from utterances. Next we described two di�erent semantic theo-

ries which speci�cally address the same semantic phenomena. Chapter 5 deals with

Discourse Representation Theory, [Kamp 81, Kamp & Reyle 93]. DRT o�ers a repre-

sentation for natural language discourses. A description of the theory itself is given

and an astl description is presented which adequately captures the main issues of

DRT. The astl description is based on the DRT fragment in [Johnson & Klein 86].

The third example of a semantic theory described in astl is given in Chapter 6.

This deals with the general area of dynamic semantics ([Groenendijk & Stokhof 91b],

[Groenendijk & Stokhof 91a]. Two small examples are given, �rst a treatment of Dy-

namic Predicate Logic (DPL) is given then a dynamic semantic treatment is given for

the same simple natural language syntactic fragment used in the DRT and STG de-

scriptions. The dynamic semantic description re-uses much of the description of DRT.

Because DRT and DPL-NL are intended to describe the same semantic phenomena (i.e.

aspects of anaphora), once described in astl we can easily give a detailed comparison

of the theories. The results seems to show that they di�er in their representation of

the amount of information at each stage in a discourse which may impinge on e�cient

inference from that result. An important aspect of these two descriptions is how much

can actually be directly shared between them. Both DRT and DPL-NL use the same

constraints with regards threading of information and only aspects of the information

passed along these threads di�er. We also showed that the treatment of pronouns from

DRT could easily be adopted into Situation Theoretic grammar once both had been

described within astl, something that would not be obvious when �rst looking at the

semantic representation used in each theory.

Even though we have only partially described three theories in astl it seems reasonable

to claim that astl is a suitable environment for formalizing, implementing, compa-

ring, and developing such theories. Although it should not be very surprising that

these theories can be described within the same framework actually showing this is a

necessary prerequisite for such a claim. Also although astl comprises just very basic

aspects of situation theory it is su�cient to give a useful level for semantic description.

It should be stated that astl is just an experimental system and it is not, in its present

form, proposed as a practical system for large scale implementation of theories for the

semantic component of practical language processing systems. Chapter 7 describes an

152 CHAPTER 8. CONCLUSIONS

extension to astl, namely abstraction and reduction, which would make astl a much

more usable system, but other enhancements would be necessary to make a general

implementation system|but these small example descriptions do suggest that these

enhancements would be worthwhile.

Another aspect that deserves some mention is how much does astl in
uence the

descriptions of theories made within it. Any system of this form will in
uence forma-

lisations in it. Some of these restrictions are merely arbitrary, such as having to use a

linear form to conform to the syntax of astl, as opposed to using boxes. Other restric-

tions are more to do with astl itself (and the underlying situation theoretic aspects

of the language). Astl's basic mechanism of constraints means that everything has to

be speci�ed in that form, even though an original theory may depend on abstraction

and application. These are equivalent (at some level) but it may require looking at a

theory in a slightly di�erent way. Although astl o�ers situations as objects it does not

require descriptions to use them, though as there are no constructs such as sets or lists

there is a certain encouragement. Astl tries not to constrain descriptions very much,

trying to be a tool rather than a speci�c theory, of course it may be that descriptions

(as is the case in the descriptions given in this thesis) can be described in a very similar

way but at least some of that is by design rather than forced by the astl language. In

fact as we wish to use astl as an environment for comparing and mixing theories using

similar techniques to describe theories is an advantage as long as it does not restrict

(too much) the theories that can be described.

A general problem with computational semantics is that there is always a con
ict bet-

ween the \engineers" and \theorists". In this �eld there is both the temptation to

make theories more formal thus making more explicit the underlying properties of the

theory, and more computational thus making implementation better (faster, more trac-

table, easier to use, etc.). This thesis has tried to �rmly set itself between these goals

paying respect to both sides. However there is always the argument that the theorists

may criticise this work because the descriptions of their theories are not complete and

the engineers may criticise because they can achieve must faster implementations or

greater coverage by resorting to a more general programming language or \bending" a

theory a little. Although both critics have valid points it is the whole enterprise that

must be judged. Perhaps, they could look from each other's perspective.

From the engineer's point of view we have built a sound system that does work, alt-

hough it may not have all the debugging aids and e�ciency of \real systems". But

astl has a good theoretical basis and few corners have been cut for the sake of the

implementation. This shows that theory can be practical. Also through implementa-

tion of these theories we begin to understand the essential properties of these theories

such that if short cuts really are necessary in implementation we can more easily iden-

tify which short cuts can be made without losing the fundamental treatments of the

phenomena we are trying to describe.

From the theorist's point of view this work has tried to use a theoretical basis for the

language astl. Although we have only described minimal parts of semantic theories

within astl we have shown that the theories are computational and can have a rea-

sonable implementation. Implementation of a theory allows for a better testing of its

153

computational properties and also allows easy experimentation. Also in describing a

theory such that it can be run requires a much more explicit de�nition that might

otherwise be given.

Another theoretical aspect of this work is that of using a situation theoretic language

as a \meta-language" for describing natural language semantic theories. Although it

would have been possible, or even easier to merely treat \astl" (the implementation

mechanism) as simply a formalism similar to a feature system or some form of Prolog,

using a formalism which is fully given a �rm theoretical grounding and a formal se-

mantics makes it clearer about what is going on in descriptions. We can make stronger

claims about the descriptions we give as well as having the possibility of using existing

formal aspects of situation theory. The fact that we are using situation theory as the

basis for astl is in itself interesting research as it has not been clear before that situa-

tion theory could o�er the basis for a computational language but astl (and prosit

([Nakashima et al 88],[Frank & Sch�utze 90])) has gone some way to add to this claim.

Much work has been done in the area of situation semantics and situation theory but the

idea of a computational language based on situation theory, in a similar way that Prolog

is based on �rst order logic, is relatively new. Representational formalisms have been

de�ned (e.g. situation schema) but a language in which computation (i.e. something

akin to inference) was new. Prosit ([Nakashima et al 88],[Frank & Sch�utze 90]) is

the only other example. Unlike prosit, astl tries only to use features which can

be described in terms of core aspects of situation theory. This of course restricts the

language and perhaps makes it harder to \program" in but means that descriptions

in it will have a clear semantics. It is really the de�nition of constraints and inference

that make astl computational.

From the other viewpoint showing that aspects of contemporary theories of semantics

can be described within a situation theoretic framework shows a use for situation

theory which has not really been made explicit before. Situation theory is a very

general mathematical framework, this work has helped to show how it can be used

with current semantic theories rather than as an alternative or opposing framework.

It is worth discussing what alternative language could be used instead of astl. This

might help identify what properties of astl are essential in making it a suitable as

a semantic meta-language. The substantial work in the area of feature systems has

produced a large number of variant systems each of which is tailored for various tasks.

As described in Section 3.7.3 it would be possible to de�ne a feature system which had

the necessary properties but this could be reasonably argued as an implementation of

astl itself. A situation theoretic semantics could be given for such a feature formalism.

Also it should be possible to code up astl-like descriptions in logic programming

languages like Prolog. After all there already exist implementations in Prolog of our

three basic example theories, but it is not just the end result of implementation that we

are looking for we are also trying to understand what the basic essential computational

properties of these theories are. Arbitrary implementations even in the same language

will not necessarily help us.

Even if we had the freedom of a general programming language the essential properties

154 CHAPTER 8. CONCLUSIONS

that would be used would be those of astl. These can be summarised by the following

list.

The ability to represent complex structured objects and allow general relations bet-

ween them.

The ability to have constraints between general objects and draw inferences from

them.

A mechanism for reasoning about \variables" in the object language (as distinct from

variables in the meta-language) and describing binding mechanisms for these

object language variables.

These are the minimum descriptive properties that seem necessary. Astl goes a step

further by not only o�ering these but also o�ering a formal semantics and not just a

formalism. In situation theoretic terms the above properties relate directly to: situa-

tions and abstractions; constraints; and parameters and anchoring. All three of these

are fundamental properties of situation theory. If we look for such properties in other

areas of formal semantics, we can �nd some but not all very easily. In a Montague-like

framework the use of named (partial) possible worlds (as in the work of [Muskens 89])

o�ers semantic objects similar (or even equivalent for many purposes) to situations.

This thesis is only a �rst step in a general mechanism for describing and implementing

semantic theories of natural language. There are many directions (not all con
icting)

in which this work can be continued. From the computational point of view astl

can be enhanced adding new formal features|for example the general abstraction and

anchoring described in Section 7.4.1. There is little in the language that deals with

coherence: some treatment that deals with ensuring that situations do not support

facts and their duals would allow better treatments of negation. Defeasible constraints

would lead to better modelling of general knowledge representation and would aid the

modelling of belief.

As well as the formal aspects of extensions there are practical aspects too. It is im-

portant that a computational system be easy to use. It should not be considered just

as an afterthought. Developing computational semantic theories is hard. The full

consequences of formal decisions are not always obvious. Experimentation can help

enormously but only if the implementation is easy to use. Reasonable speed and de-

bugging facilities are real aids to the computational semanticist. A good method for

displaying results and allowing the semanticist to easily see the consequences of their

theory makes development signi�cantly easier.

We can consider other directions too. Only minimal descriptions of STG, DRT and

dynamic semantics have been given. Larger examples would help con�rm the usefuln-

ess of the techniques described here. Also it would allow more comparison between

theories. Covering extensions to these object theories such as plural anaphora, de�nites

etc. would aid not only the understanding of di�erences between treatments but also

the treatments within the theories themselves as they currently stand. Descriptions of

8.1. FINAL COMMENTS 155

other theories might also be considered. Obvious candidates are Montague Grammar

and Dynamic Montague Grammar.

Another direction is in extending what it means to implement the theory. Here we have

\implemented" a theory by giving a speci�cation of key aspects of that theory su�cient

to derive semantic translations from utterances. Using that translation for database

lookup or dialogue modelling would be a better computational test of a theory. Astl

does not, as it currently stands, o�er much help in building such active descriptions

but it does seem that it would not require many extensions to make the use of semantic

translations easier. Moreover because our semantic translations (in some descriptions)

are situation types and it is clear what it means for a situation to be of that type,

theorem proving with the translation should be relatively easy.

8.1 Final comments

We have described a computational language called astl which is given a situation

theoretic semantics. Astl is an example of how situation theory o�ers a basis for an

interesting and powerful language suitable for describing aspects of natural language

semantic theories. In order to show this we gave detailed descriptions in astl of the

basic aspects of three contemporary semantic theories. These are Situation Theoretic

Grammar, Discourse Representation Theory and a form of Dynamic Predicate Logic.

Because these descriptions are restricted to being in the same environment very detai-

led comparisons can easily be made identifying exactly the di�erences between them,

particularly in the case of the later two. Also because astl has an implementation de-

scriptions of these theories directly o�er implementations which can be run to produce

semantic translations for utterances.

In conclusion, although we have successfully described a computational language based

on situation theory, and showed that at least the core aspects of some contemporary

semantic theories of natural language can be neatly described within that language

there is still a lot of work to do before we have a reasonably broad computational

coverage of natural language semantics. It is important for theoretical semanticists to

keep computational and more importantly implementation aspects in mind as much

as it is important for implementors of systems to know about theoretical aspects, but

neither can do without the other. In this thesis we have taken into consideration both

sides of the argument and developed a theoretical approach to the description and

implementation of computational semantic theories.

Bibliography

[Aczel & Lunnon 91] P. Aczel and R. Lunnon. Universes and parameters. In

Situation Theory and its Applications, II, CSLI Lecture

Notes Number 26, pages 3{25. Chicago University Press,

1991.

[Ades & Steedman 82] A. Ades and M. Steedman. On the order of words. Lin-

guistics and Philosophy, 4:517{558, 1982.

[Ait-Kaci & Nasr 85] H. Ait-Kaci and R. Nasr. LOGIN : A logic programming

language with built-in inheritance. Technical Report AI-

068-85, MCC, Microelectronics Computer Corporation,

1985.

[Alshawi 92] H. Alshawi. The Core Language Engine. MIT Press,

Cambridge, Mass., 1992.

[Barendregt 81] H. Barendregt. The lambda calculus : its syntax and

semantics. North-Holland, Amsterdam, 1981.

[Barwise & Cooper 82] J. Barwise and R. Cooper. Generalized quanti�ers and

natural language. Linguistics and Philosophy, 4:159{219,

1982.

[Barwise & Cooper 93] J. Barwise and R. Cooper. Extended Kamp Notation:

a graphical notation for situation theory. In Situation

Theory and its Applications, III, CSLI Lecture Notes.

Chicago University Press, forthcoming 1993.

[Barwise & Etchemendy 87] J. Barwise and J. Etchemendy. The Liar: an essay on

truth and circularity. Oxford University Press, 1987.

[Barwise & Etchemendy 90] J. Barwise and J. Etchemendy. Information, infons and

inference. In Situation Theory and its Applications, I,

CSLI Lecture Notes Number 22, pages 33{78. Chicago

University Press, 1990.

[Barwise & Perry 83] J. Barwise and J. Perry. Situations and Attitudes. MIT

Press, Cambridge, Mass., 1983.

156

BIBLIOGRAPHY 157

[Barwise & Seligman 93] J. Barwise and J. Seligman. The rights and wrongs of

natural regularity. to be published in Philosophical Per-

spectives vol. 8 or 9 edited by James Tomberlin., forth-

coming 1993.

[Barwise 89a] J. Barwise. Notes on branch points in situation theory.

In The Situation in Logic, CSLI Lecture Notes Number

17, pages 255{276. Chicago University Press, 1989.

[Barwise 89b] J. Barwise. The Situation in Logic. CSLI Lecture Notes

Number 17. Chicago University Press, 1989.

[Barwise 92] J. Barwise. Information links in domain theory. In

Proceedings of the Mathematical Foundations of Pro-

gramming Semantics Conference (1991), pages 168{192.

LNCS 598, Springer, 1992.

[Barwise 93] J. Barwise. Constraints, channels and
ow of informa-

tion. In Situation Theory and its Applications, III, CSLI

Lecture Notes. Chicago University Press, forthcoming

1993.

[Beaver 91] D. Beaver. DMG through the looking glass. In Quan-

ti�cation and Anaphora I, DYANA Deliverable R2.2A,

pages 135{153. Centre for Cognitive Science, University

of Edinburgh, 1991.

[Beaver et al 91] D. Beaver, A. Black, R. Cooper, and I. Lewin. DMG in

EKN. In Partial and Dynamic Semantics III, DYANA

Deliverable R2.1.C, pages 75{91. Centre for Cognitive

Science, University of Edinburgh, 1991.

[Black 92] A. Black. Embedding DRT in a Situation Theoretic fra-

mework. In Proceedings of COLING-92, the 14th Inter-

national Conference on Computational Linguistics, pa-

ges 1116{1120, Nantes, France, 1992.

[Brachman & Schmolze 85] R.J. Brachman and J.G. Schmolze. An overview of the

KL-ONE knowledge representation system. Cognitive

Science, 9(2):171{216, 1985.

[Braun et al 88] G. Braun, H. Eikmeyer, T. Polzin, H. Rieser, P. Ruhr-

berg, and U. Schade. Situations in PROLOG. Technical

Report Technical Report No. 14, DFG-Research Group

`Koh�arenz', Faculty of Linguistic and Literary Studies,

University of Bielefeld, 1988.

[Bresnan 82] J. Bresnan. Polyadicity. In The mental representation of

grammatical relations, pages 149{172. MIT Press, Cam-

bridge, Mass., 1982.

158 BIBLIOGRAPHY

[Charniak & Wilks 76] E. Charniak and Y. Wilks. Computational Seman-

tics. Fundamental studies in computer science 4. North-

Holland, Amsterdam, 1976.

[Chiercha 92] G. Chiercha. Anaphora and dynamic binding. Lingui-

stics and Philosophy, 15:111{183, 1992.

[Chomsky 81] N. Chomsky. Lectures on Government and Binding.

Studies in Generative Grammar 9. Foris, Dordrecht,

Holland, 1981.

[Cli�ord 90] J. Cli�ord. Formal Semantics and Pragmatics for Na-

tural Language Querying. Cambridge University Press,

1990.

[Cooper & Kamp 91] R. Cooper and H. Kamp. Negation in situation seman-

tics and Discourse Representation Theory. In Situation

Theory and its Applications, II, CSLI Lecture Notes

Number 26, pages 311{333. Chicago University Press,

1991.

[Cooper 83] R. Cooper. Quanti�cation and Syntactic Theory. Stu-

dies in Linguistics and Philosophy, 21. Reidel, Dordrecht,

1983.

[Cooper 89] R. Cooper. Information and grammar. Technical Report

RP No. 438, Dept of Arti�cial Intelligence, University

of Edinburgh, 1989. Also to appear in J. Wedekind, ed.

Proceedings of the Titisee Conference on Uni�cation and

Grammar.

[Cooper 90] Richard Cooper. Classi�cation-based Phrase Structure

Grammar: An Extended Revised Version of HPSG. Un-

published PhD thesis, University of Edinburgh, Edin-

burgh, UK, 1990.

[Crocker 91] M. Crocker. Multiple meta-interpreters in a logical mo-

del of sentence processing. In C. Brown and G. Koch,

editors, Natural Language Understanding and Logic

Programming, III. Elsevier Science Publishers (North-

Holland), 1991.

[Dowty et al 81] D. Dowty, R. Wall, and S. Peters. Introduction to Mon-

tague Semantics. Studies in Linguistics and Philosophy,

11. Reidel, Dordrecht, 1981.

[Fenstad et al 87] J. Fenstad, P-K. Halvorsen, T. Langholm, and J. van

Bentham. Situations, Language, and Logic. Studies in

Linguistics and Philosophy, 34. Reidel, Dordrecht, 1987.

BIBLIOGRAPHY 159

[Frank & Sch�utze 90] M. Frank and H. Sch�utze. The prosit language v0.3.

CSLI, Stanford University, 1990.

[Franz 90] A. Franz. A parser for HPSG. Technical Report LCL-90-

3, Laboratory for Computational Linguistics, Carnegie

Mellon University, Pittsburgh, Penn., 1990.

[Frisch 86] A. Frisch. Parsing with restricted quanti�cation: an in-

itial demonstration. In Arti�cial Intelligence and its Ap-

plications, pages 5{22. J. Wiley and Sons, 1986.

[Gardent 91] C. Gardent. VP anaphora. Unpublished PhD thesis,

University of Edinburgh, Edinburgh, UK, 1991.

[Gawron & Peters 90] M. Gawron and S. Peters. Anaphora and Quanti�cation

in Situation Semantics. CSLI Lecture Notes Number 19.

Chicago University Press, 1990.

[Gazdar et al 85] G. Gazdar, E. Klein, G. Pullum, and I. Sag. Generalized

Phrase Structure Grammar. Blackwell, Oxford, 1985.

[Geach 62] P. Geach. Reference and Generality. Cornell University

Press, Ithaca, NY, 1962.

[Ginzburg 92] J. Ginzburg. Questions, Queries and Facts: a seman-

tics and pragmatics for interrogatives. Unpublished PhD

thesis, Stanford University, CA., 1992.

[Glasbey 91] S. Glasbey. Distinguishing between events and times:

some evidence from the semantics of 'then'. Technical

Report RP No. 566, Dept of Arti�cial Intelligence, Uni-

versity of Edinburgh, 1991. to appear in Journal of Na-

tural Language Semantics.

[Groenendijk & Stokhof 91a] J. Groenendijk and M. Stokhof. Dynamic Montague

Grammar. In Quanti�cation and Anaphora I, DYANA

Deliverable R2.2A, pages 1{37. Centre for Cognitive

Science, University of Edinburgh, 1991.

[Groenendijk & Stokhof 91b] J. Groenendijk and M. Stokhof. Dynamic Predicate Lo-

gic. Linguistics and Philosophy, 14:39{100, 1991.

[Groenendijk & Stokhof 92] J. Groenendijk and M. Stokhof. A note on interrogati-

ves and adverbs of quanti�cation. Technical Report LP-

92-07, Institute for Logic, Language and Computation,

University of Amsterdam, 1992.

[Harel 84] D. Harel. Dynamic logic. In D. Gabbay and F. Guenth-

ner, editors, Handbook of Philosophical Logic II, pages

497{604. Reidel, Dordrecht, 1984.

160 BIBLIOGRAPHY

[Hegner 91] S. Hegner. Horn extended feature structures: fast uni-

�cation with negation and limited disjunction. In Pro-

ceedings of the 5th conference of the European Chapter

of the Association for Computational Linguistics, pages

33{38, Berlin, Germany, 1991.

[Hirst 81] G. Hirst. Anaphora in Natural Language Understanding:

a survey. Springer-Verlag, Berlin, 1981.

[Hobbs & Shieber 87] J. Hobbs and S. Shieber. An algorithm for generating

quanti�er scopings. Computational Linguistics, 13 num-

bers 1-2:47{63, 1987.

[Hopcroft & Ullman 79] J. Hopcroft and J. Ullman. Introduction to automata

theory, languages, and computation. Addison-Wesley,

Reading, Mass., 1979.

[Jackson et al 89] P. Jackson, H. Reichgelt, and F. van Harmelen. Logic-

based knowledge representation. MIT Press, Cambridge,

Mass., 1989.

[Johnson & Kay 90] M. Johnson and M. Kay. Semantic abstraction and ana-

phora. In Proceedings of the 13th International Confe-

rence on Computational Linguistics, Vol. 1, pages 17{27,

Helsinki, Finland, 1990.

[Johnson & Klein 86] M. Johnson and E. Klein. Discourse, anaphora and

parsing. In Proceedings of the 11th International Con-

ference on Computational Linguistics, pages 669{675,

Bonn, West Germany, 1986.

[Johnson 88] M. Johnson. Attribute-value logic and the theory of gram-

mar. CSLI Lecture Notes Number 16. Chicago Univer-

sity Press, 1988.

[Kamp & Reyle 93] H. Kamp and U. Reyle. From discourse to logic: Intro-

duction to Model Theoretic Semantics of Natural Langu-

age, Formal logic and Discourse Representation Theory.

Studies in Linguistics and Philosophy, 42. Kluwer, Dor-

drecht, forthcoming 1993.

[Kamp 81] H. Kamp. A theory of truth and semantic representation.

In J. Groenendijk, T. Janssen, and M. Stokhof, editors,

Formal Methods in the Study of Language. Mathematical

Center, Amsterdam, 1981.

[Kamp 91] H. Kamp. Procedural and cognitive aspects of propo-

sitional attitudes and contexts. Notes distributed for a

course at the Third European Summer School in Langu-

age Logic and Information, Universit�at des Saarlandes,

Saarbr�ucken, 1991.

BIBLIOGRAPHY 161

[Kay 84] M. Kay. Functional uni�cation grammar { a formalism

for machine translation. In Proceedings of the 10th Inter-

national Conference on Computational Linguistics/22nd

Annual Conference of the Association for Computational

Linguistics, pages 75{78, Stanford University, California,

1984.

[Kilbury 87] J. Kilbury. A proposal for modi�cation of the formalism

of GPSG. In Proceedings of the 3rd conference of the

European Chapter of the Association for Computatio-

nal Linguistics, pages 156{159, Copenhagen, Denmark,

1987.

[King 89] P. King. A logical formalism for Head-Driven Phrase

Structure Grammar. Unpublished PhD thesis, Univer-

sity of Manchester, Manchester, UK, 1989.

[Lascarides & Asher 91] A. Lascarides and N. Asher. Discourse Relations and

Commonsense Entailment. In H. Kamp, editor, Default

Logics for Linguistic Analysis. Dyana Deliverable R2.5B,

1991.

[Lewin 90] I. Lewin. A quanti�er scoping algorithm without a free

variable constraint. In Proceedings of the 13th Interna-

tional Conference on Computational Linguistics, Vol. 3,

pages 190{194, Helsinki, Finland, 1990.

[Lewin 92] I. Lewin. Dynamic Quanti�cation in Logic and Compu-

tational Semantics. Unpublished PhD thesis, University

of Edinburgh, Edinburgh, UK., 1992.

[Montague 74] R. Montague. The proper treatment of quanti�cation

in English. In Thomason R., editor, Formal Philosophy.

Yale University Press, New York, 1974.

[Muskens 89] R. Muskens. Meaning and Partiality. Unpublished

PhD thesis, University of Amsterdam, Amsterdam, The

Netherlands, 1989.

[Nakashima et al 88] H. Nakashima, H. Suzuki, P-K. Halvorsen, and S. Pe-

ters. Towards a computational interpretation of situation

theory. In Proceedings of the International Conference

on Fifth Generation Computer Systems, pages 489{498.

ICOT, 1988.

[Nakashima et al 91] H. Nakashima, S. Peters, and H. Sch�utze. Communi-

cation and inference through situations. In Proceedings

of the 12th International Joint Conference on Arti�cial

Intelligence, volume 1, pages 75{81, 1991.

162 BIBLIOGRAPHY

[Partee 75] B. Partee. Montague grammar and transformational

grammar. Linguistic Inquiry, 6:203{300, 1975.

[Partee 84] B. Partee. Nominal and temporal anaphora. Linguistics

and Philosophy, 7:243{286, 1984.

[Pereira & Warren 80] F. Pereira and D. Warren. De�nite Clause Grammars

for language analysis. Arti�cial Intelligence, 13:231{278,

1980.

[Pereira & Warren 83] F. Pereira and D. Warren. Parsing as deduction. In 21st

Annual Conference of the Association for Computational

Linguistics, pages 137{144, MIT, Massachusetts, 1983.

[Pereira 82] F. Pereira. Logic for Natural Language Analysis. Unpu-

blished PhD thesis, University of Edinburgh, Edinburgh,

UK., 1982. reprinted as Technical Note 275 Arti�cial In-

telligence Center, SRI International, Menlo Park, Ca.

[Pinkal 91] M. Pinkal. On the syntactic-semantic analysis of bound

anaphora. In Proceedings of the 5th conference of the

European Chapter of the Association for Computational

Linguistics, pages 45{50, Berlin, Germany, 1991.

[Pollard & Moshier 90] C. Pollard and D. Moshier. Unifying partial descriptions

of sets. In P. Hanson, editor, Information, Language and

Cognition, volume 1 of Vancouver Studies in Cognitive

Science. University of British Columbia Press, Vancou-

ver, 1990.

[Pollard & Sag 87] C. Pollard and I. Sag. Information-based Syntax and Se-

mantics: Volume 1: Fundamentals. CSLI Lecture Notes

Number 13. Chicago University Press, 1987.

[Polzin et al 89] T. Polzin, H. Rieser, and U. Schade. More situations in

PROLOG. Technical Report Technical Report No. 19,

DFG-Research Group `Koh�arenz', Faculty of Linguistic

and Literary Studies, University of Bielefeld, 1989.

[Popowich & Vogel 91] F. Popowich and C. Vogel. The HPSG-PL system. Tech-

nical Report CSS-IS TR 91-08, School of Computing

Science, Simon Fraser University, 1991.

[Pulman 91] S. Pulman. Comparatives and ellipsis. In Proceedings of

the 5th conference of the European Chapter of the Asso-

ciation for Computational Linguistics, pages 2{7, Berlin,

Germany, 1991.

[Reeves 83] S. Reeves. An introduction to semantic tableaux. Tech-

nical report, Dept. of Computer Science, University of

Essex, 1983.

BIBLIOGRAPHY 163

[Ritchie 85] G. Ritchie. Simulating a Turing machine using functio-

nal uni�cation grammar. In T. O'Shea, editor, Advances

in Arti�cial Intelligence, pages 285{294. North Holland,

1985.

[Rooth 87] M. Rooth. Noun phrase interpretation in Montague

Grammar, �le change semantics and situation seman-

tics. In P. Gardenf�ors, editor, Generalised Quanti�ers,

Studies in Linguistics and Philosophy, 31. Reidel, Dord-

recht, 1987.

[Rounds 88] W. Rounds. Set values for uni�cation-based grammar

formalisms and logic grammars. Technical Report CSLI-

88-129, CSLI, Stanford University, 1988.

[Rupp 89] C. Rupp. Situation semantics and machine translation.

In Proceedings of the Fourth Conference of the European

Chapter of the Association for Computational Lingui-

stics, pages 308{318, Manchester, UK., 1989.

[Shieber 84] S. Shieber. The design of a computer language for lingui-

stic information. In Proceedings of the 10th International

Conference on Computational Linguistics/22nd Annual

Conference of the Association for Computational Lin-

guistics, pages 362{366, Stanford University, California,

1984.

[Shieber 86a] S. Shieber. An Introduction to Uni�cation Approaches

to Grammar. CSLI Lecture Notes Number 4. Chicago

University Press, 1986.

[Shieber 86b] S Shieber. A simple reconstruction of GPSG. In Procee-

dings of the 11th International Conference on Computa-

tional Linguistics, pages 211{215, Bonn, West Germany,

1986.

[Smolka 88] G. Smolka. A feature logic with subsorts. LILOG Re-

port 33, IWBS, IBM Deutschland, 1988. To appear in:

J. Wedekind and C. Rohrer (eds.), Uni�cation in Gram-

mar; The MIT Press, 1991.

[Thomason 74] R. Thomason. Formal philosophy: Selected papers by

Richard Montague. Yale University Press, New Haven,

1974.

[Uszkoreit 86] H. Uszkoreit. Categorial Uni�cation Grammars. In Pro-

ceedings of the 11th International Conference on Com-

putational Linguistics, pages 187{194, Bonn, West Ger-

many, 1986.

164 BIBLIOGRAPHY

[Winograd 72] T. Winograd. Understanding Natural Language. Acade-

mic Press, New York, 1972.

[Winograd 83] T. Winograd. Language as a Cognitive Process. Volume

I: Syntax. Addison-Wesley, Reading, Mass., 1983.

[Woods 75] W. Woods. What's in a link: Foundations for semantic

nets. In D. Bobrow and A. Collins, editors, Represen-

tation and Understanding: Studies in Cognitive Science,

pages 35{82. Academic Press, New York, 1975.

[Zadronzy 92] W. Zadronzy. On compositional semantics. In Procee-

dings of COLING-92, the 14th International Conference

on Computational Linguistics, pages 260{266, Nantes,

France, 1992.

[Zeevat 89] H. Zeevat. A compositional approach to Discourse Re-

presentation Theory. Linguistics and Philosophy, 12:95{

131, 1989.

Appendix A

Examples

A.1 Introduction

In this Appendix we will give the full astl speci�cation of four di�erent descriptions:

the Rooth syntactic fragment (Section 4.3) is the syntactic fragment used as the basis

for the following three semantic descriptions; Situation Theoretic Grammar (Section

4.4); Discourse Representation Theory (Chapter 5); and DPL-NL (Chapter 6) which

o�ers a dynamic semantic treatment of the Rooth fragment. These descriptions are,

unfortunately, rather di�cult to read. They are included here because this is a com-

putational thesis and the full complete descriptions (which are directly \executable")

show exactly what is needed in order to compute semantic forms.

A.2 Rooth Fragment

This astl description is a for a simple syntactic grammar (described in Section 4.3)

based on the fragment in [Rooth 87]. The grammar is large enough to deal with simple

declarative sentences, including quanti�ers and anaphora. It can analyse sentences like

Hanako sings.

A man walks. He talks.

Every man with a donkey likes it.

Note this only de�nes the syntax, semantic forms are built on top of this structure in

the later STG, DRT and DPL-NL descriptions

Individuals

{}

Relations

(

165

166 APPENDIX A. EXAMPLES

;;; These are the relations which act like features in a

;;; conventional attribute value system

use_of/2 cat/2

;;; Syntactic functions which act as arguments to cat/2

NounPhrase/1 Noun/1 Determiner/1

Sentence/1 VerbPhrase/1 Verb/1

PrepPhrase/1 Preposition/1

Discourse/1

;;; Structural relation

daughter/1)

Parameters

{D,S,NP,VP,PN,N,PREP,DET,V}

Variables

{*S,*NP, *VP, *V, *N, *PP, *PREP, *DET, *D }

Situations

()

GoalProp

*S : [S ! S != <<cat,S,discourse,1>>]

Grammar Rules

;;;

;;; S -> NP VP

;;;

[S ! S != <<cat,S,Sentence,1>>

S != <<daughter,*NP,1>>

S != <<daughter,*VP,1>>]

->

*NP : [NP ! NP != <<cat,NP,NounPhrase,1>>],

*VP : [VP ! VP != <<cat,VP,VerbPhrase,1>>].

;;;

;;; VP -> V NP

;;;

[VP ! VP != <<cat,VP,VerbPhrase,1>>

VP != <<daughter,*V,1>>

VP != <<daughter,*NP,1>>]

->

*V : [V ! V != <<cat,V,Verb,1>>],

*NP : [NP ! NP != <<cat,NP,NounPhrase,1>>].

;;;

;;; N -> N PP

;;;

[N ! N != <<cat,N,noun,1>>

N != <<daughter,*N,1>>

N != <<daughter,*PP,1>>]

->

*N : [N ! N != <<cat,N,noun,1>>],

*PP : [PP ! PP != <<cat,PP,PrepPhrase,1>>].

A.2. ROOTH FRAGMENT 167

;;;

;;; NP -> Det N

;;;

[NP ! NP != <<cat,NP,NounPhrase,1>>

NP != <<daughter,*DET,1>>

NP != <<daughter,*N,1>>]

->

*DET : [DET ! DET != <<cat,DET,Determiner,1>>],

*N : [N ! N != <<cat,N,noun,1>>].

;;;

;;; PP -> P NP

;;;

[PP ! PP != <<cat,PP,PrepPhrase,1>>

PP != <<daughter,*PREP,1>>

PP != <<daughter,*NP,1>>]

->

*PREP : [PREP ! PREP != <<cat,PREP,Preposition,1>>],

*NP : [NP ! NP != <<cat,NP,NounPhrase,1>>].

;;;

;;; D -> S

;;;

[D ! D != <<cat,D,Discourse,1>>

D != <<daughter,*S,1>>]

->

*S : [S ! S != <<cat,S,Sentence,1>>].

;;;

;;; D -> D S

;;;

[D ! D != <<cat,D,Discourse,1>>

D != <<daughter,*D,1>>

D != <<daughter,*S,1>>]

->

*D : [D ! D != <<cat,D,Discourse,1>>],

*S : [S ! S != <<cat,S,Sentence,1>>].

A basic set of lexical entries to allow some simple classic sentences.

Lexical Entries

;;;

;;; Nouns

;;;

Hanako -

[PN ! PN != <<cat,PN,NounPhrase,1>>

PN != <<use_of,PN,"Hanako",1>>]

Taro -

168 APPENDIX A. EXAMPLES

[PN ! PN != <<cat,PN,NounPhrase,1>>

PN != <<use_of,PN,"Taro",1>>]

Anna -

[PN ! PN != <<cat,PN,NounPhrase,1>>

PN != <<use_of,PN,"Anna",1>>]

man -

[N ! N != <<cat,N,Noun,1>>

N != <<use_of,N,"man",1>>]

donkey -

[N ! N != <<cat,N,Noun,1>>

N != <<use_of,N,"donkey",1>>]

;;;

;;; Pronouns

;;;

he -

[PN ! PN != <<cat,PN,NounPhrase,1>>

PN != <<use_of,PN,"he",1>>]

she -

[PN ! PN != <<cat,PN,NounPhrase,1>>

PN != <<use_of,PN,"she",1>>]

it -

[PN ! PN != <<cat,PN,NounPhrase,1>>

PN != <<use_of,PN,"it",1>>]

;;;

;;; Determiners

;;;

a -

[DET ! DET != <<cat,DET,Determiner,1>>

DET != <<use_of,DET,"a",1>>]

the -

[DET ! DET != <<cat,DET,Determiner,1>>

DET != <<use_of,DET,"the",1>>]

every -

[DET ! DET != <<cat,DET,Determiner,1>>

DET != <<use_of,DET,"every",1>>]

;;;

;;; Verbs

;;;

smiles -

[VP ! VP != <<cat,VP,VerbPhrase,1>>

VP != <<use_of,VP,"smiles",1>>]

sings -

[VP ! VP != <<cat,VP,VerbPhrase,1>>

VP != <<use_of,VP,"sings",1>>]

walks -

A.3. STG DESCRIPTION 169

[VP ! VP != <<cat,VP,VerbPhrase,1>>

VP != <<use_of,VP,"walks",1>>]

talks -

[VP ! VP != <<cat,VP,VerbPhrase,1>>

VP != <<use_of,VP,"talks",1>>]

runs -

[VP ! VP != <<cat,VP,VerbPhrase,1>>

VP != <<use_of,VP,"runs",1>>]

likes -

[V ! V != <<cat,V,Verb,1>>

V != <<use_of,V,"likes",1>>]

beats -

[V ! V != <<cat,V,Verb,1>>

V != <<use_of,V,"beats",1>>]

;;;

;;; Prepositions

;;;

to -

[PREP ! PREP != <<cat,PREP,Preposition,1>>

PREP != <<use_of,PREP,"to",1>>]

with -

[PREP ! PREP != <<cat,PREP,Preposition,1>>

PREP != <<use_of,PREP,"with",1>>]

on -

[PREP ! PREP != <<cat,PREP,Preposition,1>>

PREP != <<use_of,PREP,"on",1>>]

A.3 STG description

This adds a Situation Theoretic Grammar semantic treatment for the Rooth fragment

[Rooth 87]. This deals with simple declarative sentences, but not anaphora. See Sec-

tion 4.4 for a full discussion. Note unlike the Rooth astl description above here we

distinguish between proper nouns, pronouns and noun phrases.

The semantics of an utterance is represented by a parametric fact and anchoring en-

vironment. The anchoring environment is extended with anchor relations as more

information is available about the sentence. The described situation is represented by

the reduction of the anchoring environment and parametric fact.

Individuals

{a,h,t}

Relations

(use_of/2 cat/2

env/2 sem/2 described/2

NounPhrase/1 Noun/1 Determiner/1

170 APPENDIX A. EXAMPLES

Sentence/1 VerbPhrase/1 Verb/1

PrepPhrase/1 Preposition/1

Discourse/1 pform/2

subj/1 obj/1 comp/1 pred/1

var/1 range/1 body/1 quantifier/1

arg/1 arg1/1 arg2/1 prep/1

label/2 anchor/2

beat/2 like/2 walk/1 talk/1 smile/1 sing/1 run/1

man/1 donkey/1

named/2)

Parameters

{R1,Q1,P1,A1,A2,A3,D,S,NP,VP,PN,N,PREP,DET,V,ENV,DS

SMA1, WA1, SA1, RA1, R1, TA1, LA1, LA2, BA1, BA2, MA1,

DA1 }

Variables

{*X, *S, *Y, *Z, *Fact, *Qexpr, *use,

*DS, *Env,

*SEnv, *VPEnv, *VEnv, *NPEnv, *NEnv, *DetEnv, *PEnv,

*PPEnv, *EnvType,

*Body, *Range, *Type, *Z

*R1, *A1, *A2, *A3, *VR1, *VA1, *VA2, *VA3,

*SDS, *DStype, *DS, *DS2, *DS3

*pred, *Var, *Pvar, *Basis, *pobj, *obj, *prep,

*PA1, *PA2, *PR1 }

Situations

(SmileEnv :: [Env ! Env != <<label,R1,pred,1>>

Env != <<anchor,R1,smile,1>>

Env != <<label,SMA1,subj,1>>]

SingEnv :: [Env ! Env != <<label,R1,pred,1>>

Env != <<anchor,R1,sing,1>>

Env != <<label,SA1,subj,1>>]

WalkEnv :: [Env ! Env != <<label,R1,pred,1>>

Env != <<anchor,R1,walk,1>>

Env != <<label,WA1,subj,1>>]

RunEnv :: [Env ! Env != <<label,R1,pred,1>>

Env != <<anchor,R1,run,1>>

Env != <<label,RA1,subj,1>>]

TalkEnv :: [Env ! Env != <<label,R1,pred,1>>

Env != <<anchor,R1,talk,1>>

Env != <<label,TA1,subj,1>>]

LikeEnv :: [Env ! Env != <<label,R1,pred,1>>

Env != <<anchor,R1,like,1>>

Env != <<label,LA1,subj,1>>

Env != <<label,LA2,obj,1>>]

BeatEnv :: [Env ! Env != <<label,R1,pred,1>>

Env != <<anchor,R1,beat,1>>

A.3. STG DESCRIPTION 171

Env != <<label,BA1,subj,1>>

Env != <<label,BA2,obj,1>>]

ManEnv :: [Env ! Env != <<label,R1,pred,1>>

Env != <<anchor,R1,man,1>>

Env != <<label,MA1,arg1,1>>]

DonkeyEnv :: [Env ! Env != <<label,R1,pred,1>>

Env != <<anchor,R1,donkey,1>>

Env != <<label,DA1,arg1,1>>]

AEnv :: [Env ! Env != <<label,Q1,quantifier,1>>

Env != <<anchor,Q1,some,1>>

Env != <<label,A1,var,1>>

Env != <<label,A2,range,1>>

Env != <<label,A3,body,1>>]

EveryEnv :: [Env ! Env != <<label,Q1,quantifier,1>>

Env != <<anchor,Q1,every,1>>

Env != <<label,A1,var,1>>

Env != <<label,A2,range,1>>

Env != <<label,A3,body,1>>]

WithEnv :: [Env ! Env != <<label,P1,prep,1>>

Env != <<anchor,P1,with,1>>

Env != <<label,A1,arg1,1>>

Env != <<label,A2,arg2,1>>]

)

GoalProp

*S : [S ! S != <<cat,S,discourse,1>>]

A rather exhaustive set of constraints is needed to specify the relationship between

the parametric fact and anchoring environment to the described situation. These

constraints are really just cases of the same notional constraint. They try to capture

the notion of reduction as discussed in Section 7.4.1. Even with this large number of

similar constraints the full notion of reduction is actually not captured.

Constraints

*S : [S ! S != <<described,S,*DS ::

[DS ! DS != <<*VR1,*VA1,*VA2,*VA3,1>>],1>>]

<=

*S : [S ! S != <<cat,S,sentence,1>>

S != <<sem,S,<<*R1,*A1,*A2,*A3,1>>,1>>

S != <<env,S,*SEnv ::

[Env ! Env != <<anchor,*R1,*VR1,1>>

Env != <<anchor,*A1,*VA1,1>>

Env != <<anchor,*A2,*VA2,1>>

Env != <<anchor,*A3,*VA3,1>>],1>>].

*S : [S ! S != <<described,S,*DS ::

172 APPENDIX A. EXAMPLES

[DS ! DS != <<*VR1,*VA1,*VA2,*VA3,1>>],1>>]

<=

*S : [S ! S != <<cat,S,VerbPhrase,1>>

S != <<env,S,*SEnv ::

[Env ! Env != <<anchor,*R1,*VR1,1>>

Env != <<anchor,*A1,*VA1,1>>

Env != <<anchor,*A2,*VA2,1>>

Env != <<anchor,*A3,*VA3,1>>],1>>

S != <<sem,S,<<*R1,*A1,*A2,*A3,1>>,1>>].

*S : [S ! S != <<described,S,*DS ::

[DS ! DS != <<*VR1,*VA1,*VA2,1>>],1>>]

<=

*S : [S ! S != <<cat,S,sentence,1>>

S != <<sem,S,<<*R1,*A1,*A2,1>>,1>>

S != <<env,S,*SEnv ::

[Env ! Env != <<anchor,*R1,*VR1,1>>

Env != <<anchor,*A1,*VA1,1>>

Env != <<anchor,*A2,*VA2,1>>],1>>].

*S : [S ! S != <<described,S,

*DS :: [DS ! DS != <<*VR1,*A1,*VA2,1>>],1>>]

<=

*S : [S ! S != <<cat,S,VerbPhrase,1>>

S != <<env,S,*VPEnv ::

[Env ! Env != <<anchor,*R1,*VR1,1>>

Env != <<anchor,*A2,*VA2,1>>],1>>

S != <<sem,S,<<*R1,*A1,*A2,1>>,1>>].

*S : [S ! S != <<described,S,*DS :: [DS ! DS != <<*VR1,*VA1,1>>],1>>]

<=

*S : [S ! S != <<cat,S,sentence,1>>

S != <<sem,S,<<*R1,*A1,1>>,1>>

S != <<env,S,*SEnv ::

[Env ! Env != <<anchor,*R1,*VR1,1>>

Env != <<anchor,*A1,*VA1,1>>],1>>].

*S : [S ! S != <<described,S,*DS :: [DS ! DS != <<*VR1,*A1,1>>],1>>]

<=

*S : [S ! S != <<cat,S,VerbPhrase,1>>

S != <<sem,S,<<*R1,*A1,1>>,1>>

S != <<env,S,*VPEnv ::

[Env ! Env != <<anchor,*R1,*VR1,1>>],1>>].

*S : [S ! S != <<described,S,*DS :: *DStype,1>>]

<=

A.3. STG DESCRIPTION 173

*S : [S ! S != <<cat,S,noun,1>>

S != <<use_of,S,*X,1>>].

;;;

;;;

Grammar Rules

;;;

;;;

;;;

;;; S -> NP VP

;;; As proper nouns are not treated like quantifiers (a la

;;; Montague) two rules are necessary, one to deal with a

;;; proper noun subject and a second to deal with a quantified

;;; NP.

;;;

[S ! S != <<cat,S,Sentence,1>>

S != <<sem,S,*Fact,1>>

S != <<env,S,*SEnv :: *EnvType &

[Env ! Env != <<anchor,*X,*Y,1>>],1>>]

->

[NP ! NP != <<cat,NP,NounPhrase,1>>

NP != <<use_of,NP,*use,1>> ;; lexical NP

NP != <<sem,NP,*Y,1>>],

[VP ! VP != <<cat,VP,VerbPhrase,1>>

VP != <<sem,VP,*Fact,1>>

VP != <<env,VP,*VPEnv :: *EnvType &

[Env ! Env != <<label,*X,subj,1>>],

1>>].

[S ! S != <<cat,S,Sentence,1>>

S != <<sem,S,*Qexpr,1>>

S != <<env,S,*SEnv :: *EnvType &

[Env ! Env != <<anchor,*Y,*Var,1>>

Env != <<anchor,*Body,*DSType,1>>],

1>>]

->

[NP ! NP != <<cat,NP,NounPhrase,1>>

NP != <<sem,NP,*Qexpr,1>>

NP != <<env,NP, *Env :: *EnvType &

[Env ! Env != <<label,*Body,body,1>>

Env != <<label,*X,var,1>>

Env != <<anchor,*X,*Var,1>>],1>>],

[VP ! VP != <<cat,VP,VerbPhrase,1>>

VP != <<described,VP,*DS :: *DSType,1>>

VP != <<env,VP,*VPEnv :: [Env ! Env != <<label,*Y,subj,1>>],

1>>

174 APPENDIX A. EXAMPLES

VP != <<sem,VP,*Fact,1>>].

;;;

;;; VP -> V NP

;;; Again two rules, one for a proper noun object and the

;;; second for quantified NPs.

;;;

[VP ! VP != <<cat,VP,VerbPhrase,1>>

VP != <<env,VP,*VPEnv :: *EnvType &

[Env ! Env != <<anchor,*Body,

<<*pred,*Y,*Var,1>>,1>>

Env != <<label,*Y,subj,1>>],

1>>

VP != <<sem,VP,*Qexpr,1>>]

->

[V ! V != <<cat,V,Verb,1>>

V != <<env,V,*Env ::

[Env ! Env != <<label,*Y,subj,1>>

Env != <<label,*R1,pred,1>>

Env != <<anchor,*R1,*pred,1>>],

1>>

V != <<sem,V,*Fact,1>>],

[NP ! NP != <<cat,NP,NounPhrase,1>>

NP != <<env,NP,*Env :: *Envtype &

[Env ! Env != <<label,*Range,range,1>>

Env != <<label,*Body,body,1>>

Env != <<label,*Pvar,var,1>>

Env != <<anchor,*Pvar,*Var,1>>],

1>>

NP != <<sem,NP,*Qexpr,1>>].

[VP ! VP != <<cat,VP,VerbPhrase,1>>

VP != <<env,VP,*VPEnv :: *EnvType &

[Env ! Env != <<anchor,*X,*Y,1>>],1>>

VP != <<sem,VP,*Fact,1>>]

->

[V ! V != <<cat,V,Verb,1>>

V != <<env,V,*Env :: *Envtype &

[Env ! Env != <<label,*X,obj,1>>],

1>>

V != <<sem,V,*Fact,1>>],

[NP ! NP != <<cat,NP,NounPhrase,1>>

NP != <<use_of,NP,*use,1>> ;; lexical NP

NP != <<sem,NP,*Y,1>>].

;;;

;;; NP -> Det N

;;;

A.3. STG DESCRIPTION 175

[NP ! NP != <<cat,NP,NounPhrase,1>>

NP != <<sem,NP,*QEXPR,1>>

NP != <<env,NP,*NPEnv ::

*EnvType &

[Env ! Env != <<anchor,*X,*A1,1>>

Env != <<anchor,*Range,

*DStype &

[DS ! DS != <<*pred,*A1,1>>],1>>],

1>>]

->

[DET ! DET != <<cat,DET,Determiner,1>>

DET != <<sem,DET,*QEXPR,1>>

DET != <<env,DET,*DetEnv ::

*EnvType &

[Env ! Env != <<label,*Range,range,1>>

Env != <<label,*X,var,1>>],1>>],

[N ! N != <<cat,N,noun,1>>

N != <<env,N,*Env ::

[Env ! Env != <<label,*A1,arg1,1>>

Env != <<anchor,*R1,*pred,1>>],1>>

N != <<described,N,*DS :: *DStype,1>>

N != <<sem,N,<<*R1,*A1,1>>,1>>].

;;;

;;; N -> N PP

;;; Reduction is done on the fly here

;;;

[N ! N != <<cat,N,noun,1>>

N != <<sem,N,*Y,1>>

N != <<described,N,*DS2 :: *DStype &

[DS ! DS != <<*prep,*A1,*Z,1>>],1>>

N != <<env,N,*NEnv :: *Envtype, 1>>]

->

[N ! N != <<cat,N,noun,1>>

N != <<env,N,*Env :: *Envtype &

[Env ! Env != <<label,*A1,arg1,1>>],1>>

N != <<sem,N,*Y,1>>],

[PP ! PP != <<cat,PP,PrepPhrase,1>>

PP != <<described,PP,*DS :: *DStype,1>>

PP != <<env,PP,*PPEnv ::

[Env ! Env != <<label,*PA1,arg1,1>>

Env != <<label,*PA2,arg2,1>>

Env != <<anchor,*PA2,*Z,1>>

Env != <<label,*PR1,prep,1>>

Env != <<anchor,*PR1,*prep,1>>],1>>].

;;;

;;; PP -> P NP

176 APPENDIX A. EXAMPLES

;;; Two are required -- the first for proper nouns, second for

;;; quantified NPs

;;;

[PP ! PP != <<cat,PP,PrepPhrase,1>>

PP != <<described,PP,*DS2 :: *DStype,1>>

PP != <<env,PP,*PPEnv :: *Envtype &

[Env ! Env != <<anchor,*PA2,*Y,1>>],1>>]

->

[PREP ! PREP != <<cat,PREP,Preposition,1>>

PREP != <<env,PREP,*Penv :: *Envtype &

[Env ! Env != <<label,*PA2,arg2,1>>],1>>],

[NP ! NP != <<cat,NP,NounPhrase,1>>

NP != <<use_of,NP,*use,1>> ;; lexical NP

NP != <<sem,NP,*Y,1>>].

;;;

;;; D -> S

;;;

[D ! D != <<cat,D,Discourse,1>>

D != <<env,S,*Env,1>>

D != <<described,D,*DS,1>>]

->

[S ! S != <<cat,S,Sentence,1>>

S != <<env,S,*Env,1>>

S != <<described,S,*DS,1>>].

;;;

;;; D -> D S

;;; This is again a little hacky. The sentence described is always

;;; one fact so we can add *it* (we know it's not a them) to the

;;; discourse described -- but we need a rule for each semantic arity

;;;

[D ! D != <<cat,D,Discourse,1>>

D != <<described,D,*DS2 :: *DStype &

[DS ! DS != <<*R1,*A1,1>>],1>>]

->

[D ! D != <<cat,D,Discourse,1>>

D != <<described,D,*DS :: *DStype,1>>],

[S ! S != <<cat,S,Sentence,1>>

S != <<described,S,*DS3 ::

[DS ! DS != <<*R1,*A1,1>>],1>>].

A basic set of lexical entries to allow some the simple classic sentences. Note the

constraints above are sometimes used to expand entries (i.e like Lexical Redundancy

Rules).

Lexical Entries

;;;

A.3. STG DESCRIPTION 177

;;; Nouns

;;;

Hanako -

[PN ! PN != <<cat,PN,NounPhrase,1>>

PN != <<use_of,PN,"Hanako",1>>

PN != <<sem,PN,h,1>>]

Taro -

[PN ! PN != <<cat,PN,NounPhrase,1>>

PN != <<use_of,PN,"Taro",1>>

PN != <<sem,PN,t,1>>]

Anna -

[PN ! PN != <<cat,PN,NounPhrase,1>>

PN != <<use_of,PN,"Anna",1>>

PN != <<sem,PN,a,1>>]

man -

[N ! N != <<cat,N,Noun,1>>

N != <<use_of,N,"man",1>>

N != <<sem,N,<<R1,MA1,1>>,1>>

N != <<env,N,ManEnv,1>>]

donkey -

[N ! N != <<cat,N,Noun,1>>

N != <<use_of,N,"donkey",1>>

N != <<sem,N,<<R1,DA1,1>>,1>>

N != <<env,N,DonkeyEnv,1>>]

;;;

;;; Pronouns

;;;

;;; Not used in this actual description

;;;

he -

[PN ! PN != <<cat,PN,NounPhrase,1>>

PN != <<use_of,PN,"he",1>>

PN != <<sem,PN,*X,1>>]

she -

[PN ! PN != <<cat,PN,NounPhrase,1>>

PN != <<use_of,PN,"she",1>>

PN != <<sem,PN,*X,1>>]

it -

[PN ! PN != <<cat,PN,NounPhrase,1>>

PN != <<use_of,PN,"it",1>>

PN != <<sem,PN,*X,1>>]

;;;

;;; Determiners

;;;

;;; Their semantics is a relation between a variable (a parameter)

;;; and a range (a type) and a body (a type too).

178 APPENDIX A. EXAMPLES

;;;

a -

[DET ! DET != <<cat,DET,Determiner,1>>

DET != <<use_of,DET,"a",1>>

DET != <<sem,DET,<<Q1,A1,A2,A3,1>>,1>>

DET != <<env,DET,AEnv,1>>]

every -

[DET ! DET != <<cat,DET,Determiner,1>>

DET != <<use_of,DET,"every",1>>

DET != <<sem,DET,<<Q1,A1,A2,A3,1>>,1>>

DET != <<env,DET,EveryEnv,1>>]

;;;

;;; Verbs

;;;

smiles -

[VP ! VP != <<cat,VP,VerbPhrase,1>>

VP != <<use_of,VP,"smiles",1>>

VP != <<sem,VP, <<R1,SMA1,1>>,1>>

VP != <<env,VP,SmileEnv,1>>]

sings -

[VP ! VP != <<cat,VP,VerbPhrase,1>>

VP != <<use_of,VP,"sings",1>>

VP != <<sem,VP, <<R1,SA1,1>>,1>>

VP != <<env,VP,SingEnv,1>>]

walks -

[VP ! VP != <<cat,VP,VerbPhrase,1>>

VP != <<use_of,VP,"walks",1>>

VP != <<sem,VP, <<R1,WA1,1>>,1>>

VP != <<env,VP,WalkEnv,1>>]

talks -

[VP ! VP != <<cat,VP,VerbPhrase,1>>

VP != <<use_of,VP,"talks",1>>

VP != <<sem,VP,<<R1,TA1,1>>,1>>

VP != <<env,VP,TalkEnv,1>>]

runs -

[VP ! VP != <<cat,VP,VerbPhrase,1>>

VP != <<use_of,VP,"runs",1>>

VP != <<sem,VP,<<R1,RA1,1>>,1>>

VP != <<env,VP,RunEnv,1>>]

likes -

[V ! V != <<cat,V,Verb,1>>

V != <<use_of,V,"likes",1>>

V != <<env,V,LikeEnv,1>>

V != <<sem,V,<<R1,LA1,LA2,1>>,1>>]

beats -

[V ! V != <<cat,V,Verb,1>>

A.4. DRT DESCRIPTION 179

V != <<use_of,V,"beats",1>>

V != <<sem,V,<<R1,BA1,BA2,1>>,1>>

V != <<env,V,BeatEnv,1>>]

;;;

;;; Prepositions

;;;

to -

[PREP ! PREP != <<cat,PREP,Preposition,1>>

PREP != <<use_of,PREP,"to",1>>]

with -

[PREP ! PREP != <<cat,PREP,Preposition,1>>

PREP != <<use_of,PREP,"with",1>>

PREP != <<sem,PREP,<<P1,A1,A2,1>>,1>>

PREP != <<env,PREP,WithEnv,1>>]

on -

[PREP ! PREP != <<cat,PREP,Preposition,1>>

PREP != <<pform,PREP,on,1>>

PREP != <<use_of,PREP,"on",1>>]

A.4 DRT description

This is a DRT description in astl as described in Chapter 5. Again it is based on

the Rooth fragment. Unlike the STG description this deals with pronouns, (including

donkey anaphora).

Unlike the STG description the semantics (a DRS) is built up using a threading tech-

nique rather than what is e�ectively lambda application and reduction. Threading

relations are set up between utterance situations speci�ng an ordering. The DRSs are

speci�ed as monotonically increasing over threads.

Individuals

{}

Relations

(use_of/2 cat/2

sem/2 env/2 type/2 threads/2

NounPhrase/1 Sentence/1 VerbPhrase/1 Discourse/1

ProperNoun/1 ProNoun/1 PrepPhrase/1 Preposition/1

FullDiscourse/1 DisStart/1 DisEnd/1

subj/1 pred/1

label/2 anchor/2

sing/1 like/2 smile/1

donkey/1 man/1 hat/1 with/2

named/2 male/1 female/1 neuter/1

DRSIn/2 DRSOut/2

t-in/2 t-out/2 t-feed/2 t-need/2

180 APPENDIX A. EXAMPLES

accessible/2)

Hush ;; relations not to be displayed on output (by default)

(daughter threads)

Parameters

{R1,A1,A2, A3, S,S1,S2,TS,NP,VP,PN,V,Env,DS,Res,

PN1, PN2, PN3, A, PREP, PP,

DA1, MA1, HA1, T, H, P }

Variables

{*X, *Y, *Z, *S, *U, *Fact, *VPEnv, *SEnv, *VPEnvType, *VEnv,

*VEnvType, *Env, *PPEnv, *PEnv, *EnvType, *Nenv,

*R1, *A1, *A2, *VR1, *VA1, *VA2, *DS, *DS1, *PN, *R

*pred,

*DRSIn, *DRSout, *AOut, *AIn, *AType, *Access,

*ThreadS, *ThreadNP, *ThreadVP, *ThreadV, *Thread, *ThreadDS,

*ThreadDS1, *TYPE, *OUT,

*A, *OUT1, *M1, *M2, *TD,

*QEXPR, *Range, *Body, *BodyDRS, *RangeDRS,

*QUANT, *PQUANT, *PVAR, *PRANGE, *PBODY, *Name

*T1, *T2, *T3, *S1, *S2, *P1, *P2, *NPSem,

*NP, *VP, *V, *N, *DET, *PP, *PREP, *N1, *D}

Situations

(SingEnv :: [Env ! Env != <<label,R1,pred,1>>

Env != <<anchor,R1,sing,1>>

Env != <<label,A1,subj,1>>]

SmileEnv :: [Env ! Env != <<label,R1,pred,1>>

Env != <<anchor,R1,smile,1>>

Env != <<label,A1,subj,1>>]

WalkEnv :: [Env ! Env != <<label,R1,pred,1>>

Env != <<anchor,R1,walk,1>>

Env != <<label,WA1,subj,1>>]

TalkEnv :: [Env ! Env != <<label,R1,pred,1>>

Env != <<anchor,R1,talk,1>>

Env != <<label,TA1,subj,1>>]

LikeEnv :: [Env ! Env != <<label,R1,pred,1>>

Env != <<anchor,R1,like,1>>

Env != <<label,A1,subj,1>>

Env != <<label,A2,obj,1>>]

ManEnv :: [Env ! Env != <<label,R1,pred,1>>

Env != <<anchor,R1,man,1>>

Env != <<label,MA1,arg1,1>>]

DonkeyEnv :: [Env ! Env != <<label,R1,pred,1>>

Env != <<anchor,R1,donkey,1>>

Env != <<label,DA1,arg1,1>>]

HatEnv :: [Env ! Env != <<label,R1,pred,1>>

Env != <<anchor,R1,hat,1>>

Env != <<label,HA1,arg1,1>>]

A.4. DRT DESCRIPTION 181

AEnv :: [Env ! Env != <<label,Q1,quantifier,1>>

Env != <<anchor,Q1,some,1>>

Env != <<label,A1,var,1>>

Env != <<label,A2,range,1>>

Env != <<label,A3,body,1>>]

EveryEnv :: [Env ! Env != <<label,Q1,quantifier,1>>

Env != <<anchor,Q1,every,1>>

Env != <<label,A1,var,1>>

Env != <<label,A2,range,1>>

Env != <<label,A3,body,1>>]

WithEnv :: [Env ! Env != <<label,P1,prep,1>>

Env != <<anchor,P1,with,1>>

Env != <<label,A1,arg1,1>>

Env != <<label,A2,arg2,1>>]

AccessStart)

GoalProp

*S : [S ! S != <<cat,S,fulldiscourse,1>>

S != <<DRSOut,S,*AOut,*DRSout,1>>]

Constraints

These �rst set of constraints de�ne the relationship between the incoming DRS and

the outgoing DRS in the various types of node. The only interesting ones are sentences

where a new condition is added, nouns where type information male/female is added

and pronouns where the accessible markers are checked a object of the right type that

has already been mentioned. The other utterance types simply \copy" the DRSIn to

DRSOut.

*S : [S ! S != <<DRSOut,S,

*Access,

*DRSIn &

[DS ! DS != <<*VR1,*VA1,1>>],1>>]

<=

*S : [S ! S != <<cat,S,sentence,1>>

S != <<DRSIn,S,*Access,*DRSIn,1>>

S != <<sem,S,<<*R1,*A1,1>>,1>>

S != <<env,S,*SEnv ::

[Env ! Env != <<anchor,*R1,*VR1,1>>

Env != <<anchor,*A1,*VA1,1>>],1>>].

*S : [S ! S != <<DRSOut,S,

*Access,

*DRSIn &

[DS ! DS != <<*VR1,*VA1,*VA2,1>>],1>>]

<=

*S : [S ! S != <<cat,S,sentence,1>>

S != <<DRSIn,S,*Access,*DRSIn,1>>

182 APPENDIX A. EXAMPLES

S != <<sem,S,<<*R1,*A1,*A2,1>>,1>>

S != <<env,S,*SEnv ::

[Env ! Env != <<anchor,*R1,*VR1,1>>

Env != <<anchor,*A1,*VA1,1>>

Env != <<anchor,*A2,*VA2,1>>],1>>].

*S : [S ! S != <<DRSout,S,

*Access :: *AType &

[AS ! AS != <<accessible,*X,*TYPE,1>>],

*DRSIn &

[DS ! DS != <<named,*X,*Name,1>>],1>>]

<=

*S : [S ! S != <<cat,S,ProperNoun,1>>

S != <<use_of,S,*Name,1>>

S != <<sem,S,*X,1>>

S != <<type,S,*TYPE,1>>

S != <<DRSIn,S,*A :: *AType, *DRSIn,1>>].

*S : [S ! S != <<DRSout,S,

*A1 :: *AType,

*DRSIn &

[DS ! DS != <<is,*X,*Y,1>>],1>>]

<=

*S : [S ! S != <<cat,S,Pronoun,1>>

S != <<type,S,*TYPE,1>>

S != <<sem,S,*X,1>>

S != <<DRSIn,S,

*A :: *AType &

[A ! A != <<accessible,*Y,*TYPE,1>>],

*DRSIn,1>>].

*S : [S ! S != <<DRSOut,S,

*Access,

*DRSIn &

[DS ! DS != <<every,*RangeDRS,*BodyDRS,1>>],1>>]

<=

*S : [S ! S != <<cat,S,Determiner,1>>

S != <<part-of-discourse,S,*TD,1>>

S != <<DRSIn,S,*Access,*DRSIn,1>>

S != <<sem,S,<<*PQUANT,*X,*Y,*Z,1>>,1>>

S != <<env,S,*SEnv ::

[Env ! Env != <<anchor,*PQUANT,every,1>>],1>>],

*T1 : [TS ! TS != <<part-of-discourse,TS,*TD,1>>

TS != <<t-body,*S,*Body ::

[S ! S != <<part-of-discourse,S,*TD,1>>

S != <<DRSOut,S,*A1,*BodyDRS,1>>],1>>],

A.4. DRT DESCRIPTION 183

*T2 : [TS ! TS != <<part-of-discourse,TS,*TD,1>>

TS != <<t-range,*S,*Range ::

[S ! S != <<part-of-discourse,S,*TD,1>>

S != <<DRSOut,S,*A2,*RangeDRS,1>>],1>>].

*S : [S ! S != <<DRSOut,S,*Access,*DRSIn,1>>]

<=

*S : [S ! S != <<cat,S,Determiner,1>>

S != <<part-of-discourse,S,*TD,1>>

S != <<sem,S,<<*PQUANT,*X,*Y,*Z,1>>,1>>

S != <<env,S,*SEnv ::

[Env ! Env != <<anchor,*PQUANT,some,1>>],1>>],

*T2 : [TS ! TS != <<part-of-discourse,TS,*TD,1>>

TS != <<t-body,*S,*Body ::

[S ! S != <<part-of-discourse,S,*TD,1>>

S != <<DRSOut,S,

*Access,

*DRSIn ,1>>],1>>].

*S : [S ! S != <<DRSOut,S,*Access,*DRSOut,1>>]

<=

*S : [S ! S != <<cat,S,NounPhrase,1>>

S != <<daughter,S,

*DS :: [DS ! DS != <<cat,DS,

determiner,1>>],1>>

S != <<DRSIn,S,*Access,*DRSOut,1>>].

*S : [S ! S != <<DRSOut,S,*Access,*BodyDRS,1>>]

<=

*S : [S ! S != <<cat,S,NounPhrase,1>>

S != <<part-of-discourse,S,*TD,1>>

S != <<daughter,S,

*DS :: [DS ! DS != <<cat,DS,

ProperNoun,1>>],1>>],

*T2 : [TS ! TS != <<part-of-discourse,TS,*TD,1>>

TS != <<t-body,*S,*Body ::

[S ! S != <<part-of-discourse,S,*TD,1>>

S != <<DRSOut,S,*Access,*BodyDRS,1>>],1>>].

*S : [S ! S != <<DRSOut,S,*Access,*BodyDRS,1>>]

<=

*S : [S ! S != <<cat,S,NounPhrase,1>>

S != <<part-of-discourse,S,*TD,1>>

S != <<daughter,S,

*DS :: [DS ! DS != <<cat,DS,

ProNoun,1>>],1>>],

184 APPENDIX A. EXAMPLES

*T2 : [TS ! TS != <<part-of-discourse,TS,*TD,1>>

TS != <<t-body,*S,*Body ::

[S ! S != <<part-of-discourse,S,*TD,1>>

S != <<DRSOut,S,

*Access,

*BodyDRS,1>>],1>>].

*S : [S ! S != <<DRSOut,S,

*A :: *AType &

[AS ! AS != <<accessible,*A1,*TYPE,1>>],

*DRSIn &

[DS ! DS != <<*VR1,*A1,1>>],1>>]

<=

*S : [S ! S != <<cat,S,Noun,1>>

S != <<use_of,S,*X,1>>

S != <<sem,S,<<*R1,*A1,1>>,1>>

S != <<type,S,*TYPE,1>>

S != <<env,S,*SEnv ::

[Env ! Env != <<anchor,*R1,*VR1,1>>],1>>

S != <<DRSIn,S,*AIn :: *AType,

*DRSIn,1>>].

*S : [S ! S != <<DRSOut,S,

*Access,

*DRSIn &

[DS ! DS != <<*VR1,*VA1,*VA2,1>>],1>>]

<=

*S : [S ! S != <<cat,S,Noun,1>>

S != <<env,S,*SEnv ::

[Env ! Env != <<label,*VA1,arg1,1>>],1>>

S != <<daughter,S,*PP ::

[PP ! PP != <<cat,PP,PrepPhrase,1>>

PP != <<sem,PP,<<*R1,*A1,*A2,1>>,1>>

PP != <<env,PP,*Env ::

[Env ! Env != <<anchor,*R1,*VR1,1>>

Env != <<anchor,*A2,*VA2,1>>

],1>>],1>>

S != <<DRSIn,S,*Access,*DRSIn,1>>].

*S : [S ! S != <<DRSOut,S,*Access,*DRSOut,1>>]

<=

*S : [S ! S != <<cat,S,VerbPhrase,1>>

S != <<DRSIn,S,*Access,*DRSOut,1>>].

*S : [S ! S != <<DRSOut,S,*Access,*BodyDRS,1>>]

<=

A.4. DRT DESCRIPTION 185

*S : [S ! S != <<cat,S,Verb,1>>

S != <<part-of-discourse,S,*TD,1>>

S != <<sem,S,<<*R1,*A1,1>>,1>>],

*T2 : [TS ! TS != <<part-of-discourse,TS,*TD,1>>

TS != <<t-body,*S,*Body ::

[S ! S != <<part-of-discourse,S,*TD,1>>

S != <<DRSOut,S,*Access,*BodyDRS,1>>],1>>].

*S : [S ! S != <<DRSOut,S,*Access,*DRSOut,1>>]

<=

*S : [S ! S != <<cat,S,Verb,1>>

S != <<sem,S,<<*R1,*A1,*A2,1>>,1>>

S != <<DRSIn,S,*Access,*DRSOut,1>>].

*S : [S ! S != <<DRSOut,S,*Access,*DRSOut,1>>]

<=

*S : [S ! S != <<cat,S,Preposition,1>>

S != <<DRSIn,S,*Access,*DRSOut,1>>].

*S : [S ! S != <<DRSOut,S,*Access,*DRSOut,1>>]

<=

*S : [S ! S != <<cat,S,PrepPhrase,1>>

S != <<DRSIn,S,*Access,*DRSOut,1>>].

*S : [S ! S != <<DRSOut,S,*Access,*DRSOut,1>>]

<=

*S : [S ! S != <<cat,S,Discourse,1>>

S != <<DRSIn,S,*Access,*DRSOut,1>>].

;;;

;;; Special DRS used at start of sub-threads

;;;

*S : [S ! S != <<DRSOut,S,*Access,[D !],1>>]

<=

*S : [S ! S != <<cat,S,Marker,1>>

S != <<dominator,S,

*D :: [D ! D != <<*R,D,*Access,*X,1>>],

*R,1>>].

*S : [S ! S != <<DRSOut,S,*Access,*DRSOut,1>>]

<=

*S : [S ! S != <<cat,S,FullDiscourse,1>>

S != <<threads,S,*T1 ::

[TS ! TS != <<t-out,*S,*X ::

[DS ! DS != <<DRSOut,DS,*Access,*DRSOut,1>>]

,1>>],1>>].

186 APPENDIX A. EXAMPLES

The relationship between the DRSIn and the previous DRSOut is done by threading. All

the situations which support t-in facts are checked for one where information about

the threading of that situation is found.

*S : [S ! S != <<DRSIn,S,*A,*DRSin,1>>]

<=

*T1 : [TS ! TS != <<part-of-discourse,TS,*TD,1>>

TS != <<t-in,*S, *S1 ::

[S ! S != <<DRSOut,*S1,*A,*DRSIn,1>>],1>>].

This is basically a lexical rule to add the base case of the threads. Lexical items thread

through themselves as they have no daughters.

*S : [S ! S != <<threads,S,*Thread ::

[TS ! TS != <<t-need,*S,*S,1>>],1>>]

<=

*S : [S ! S != <<use_of,S,*Y,1>>].

*Thread : [TS ! TS != <<t-out,*S,*S,1>>]

<=

*S : [S ! S != <<cat,S,noun,1>>

S != <<use_of,S,*Y,1>>

S != <<threads,S,*Thread,1>>].

*Thread : [TS ! TS != <<t-out,*S,*S,1>>]

<=

*S : [S ! S != <<cat,S,verbphrase,1>>

S != <<use_of,S,*Y,1>>

S != <<threads,S,*Thread,1>>].

Spurious partial analyses can occur so it is necessary to identify which discourse an

utterance is part of. This is done by relating each utterance to the discourse situation

it is part of.

*D : [D ! D != <<part-of-discourse,D,*S,1>>]

<=

*S : [S ! S != <<cat,S,FullDiscourse,1>>

S != <<daughter,S,*D,1>>].

*D : [D ! D != <<part-of-discourse,D,*X,1>>]

<=

*S : [S ! S != <<daughter,S,*D,1>>

S != <<part-of-discourse,S,*X,1>>].

A.4. DRT DESCRIPTION 187

*T1 : [D ! D != <<part-of-discourse,D,*X,1>>]

<=

*S : [S ! S != <<threads,S,*T1,1>>

S != <<part-of-discourse,S,*X,1>>].

The actual grammar rules are responsible for building up the syntactic structure and

the basic semantic information (relating noun phrases to arguments of verbs) in a very

similar way to the the STG description. The grammar rules also build up the threading

information.

Grammar Rules

;;;

;;; S -> NP VP

;;;

*S : [S ! S != <<cat,S,Sentence,1>>

S != <<sem,S,*Fact,1>>

S != <<env,S,*SEnv :: *VPEnvType &

[Env ! Env != <<anchor,*P1,*NPSem,1>>],1>>

S != <<daughter,S,*NP,1>>

S != <<daughter,S,*VP,1>>

S != <<threads,S,*ThreadS ::

[TS ! TS != <<t-need,*S,*Y,1>>

TS != <<t-in,*X,*Z,1>>

TS != <<t-body,*OUT,*OUT1,1>>

TS != <<t-body,*OUT1,*S,1>>

TS != <<t-in,*S,*VP,1>>

TS != <<t-out,*S,*OUT,1>>],1>>]

->

*NP : [NP ! NP != <<cat,NP,NounPhrase,1>>

NP != <<sem,NP,*NPSem,1>>

NP != <<threads,NP,*ThreadNP ::

[TS ! TS != <<t-need,*NP,*Y,1>>

TS != <<t-out,*NP,*OUT,1>>

TS != <<t-feed,*NP,*Z,1>>],1>>

],

*VP : [VP ! VP != <<cat,VP,VerbPhrase,1>>

VP != <<sem,VP, *Fact ,1>>

VP != <<env,VP,*VPEnv :: *VPEnvType &

[Env ! Env != <<label,*P1,subj,1>>],1>>

VP != <<threads,VP,*ThreadVP ::

[TS ! TS != <<t-need,*VP,*X,1>>

TS != <<t-out,*VP,*OUT1,1>>],1>>].

;;;

;;; VP -> V NP

;;;

*VP : [VP ! VP != <<cat,VP,VerbPhrase,1>>

188 APPENDIX A. EXAMPLES

VP != <<sem,VP,*Fact,1>>

VP != <<env,VP,*VPEnv :: *VEnvType &

[Env ! Env != <<anchor,*P1,*NPSem,1>>],1>>

VP != <<daughter,VP,*V,1>>

VP != <<daughter,VP,*NP,1>>

VP != <<threads,VP,*ThreadVP ::

[TS ! TS != <<t-need,*VP,*Y,1>>

TS != <<t-in,*X,*Z,1>>

TS != <<t-out,*VP,*OUT,1>>

TS != <<t-in,*VP,*V,1>>],1>>]

->

*V : [V ! V != <<cat,V,Verb,1>>

V != <<sem,V,*Fact,1>>

V != <<env,V,*VEnv :: *VEnvType &

[Env ! Env != <<label,*P1,obj,1>>],1>>

V != <<threads,V,*ThreadV ::

[TS ! TS != <<t-need,*V,*X,1>>],1>>],

*NP : [NP ! NP != <<cat,NP,NounPhrase,1>>

NP != <<sem,NP,*NPSem,1>>

NP != <<threads,NP,*ThreadNP ::

[TS ! TS != <<t-need,*NP,*Y,1>>

TS != <<t-feed,*NP,*Z,1>>

TS != <<t-out,*NP,*OUT,1>>],1>>].

;;;

;;; VP -> Vintrans

;;;

*VP : [VP ! VP != <<cat,VP,VerbPhrase,1>>

VP != <<sem,VP,<<*R1,*A1,1>>,1>>

VP != <<env,VP,*VPEnv,1>>

VP != <<daughter,VP,*V,1>>

VP != <<threads,VP,*ThreadVP ::

[TS ! TS != <<t-need,*VP,*VP,1>>

TS != <<t-out,*VP,*V,1>>],1>>]

->

*V : [V ! V != <<cat,V,Verb,1>>

V != <<sem,V,<<*R1,*A1,1>>,1>>

V != <<env,V,*VPEnv,1>>].

;;;

;;; NP -> Det Noun

;;;

*NP : [NP ! NP != <<cat,NP,NounPhrase,1>>

NP != <<sem,NP,*A1,1>>

NP != <<daughter,NP,*DET,1>>

NP != <<daughter,NP,*N,1>>

NP != <<threads,NP,*T2 ::

[TS ! TS != <<t-need,*NP,*X,1>>

A.4. DRT DESCRIPTION 189

TS != <<t-in,*Y,*M1 ::

[S ! S != <<cat,S,Marker,1>>

S != <<dominator,S,*DET,DRSIn,1>>],1>>

TS != <<t-in,*NP,*OUT,1>>

TS != <<t-range,*DET,*OUT,1>>

TS != <<t-feed,*NP,*M2 ::

[S ! S != <<cat,S,Marker,1>>

S != <<dominator,S,*OUT,DRSOut,1>>],1>>

TS != <<t-out,*NP,*DET,1>>],1>>]

->

*DET : [DET ! DET != <<cat,DET,Determiner,1>>

DET != <<sem,DET,<<*PQUANT,*PVAR,

*PRANGE,*PBODY,1>>,1>>

DET != <<env,DET,*Env ::

[Env ! Env != <<anchor,

*PQUANT,every,1>>],1>>

DET != <<threads,DET,*T1 ::

[TS ! TS != <<t-need,

*DET,*X,1>>],1>>],

*N : [N ! N != <<cat,N,noun,1>>

N != <<env,N,*Env ::

[Env ! Env != <<label,*A1,arg1,1>>],1>>

N != <<sem,N,<<*R1,*A1,1>>,1>>

N != <<threads,N,*T3 ::

[TS ! TS != <<t-need,*N,*Y,1>>

TS != <<t-out,*N,*OUT,1>>],1>>].

*NP : [NP ! NP != <<cat,NP,NounPhrase,1>>

NP != <<sem,NP,*A1,1>>

NP != <<daughter,NP,*DET,1>>

NP != <<daughter,NP,*N,1>>

NP != <<threads,NP,*T2 ::

[TS ! TS != <<t-need,*NP,*Y,1>>

TS != <<t-in,*NP,*OUT,1>>

TS != <<t-range,*DET,*OUT,1>>

TS != <<t-feed,*NP,*NP,1>>

TS != <<t-out,*NP,*DET,1>>],1>>]

->

*DET : [DET ! DET != <<cat,DET,Determiner,1>>

DET != <<sem,DET,<<*PQUANT,*PVAR,

*PRANGE,*PBODY,1>>,1>>

DET != <<env,DET,*Env ::

[Env ! Env != <<anchor,

*PQUANT,some,1>>],1>>

DET != <<threads,DET,*T1 ::

[TS ! TS != <<t-need,*DET,*X,1>>],1>>],

190 APPENDIX A. EXAMPLES

*N : [N ! N != <<cat,N,noun,1>>

N != <<env,N,*Env ::

[Env ! Env != <<label,*A1,arg1,1>>],1>>

N != <<sem,N,<<*R1,*A1,1>>,1>>

N != <<threads,N,*T3 ::

[TS ! TS != <<t-need,*N,*Y,1>>

TS != <<t-out,*N,*OUT,1>>],1>>].

;;;

;;; NP -> Pronoun

;;;

*NP : [NP ! NP != <<cat,NP,NounPhrase,1>>

NP != <<sem,NP,*X,1>>

NP != <<daughter,NP,*PN,1>>

NP != <<threads,NP,*ThreadNP ::

[TS ! TS != <<t-need,*NP,*Y,1>>

TS != <<t-out,*NP,*NP,1>>

TS != <<t-feed,*NP,*PN,1>>],1>>]

->

*PN : [PN ! PN != <<cat,PN,Pronoun,1>>

PN != <<sem,PN,*X,1>>

PN != <<threads,PN,*Thread ::

[TS ! TS != <<t-need,*PN,*Y,1>>],1>>].

;;;

;;; NP -> Propernoun

;;;

*NP : [NP ! NP != <<cat,NP,NounPhrase,1>>

NP != <<sem,NP,*X,1>>

NP != <<daughter,NP,*PN,1>>

NP != <<threads,NP,*ThreadNP ::

[TS ! TS != <<t-need,*NP,*Y,1>>

TS != <<t-out,*NP,*NP,1>>

TS != <<t-feed,*NP,*PN,1>>],1>>]

->

*PN : [PN ! PN != <<cat,PN,ProperNoun,1>>

PN != <<sem,PN,*X,1>>

PN != <<threads,PN,*Thread ::

[TS ! TS != <<t-need,*PN,*Y,1>>],1>>].

;;;

;;; N -> N PP

;;;

*N1 : [N ! N != <<cat,N,noun,1>>

N != <<daughter,N,*N,1>>

N != <<daughter,N,*PP,1>>

N != <<sem,N,<<*R1,*A1,1>>,1>>

N != <<env,N,*NEnv :: *Envtype, 1>>

A.4. DRT DESCRIPTION 191

N != <<threads,N,*T2 ::

[TS ! TS != <<t-need,*N1,*X,1>>

TS != <<t-in,*N1,*PP,1>>

TS != <<t-body,*OUT1,*N1,1>>

TS != <<t-in,*Y,*OUT,1>>

TS != <<t-out,*N1,*OUT1,1>>],1>>]

->

*N : [N ! N != <<cat,N,noun,1>>

N != <<env,N,*Env :: *Envtype &

[Env ! Env != <<label,*A1,arg1,1>>],1>>

N != <<sem,N,<<*R1,*A1,1>>,1>>

N != <<threads,N,*T1 ::

[TS ! TS != <<t-need,*N,*X,1>>

TS != <<t-out,*N,*OUT,1>>],1>>],

*PP : [PP ! PP != <<cat,PP,PrepPhrase,1>>

PP != <<sem,PP,*Fact,1>>

PP != <<threads,PP,*T3 ::

[TS ! TS != <<t-need,*PP,*Y,1>>

TS != <<t-out,*PP,*OUT1,1>>],1>>].

;;;

;;; PP -> P NP

;;;

*PP : [PP ! PP != <<cat,PP,PrepPhrase,1>>

PP != <<daughter,PP,*PREP,1>>

PP != <<daughter,PP,*NP,1>>

PP != <<sem,PP,*Fact,1>>

PP != <<env,PP,*PPEnv :: *EnvType &

[Env ! Env != <<anchor,*P2,*NPSem,1>>],1>>

PP != <<threads,PP,*T1 ::

[TS ! TS != <<t-need,*PP,*Y,1>>

TS != <<t-in,*X,*Z,1>>

TS != <<t-in,*PP,*PREP,1>>

TS != <<t-out,*PP,*OUT,1>>],1>>]

->

*PREP : [PREP ! PREP != <<cat,PREP,Preposition,1>>

PREP != <<sem,PREP,*Fact,1>>

PREP != <<env,PREP,*PEnv :: *Envtype &

[Env ! Env != <<label,

*P2,arg2,1>>],1>>

PREP != <<threads,PREP,*T2 ::

[TS ! TS != <<t-need,

*PREP,*X,1>>],1>>

],

*NP : [NP ! NP != <<cat,NP,NounPhrase,1>>

NP != <<sem,NP,*NPSem,1>>

NP != <<threads,NP,*T3 ::

192 APPENDIX A. EXAMPLES

[TS ! TS != <<t-need,*NP,*Y,1>>

TS != <<t-feed,*NP,*Z,1>>

TS != <<t-out,*NP,*OUT,1>>],1>>].

;;;

;;; Discourse -> S

;;;

*DS : [DS ! DS != <<cat,DS,Discourse,1>>

DS != <<daughter,DS,*S,1>>

DS != <<threads,DS,*ThreadDS ::

[TS ! TS != <<t-need,*DS,*X,1>>

TS != <<t-in,*DS,*S,1>>

TS != <<t-out,*DS,*OUT,1>>],1>>]

->

*S : [S ! S != <<cat,S,sentence,1>>

S != <<threads,S,*ThreadS ::

[TS ! TS != <<t-need,*S,*X,1>>

TS != <<t-out,*S,*OUT,1>>],1>>].

;;;

;;; Discourse -> Discourse S

;;;

*DS1 : [DS ! DS != <<cat,DS,Discourse,1>>

DS != <<daughter,DS,*DS,1>>

DS != <<daughter,DS,*S,1>>

DS != <<threads,DS,*ThreadDS1 ::

[TS ! TS != <<t-need,*DS1,*X,1>>

TS != <<t-in,*Y,*OUT,1>>

TS != <<t-in,*DS1,*S,1>>

TS != <<t-out,*DS1,*OUT1,1>>],1>>]

->

*DS : [DS ! DS != <<cat,DS,Discourse,1>>

DS != <<threads,DS,*ThreadDS ::

[TS ! TS != <<t-need,*DS,*X,1>>

TS != <<t-out,*DS,*OUT,1>>],1>>],

*S : [S ! S != <<cat,S,sentence,1>>

S != <<threads,S,*ThreadS ::

[TS ! TS != <<t-need,*S,*Y,1>>

TS != <<t-out,*S,*OUT1,1>>],1>>].

;;;

;;; Fulldiscourse -> ds Discourse de

;;;

[DS ! DS != <<cat,DS,fulldiscourse,1>>

DS != <<part-of-discourse,DS,DS,1>>

DS != <<daughter,DS,*S,1>>

DS != <<daughter,DS,*DS,1>>

DS != <<threads,DS,

*ThreadDS ::

A.4. DRT DESCRIPTION 193

[TS ! TS != <<part-of-discourse,TS,DS,1>>

TS != <<t-in,*X,*S,1>>

TS != <<t-out,DS,*Y,1>>],1>>]

->

*S : [S ! S != <<cat,S,DisStart,1>>],

*DS : [DS ! DS != <<cat,DS,discourse,1>>

DS != <<threads,DS,*ThreadDS ::

[TS ! TS != <<t-need,*DS,*X,1>>

TS != <<t-out,*DS,*Y,1>>

],1>>],

[S ! S != <<cat,S,DisEnd,1>>].

Lexical Entries

;;;

;;; Discourse start and end markers

;;;

ds -

[DS ! DS != <<cat,DS,DisStart,1>>

DS != <<DRSOut,DS,AccessStart,[DS !],1>>]

de -

[DS ! DS != <<cat,DS,DisEnd,1>>]

;;;

;;; Proper nouns

;;;

Hanako -

[PN ! PN != <<cat,PN,ProperNoun,1>>

PN != <<use_of,PN,"Hanako",1>>

PN != <<type,PN,female,1>>

PN != <<sem,PN,h,1>>]

Anna -

[PN ! PN != <<cat,PN,ProperNoun,1>>

PN != <<use_of,PN,"Anna",1>>

PN != <<type,PN,female,1>>

PN != <<sem,PN,a,1>>]

Taro -

[PN ! PN != <<cat,PN,ProperNoun,1>>

PN != <<use_of,PN,"Taro",1>>

PN != <<type,PN,male,1>>

PN != <<sem,PN,t,1>>]

;;;

;;; Pronouns

;;;

he -

[PN ! PN != <<cat,PN,ProNoun,1>>

PN != <<use_of,PN,"he",1>>

PN != <<type,PN,male,1>>

194 APPENDIX A. EXAMPLES

PN != <<sem,PN,PN1,1>>]

she -

[PN ! PN != <<cat,PN,ProNoun,1>>

PN != <<use_of,PN,"she",1>>

PN != <<type,PN,female,1>>

PN != <<sem,PN,PN2,1>>]

her -

[PN ! PN != <<cat,PN,ProNoun,1>>

PN != <<use_of,PN,"her",1>>

PN != <<type,PN,female,1>>

PN != <<sem,PN,PN2,1>>]

it -

[PN ! PN != <<cat,PN,ProNoun,1>>

PN != <<use_of,PN,"it",1>>

PN != <<type,PN,neuter,1>>

PN != <<sem,PN,PN3,1>>]

;;;

;;; Common nouns

;;;

man -

[N ! N != <<cat,N,noun,1>>

N != <<use_of,N,"man",1>>

N != <<type,N,male,1>>

N != <<sem,N,<<R1,MA1,1>>,1>>

N != <<env,N,ManEnv,1>>]

donkey -

[N ! N != <<cat,N,noun,1>>

N != <<use_of,N,"donkey",1>>

N != <<type,N,neuter,1>>

N != <<sem,N,<<R1,DA1,1>>,1>>

N != <<env,N,DonkeyEnv,1>>]

hat -

[N ! N != <<cat,N,noun,1>>

N != <<use_of,N,"hat",1>>

N != <<type,N,neuter,1>>

N != <<sem,N,<<R1,HA1,1>>,1>>

N != <<env,N,HatEnv,1>>]

;;;

;;; Quantifiers

;;;

a -

[D ! D != <<cat,D,Determiner,1>>

D != <<use_of,D,"a",1>>

D != <<sem,D,<<Q1,A1,A2,A3,1>>,1>>

D != <<env,D,AEnv,1>>]

every -

A.5. DPL-NL DESCRIPTION 195

[D ! D != <<cat,D,Determiner,1>>

D != <<use_of,D,"every",1>>

D != <<sem,D,<<Q1,A1,A2,A3,1>>,1>>

D != <<env,D,EveryEnv,1>>]

;;;

;;; Verbs

;;;

sings -

[VP ! VP != <<cat,VP,Verb,1>>

VP != <<use_of,VP,"sings",1>>

VP != <<sem,VP,<<R1,A1,1>>,1>>

VP != <<env,VP,SingEnv,1>>]

smiles -

[VP ! VP != <<cat,VP,Verb,1>>

VP != <<use_of,VP,"smiles",1>>

VP != <<sem,VP,<<R1,A1,1>>,1>>

VP != <<env,VP,SmileEnv,1>>]

walks -

[VP ! VP != <<cat,VP,Verb,1>>

VP != <<use_of,VP,"walks",1>>

VP != <<sem,VP, <<R1,WA1,1>>,1>>

VP != <<env,VP,WalkEnv,1>>]

talks -

[VP ! VP != <<cat,VP,Verb,1>>

VP != <<use_of,VP,"talks",1>>

VP != <<sem,VP,<<R1,TA1,1>>,1>>

VP != <<env,VP,TalkEnv,1>>]

likes -

[V ! V != <<cat,V,Verb,1>>

V != <<use_of,V,"likes",1>>

V != <<sem,V,<<R1,A1,A2,1>>,1>>

V != <<env,V,LikeEnv,1>>]

;;;

;;; Prepositions

;;;

with -

[PREP ! PREP != <<cat,PREP,Preposition,1>>

PREP != <<use_of,PREP,"with",1>>

PREP != <<sem,PREP,<<P1,A1,A2,1>>,1>>

PREP != <<env,PREP,WithEnv,1>>]

A.5 DPL-NL description

This is an astl description which gives a DPL like treatment to the Rooth fragment|

details are given in Chapter 6. Utterance situations are related to input and output

196 APPENDIX A. EXAMPLES

assignments which contain actual assignments and conditions on what they assign.

This is based on the DRT description. Basically the whole DRT description can be used

and only the constraints regarding the relations between DRSs need to be re-written.

The threading relations of DRSs and DPL assignments are exactly the same.

Individuals

{}

Relations

(use_of/2 cat/2

sem/2 env/2 type/2 threads/2

NounPhrase/1 Sentence/1 VerbPhrase/1 Discourse/1

ProperNoun/1 ProNoun/1 PrepPhrase/1 Preposition/1

FullDiscourse/1 DisStart/1 DisEnd/1

subj/1 pred/1

label/2 anchor/2

exists/1 forall/2

sing/1 like/2 smile/1

donkey/1 man/1 hat/1 with/2

named/2 male/1 female/1 neuter/1

AssignIn/2 AssignOut/2

t-in/2 t-out/2 t-feed/2 t-need/2)

Hush ;; relations not to be displayed on output (by default)

(daughter threads)

Parameters

{R1,A1,A2, A3, S,S1,S2,TS,NP,VP,PN,V,Env,DS,Res,

PN1, PN2, PN3, A, PREP, PP, E1, H, T, P,

DA1, MA1, HA1, WA1, TA1, T1, H1, P1 }

Variables

{*X, *Y, *Z, *S, *U, *I, *K, *G, *Fact, *VPEnv, *SEnv,

*VEnvType, *Env, *PPEnv, *PEnv, *EnvType, *Nenv, *NPEnv

*R1, *A1, *A2, *A3, *VR1, *VA1, *VA2, *DS, *DS1, *DS2, *PN,

*pred, *VPEnvType, *VEnv,

*AssignIn, *AssignIn, *AssignOut,

*ThreadS, *ThreadNP, *ThreadVP, *ThreadV, *Thread, *ThreadDS,

*ThreadDS1, *TYPE, *OUT, *TD,

*A, *Acc, *OUT1, *M1, *M2,

*QEXPR, *Range, *Body, *BodyAssign, *RangeAssign,

*QUANT, *Q, *PVAR, *PRANGE, *PBODY, *Name

*T1, *T2, *T3, *S1, *S2, *P1, *P2, *NPSem, *BodyOut,

*NP, *VP, *V, *N, *DET, *PP, *PREP, *N1, *D}

Situations

(SingEnv :: [Env ! Env != <<label,R1,pred,1>>

Env != <<anchor,R1,sing,1>>

Env != <<label,A1,subj,1>>]

SmileEnv :: [Env ! Env != <<label,R1,pred,1>>

A.5. DPL-NL DESCRIPTION 197

Env != <<anchor,R1,smile,1>>

Env != <<label,A1,subj,1>>]

WalkEnv :: [Env ! Env != <<label,R1,pred,1>>

Env != <<anchor,R1,walk,1>>

Env != <<label,WA1,subj,1>>]

TalkEnv :: [Env ! Env != <<label,R1,pred,1>>

Env != <<anchor,R1,talk,1>>

Env != <<label,TA1,subj,1>>]

LikeEnv :: [Env ! Env != <<label,R1,pred,1>>

Env != <<anchor,R1,like,1>>

Env != <<label,A1,subj,1>>

Env != <<label,A2,obj,1>>]

ManEnv :: [Env ! Env != <<label,R1,pred,1>>

Env != <<anchor,R1,man,1>>

Env != <<label,MA1,arg1,1>>]

DonkeyEnv :: [Env ! Env != <<label,R1,pred,1>>

Env != <<anchor,R1,donkey,1>>

Env != <<label,DA1,arg1,1>>]

HatEnv :: [Env ! Env != <<label,R1,pred,1>>

Env != <<anchor,R1,hat,1>>

Env != <<label,HA1,arg1,1>>]

AEnv :: [Env ! Env != <<label,Q1,quantifier,1>>

Env != <<anchor,Q1,some,1>>

Env != <<label,A1,var,1>>

Env != <<label,A2,range,1>>

Env != <<label,A3,body,1>>]

EveryEnv :: [Env ! Env != <<label,Q1,quantifier,1>>

Env != <<anchor,Q1,every,1>>

Env != <<label,A1,var,1>>

Env != <<label,A2,range,1>>

Env != <<label,A3,body,1>>]

WithEnv :: [Env ! Env != <<label,P1,prep,1>>

Env != <<anchor,P1,with,1>>

Env != <<label,A1,arg1,1>>

Env != <<label,A2,arg2,1>>])

GoalProp

*S : [S ! S != <<cat,S,fulldiscourse,1>>

S != <<AssignOut,S,*AssignOut,1>>]

Constraints

These �rst set of constraints de�ne the relationship between the incoming assignments

and the outgoing assignment in the various types of node. The only interesting ones are

sentences where a new condition is added, nouns where type information male/female

is added and pronouns where the current AssignIn is checked for a object of the right

type that has already been mentioned. Determiners also do interesting things. The

other utterance types simply \copy" the AssignIn to AssignOut.

198 APPENDIX A. EXAMPLES

*S : [S ! S != <<AssignOut,S,

*AssignIn &

[DS ! DS != <<*VR1,*VA1,1>>],1>>]

<=

*S : [S ! S != <<cat,S,sentence,1>>

S != <<AssignIn,S,*AssignIn,1>>

S != <<sem,S,<<*R1,*A1,1>>,1>>

S != <<env,S,*SEnv ::

[Env ! Env != <<anchor,*R1,*VR1,1>>

Env != <<anchor,*A1,*VA1,1>>],1>>].

*S : [S ! S != <<AssignOut,S,

*AssignIn &

[DS ! DS != <<*VR1,*VA1,*VA2,1>>],1>>]

<=

*S : [S ! S != <<cat,S,sentence,1>>

S != <<AssignIn,S,*AssignIn,1>>

S != <<sem,S,<<*R1,*A1,*A2,1>>,1>>

S != <<env,S,*SEnv ::

[Env ! Env != <<anchor,*R1,*VR1,1>>

Env != <<anchor,*A1,*VA1,1>>

Env != <<anchor,*A2,*VA2,1>>],1>>].

*S : [S ! S != <<Assignout,S,

*AssignIn &

[A ! A != <<named,*X,*Name,1>>

A != <<type,*X,*TYPE,1>>

A != <<assigned,*X,1>>],1>>]

<=

*S : [S ! S != <<cat,S,ProperNoun,1>>

S != <<use_of,S,*Name,1>>

S != <<type,S,*TYPE,1>>

S != <<sem,S,*X,1>>

S != <<AssignIn,S,*AssignIn,1>>].

*S : [S ! S != <<Assignout,S,*AssignIn &

[A ! A != <<assigned,*X,1>>

A != <<is,*X,*Z,1>>],1>>]

<=

*S : [S ! S != <<cat,S,Pronoun,1>>

S != <<type,S,*TYPE,1>>

S != <<sem,S,*X,1>>

S != <<AssignIn,S,*AssignIn,1>>

S != <<Accessible,S,

*Acc :: [A ! A != <<type,*Z,*TYPE,1>>

A != <<accessible,*Z,1>>],

A.5. DPL-NL DESCRIPTION 199

1>>].

*S : [S ! S != <<AssignOut,S,

*AssignIn &

[DS ! DS != <<forall,*RangeAssign,

*BodyAssign,1>>],1>>]

<=

*S : [S ! S != <<cat,S,Determiner,1>>

S != <<part-of-discourse,S,*TD,1>>

S != <<sem,S,<<*Q,*X,*Y,*Z,1>>,1>>

S != <<AssignIn,S,*AssignIn,1>>

S != <<env,S,*SEnv ::

[Env ! Env != <<anchor,*Q,every,1>>],1>>],

*T1 : [TS ! TS != <<part-of-discourse,TS,*TD,1>>

TS != <<t-body,*S,*Body ::

[S ! S != <<part-of-discourse,S,*TD,1>>

S != <<AssignOut,S,

*BodyAssign,1>>],1>>],

*T2 : [TS ! TS != <<part-of-discourse,TS,*TD,1>>

TS != <<t-range,*S,*Range ::

[S ! S != <<part-of-discourse,S,*TD,1>>

S != <<AssignOut,S,

*RangeAssign,1>>],1>>].

*S : [S ! S != <<AssignOut,S,*BodyOut,1>>]

<=

*S : [S ! S != <<cat,S,Determiner,1>>

S != <<part-of-discourse,S,*TD,1>>

S != <<sem,S,<<*Q,*X,*Y,*Z,1>>,1>>

S != <<env,S,*SEnv ::

[Env ! Env != <<anchor,*Q,some,1>>],1>>],

*T2 : [TS ! TS != <<part-of-discourse,TS,*TD,1>>

TS != <<t-body,*S,*Body ::

[S ! S != <<part-of-discourse,S,*TD,1>>

S != <<AssignOut,S,

*BodyOut,

1>>],1>>].

*S : [S ! S != <<AssignMid,S,

*G &

[A ! A != <<assigned,*X,1>>],1>>]

<=

*S : [S ! S != <<cat,S,Determiner,1>>

S != <<sem,S,<<*Q,*X,*Y,*Z,1>>,1>>

S != <<env,S,*SEnv ::

[Env ! Env != <<anchor,*Q,some,1>>],1>>

200 APPENDIX A. EXAMPLES

S != <<AssignIn,S,*G,1>>

S != <<ind,S,*I,1>>].

*S : [S ! S != <<AssignMid,S,

[A ! A != <<assigned,*X,1>>

A != <<of-type,A,*G,1>>],1>>]

<=

*S : [S ! S != <<cat,S,Determiner,1>>

S != <<sem,S,<<*Q,*X,*Y,*Z,1>>,1>>

S != <<env,S,*SEnv ::

[Env ! Env != <<anchor,*Q,every,1>>],1>>

S != <<AssignIn,S,*G,1>>

S != <<ind,S,*I,1>>].

*S : [S ! S != <<AssignOut,S,

*AssignIn &

[DS ! DS != <<*VR1,*VA1,1>>

DS != <<type,*VA1,*TYPE,1>>],1>>]

<=

*S : [S ! S != <<cat,S,NounPhrase,1>>

S != <<daughter,S,

*DS1 :: [DS !

DS != <<cat,DS,determiner,1>>],1>>

S != <<daughter,S,

*DS2 :: [DS !

DS != <<cat,DS,noun,1>>

DS != <<type,DS,*TYPE,1>>

DS != <<sem,DS,<<*R1,*A1,1>>,1>>],1>>

S != <<env,S,*SEnv ::

[Env ! Env != <<anchor,*R1,*VR1,1>>

Env != <<anchor,*A1,*VA1,1>>],1>>

S != <<AssignIn,S,*AssignIn,1>>].

*S : [S ! S != <<AssignOut,S,*BodyAssign,1>>]

<=

*S : [S ! S != <<cat,S,NounPhrase,1>>

S != <<part-of-discourse,S,*TD,1>>

S != <<daughter,S,

*DS :: [DS !

DS != <<cat,DS,ProperNoun,1>>],1>>],

*T2 : [TS ! TS != <<part-of-discourse,TS,*TD,1>>

TS != <<t-body,*S,*Body ::

[S ! S != <<part-of-discourse,S,*TD,1>>

S != <<AssignOut,S,

*BodyAssign,1>>],1>>].

A.5. DPL-NL DESCRIPTION 201

*S : [S ! S != <<AssignOut,S,*BodyAssign,1>>]

<=

*S : [S ! S != <<cat,S,NounPhrase,1>>

S != <<daughter,S,

*DS :: [DS !

DS != <<cat,DS,ProNoun,1>>],1>>],

*T2 : [TS ! TS != <<part-of-discourse,TS,*TD,1>>

TS != <<t-body,*S,*Body ::

[S ! S != <<part-of-discourse,S,*TD,1>>

S != <<AssignOut,S,

*BodyAssign,1>>],1>>].

*S : [S ! S != <<AssignOut,S,*AssignOut,1>>]

<=

*S : [S ! S != <<cat,S,Noun,1>>

S != <<use_of,S,*X,1>>

S != <<AssignIn,S,*AssignOut,1>>].

*S : [S ! S != <<AssignOut,S,

*AssignIn &

[DS ! DS != <<*VR1,*VA1,*VA2,1>>],1>>]

<=

*S : [S ! S != <<cat,S,Noun,1>>

S != <<env,S,*SEnv ::

[Env ! Env != <<label,*VA1,arg1,1>>],1>>

S != <<daughter,S,*PP ::

[PP ! PP != <<cat,PP,PrepPhrase,1>>

PP != <<sem,PP,<<*R1,*A1,*A2,1>>,1>>

PP != <<env,PP,*Env ::

[Env !

Env != <<anchor,*R1,

*VR1,1>>

Env != <<anchor,*A2,

*VA2,1>>],1>>],1>>

S != <<AssignIn,S,*AssignIn,1>>].

*S : [S ! S != <<AssignOut,S,*AssignOut,1>>]

<=

*S : [S ! S != <<cat,S,VerbPhrase,1>>

S != <<AssignIn,S,*AssignOut,1>>].

*S : [S ! S != <<AssignOut,S,*BodyAssign,1>>]

<=

*S : [S ! S != <<cat,S,Verb,1>>

S != <<part-of-discourse,S,*TD,1>>

S != <<sem,S,<<*R1,*A1,1>>,1>>],

202 APPENDIX A. EXAMPLES

*T2 : [TS ! TS != <<part-of-discourse,TS,*TD,1>>

TS != <<t-body,*S,*Body ::

[S ! S != <<part-of-discourse,S,*TD,1>>

S != <<AssignOut,S,

*BodyAssign,1>>],1>>].

*S : [S ! S != <<AssignOut,S,*AssignOut,1>>]

<=

*S : [S ! S != <<cat,S,Verb,1>>

S != <<sem,S,<<*R1,*A1,*A2,1>>,1>>

S != <<AssignIn,S,*AssignOut,1>>].

*S : [S ! S != <<AssignOut,S,*AssignOut,1>>]

<=

*S : [S ! S != <<cat,S,Preposition,1>>

S != <<AssignIn,S,*AssignOut,1>>].

*S : [S ! S != <<AssignOut,S,*AssignOut,1>>]

<=

*S : [S ! S != <<cat,S,PrepPhrase,1>>

S != <<AssignIn,S,*AssignOut,1>>].

*S : [S ! S != <<AssignOut,S,*AssignOut,1>>]

<=

*S : [S ! S != <<cat,S,Discourse,1>>

S != <<AssignIn,S,*AssignOut,1>>].

*S : [S ! S != <<AssignOut,S,*AssignOut,1>>

]

<=

*S : [S ! S != <<cat,S,FullDiscourse,1>>

S != <<threads,S,*T1 ::

[TS ! TS != <<t-out,*S,*X ::

[DS ! DS != <<AssignOut,DS,*AssignOut,1>>]

,1>>],1>>].

In this description accessibility is a direct function of the assigned DPL variables in the

incoming assignment. We need merely to state the type of the accessibility situation

to be that of the incoming assignment and that assigned variables are accessible ones.

*S : [S ! S != <<Accessible,S,*Acc :: *AssignIn,1>>]

<=

*S : [S ! S != <<AssignIn,S,*AssignIn,1>>].

*S : [S ! S != <<accessible,*X,1>>]

<=

A.5. DPL-NL DESCRIPTION 203

*S : [S ! S != <<assigned,*X,1>>].

*S : [S ! S != <<Accessible,S,*Acc :: *G,1>>]

<=

*S : [S ! S != <<Accessible,S,

*Acc :: [T ! T != <<of-type,T,*G,1>>],1>>].

The relationship between the AssignIn and the previous AssignOut is done by threa-

ding. All the situations which support the t-in are checked for one where information

about the threading of that situation is found.

*S : [S ! S != <<AssignIn,S,*AssignIn,1>>]

<=

*T1 : [TS ! TS != <<part-of-discourse,TS,*TD,1>>

TS != <<t-in,*S,

*S1 ::

[S1 !

S1 != <<AssignOut,S1,

*AssignIn,1>>],1>>].

*S : [S ! S != <<AssignIn,S,*K,1>>]

<=

*T1 : [TS ! TS != <<part-of-discourse,TS,*TD,1>>

TS != <<t-note,

*DET ::

[S1 ! S1 != <<AssignMid,S1,*K,1>>],

*S,1>>].

This is basically a lexical rule to add the base case of the threads. Lexical items thread

through themselves as they have no daughters.

*S : [S ! S != <<threads,S,*Thread ::

[TS ! TS != <<t-need,*S,*S,1>>],1>>]

<=

*S : [S ! S != <<use_of,S,*Y,1>>].

*Thread : [TS ! TS != <<t-out,*S,*S,1>>]

<=

*S : [S ! S != <<cat,S,noun,1>>

S != <<use_of,S,*Y,1>>

S != <<threads,S,*Thread,1>>].

*Thread : [TS ! TS != <<t-out,*S,*S,1>>]

<=

*S : [S ! S != <<cat,S,verbphrase,1>>

204 APPENDIX A. EXAMPLES

S != <<use_of,S,*Y,1>>

S != <<threads,S,*Thread,1>>].

Spurious partial analyses can occur so it is necessary to identify which utterance si-

tuations are part of which which discourse. Thus each utterance situation is related

to the full discourse situation it is part of. Also each situation containing threading

information is marked likewise.

*D : [D ! D != <<part-of-discourse,D,*S,1>>]

<=

*S : [S ! S != <<cat,S,FullDiscourse,1>>

S != <<daughter,S,*D,1>>].

*D : [D ! D != <<part-of-discourse,D,*X,1>>]

<=

*S : [S ! S != <<daughter,S,*D,1>>

S != <<part-of-discourse,S,*X,1>>].

*T1 : [D ! D != <<part-of-discourse,D,*X,1>>]

<=

*S : [S ! S != <<threads,S,*T1,1>>

S != <<part-of-discourse,S,*X,1>>].

Grammar Rules

;;;

;;; S -> NP VP

;;;

*S : [S ! S != <<cat,S,Sentence,1>>

S != <<sem,S,*Fact,1>>

S != <<env,S,*SEnv ::

*VPEnvType &

[Env ! Env != <<anchor,*P1,*NPSem,1>>],1>>

S != <<daughter,S,*NP,1>>

S != <<daughter,S,*VP,1>>

S != <<threads,S,*ThreadS ::

[TS ! TS != <<t-need,*S,*Y,1>>

TS != <<t-in,*X,*Z,1>>

TS != <<t-body,*OUT,*OUT1,1>>

TS != <<t-body,*OUT1,*S,1>>

TS != <<t-in,*S,*VP,1>>

TS != <<t-out,*S,*OUT,1>>],1>>]

->

*NP : [NP ! NP != <<cat,NP,NounPhrase,1>>

NP != <<sem,NP,*NPSem,1>>

NP != <<threads,NP,*ThreadNP ::

[TS ! TS != <<t-need,*NP,*Y,1>>

TS != <<t-out,*NP,*OUT,1>>

A.5. DPL-NL DESCRIPTION 205

TS != <<t-feed,*NP,*Z,1>>],1>>

],

*VP : [VP ! VP != <<cat,VP,VerbPhrase,1>>

VP != <<sem,VP, *Fact ,1>>

VP != <<env,VP,*VPEnv :: *VPEnvType &

[Env ! Env != <<label,*P1,subj,1>>],1>>

VP != <<threads,VP,*ThreadVP ::

[TS ! TS != <<t-need,*VP,*X,1>>

TS != <<t-out,*VP,*OUT1,1>>],1>>].

;;;

;;; VP -> V NP

;;;

*VP : [VP ! VP != <<cat,VP,VerbPhrase,1>>

VP != <<sem,VP,*Fact,1>>

VP != <<env,VP,

*VPEnv ::

*VEnvType &

[Env ! Env != <<anchor,*P1,*NPSem,1>>],1>>

VP != <<daughter,VP,*V,1>>

VP != <<daughter,VP,*NP,1>>

VP != <<threads,VP,*ThreadVP ::

[TS ! TS != <<t-need,*VP,*Y,1>>

TS != <<t-in,*V,*Z,1>>

TS != <<t-out,*VP,*OUT,1>>

TS != <<t-in,*VP,*V,1>>],1>>]

->

*V : [V ! V != <<cat,V,Verb,1>>

V != <<sem,V,*Fact,1>>

V != <<env,V,*VEnv :: *VEnvType &

[Env ! Env != <<label,*P1,obj,1>>],1>>

V != <<threads,V,*ThreadV ::

[TS ! TS != <<t-need,*V,*X,1>>],1>>],

*NP : [NP ! NP != <<cat,NP,NounPhrase,1>>

NP != <<sem,NP,*NPSem,1>>

NP != <<threads,NP,*ThreadNP ::

[TS ! TS != <<t-need,*NP,*Y,1>>

TS != <<t-feed,*NP,*Z,1>>

TS != <<t-out,*NP,*OUT,1>>],1>>].

;;;

;;; VP -> Vintrans

;;;

*VP : [VP ! VP != <<cat,VP,VerbPhrase,1>>

VP != <<sem,VP,<<*R1,*A1,1>>,1>>

VP != <<env,VP,*VPEnv,1>>

VP != <<daughter,VP,*V,1>>

VP != <<threads,VP,*ThreadVP ::

206 APPENDIX A. EXAMPLES

[TS ! TS != <<t-need,*VP,*VP,1>>

TS != <<t-out,*VP,*V,1>>],1>>]

->

*V : [V ! V != <<cat,V,Verb,1>>

V != <<sem,V,<<*R1,*A1,1>>,1>>

V != <<env,V,*VPEnv,1>>].

;;;

;;; NP -> Det Noun

;;;

*NP : [NP ! NP != <<cat,NP,NounPhrase,1>>

NP != <<sem,NP,*A1,1>>

NP != <<env,NP,*NPEnv ::

*EnvType &

[Env ! Env != <<anchor,*A,*A1,1>>],1>>

NP != <<daughter,NP,*DET,1>>

NP != <<daughter,NP,*N,1>>

NP != <<threads,NP,*T2 ::

[TS ! TS != <<t-need,*NP,*X,1>>

TS != <<t-in,*NP,*OUT,1>>

TS != <<t-note,*DET,*Y,1>>

TS != <<t-range,*DET,*NP,1>>

TS != <<t-feed,*NP,*NP,1>>

TS != <<t-out,*NP,*DET,1>>],1>>]

->

*DET : [DET ! DET != <<cat,DET,Determiner,1>>

DET != <<sem,DET,<<*QUANT,*A1,*A2,*A3,1>>,1>>

DET != <<threads,DET,*T1 ::

[TS ! TS != <<t-need,*DET,*X,1>>],1>>],

*N : [N ! N != <<cat,N,noun,1>>

N != <<env,N,*Env :: *EnvType &

[Env ! Env != <<label,*A,arg1,1>>],1>>

N != <<sem,N,<<*R1,*A,1>>,1>>

N != <<threads,N,*T3 ::

[TS ! TS != <<t-need,*N,*Y,1>>

TS != <<t-out,*N,*OUT,1>>],1>>].

;;;

;;; NP -> Pronoun

;;;

*NP : [NP ! NP != <<cat,NP,NounPhrase,1>>

NP != <<sem,NP,*X,1>>

NP != <<daughter,NP,*PN,1>>

NP != <<threads,NP,*ThreadNP ::

[TS ! TS != <<t-need,*NP,*Y,1>>

TS != <<t-out,*NP,*NP,1>>

TS != <<t-feed,*NP,*PN,1>>],1>>]

->

A.5. DPL-NL DESCRIPTION 207

*PN : [PN ! PN != <<cat,PN,Pronoun,1>>

PN != <<sem,PN,*X,1>>

PN != <<threads,PN,*Thread ::

[TS ! TS != <<t-need,*PN,*Y,1>>],1>>].

;;;

;;; NP -> Propernoun

;;;

*NP : [NP ! NP != <<cat,NP,NounPhrase,1>>

NP != <<sem,NP,*X,1>>

NP != <<daughter,NP,*PN,1>>

NP != <<threads,NP,*ThreadNP ::

[TS ! TS != <<t-need,*NP,*Y,1>>

TS != <<t-out,*NP,*NP,1>>

TS != <<t-feed,*NP,*PN,1>>],1>>]

->

*PN : [PN ! PN != <<cat,PN,ProperNoun,1>>

PN != <<sem,PN,*X,1>>

PN != <<threads,PN,*Thread ::

[TS ! TS != <<t-need,*PN,*Y,1>>],1>>].

;;;

;;; N -> N PP

;;;

*N1 : [N ! N != <<cat,N,noun,1>>

N != <<daughter,N,*N,1>>

N != <<daughter,N,*PP,1>>

N != <<sem,N,<<*R1,*A1,1>>,1>>

N != <<type,N,*TYPE,1>>

N != <<env,N,*NEnv :: *Envtype, 1>>

N != <<threads,N,*T2 ::

[TS ! TS != <<t-need,*N1,*X,1>>

TS != <<t-in,*N1,*PP,1>>

TS != <<t-body,*OUT1,*N1,1>>

TS != <<t-in,*Y,*OUT,1>>

TS != <<t-out,*N1,*OUT1,1>>],1>>]

->

*N : [N ! N != <<cat,N,noun,1>>

N != <<env,N,*Env :: *Envtype &

[Env ! Env != <<label,*A1,arg1,1>>],1>>

N != <<sem,N,<<*R1,*A1,1>>,1>>

N != <<type,N,*TYPE,1>>

N != <<threads,N,*T1 ::

[TS ! TS != <<t-need,*N,*X,1>>

TS != <<t-out,*N,*OUT,1>>],1>>],

*PP : [PP ! PP != <<cat,PP,PrepPhrase,1>>

PP != <<sem,PP,*Fact,1>>

PP != <<threads,PP,*T3 ::

208 APPENDIX A. EXAMPLES

[TS ! TS != <<t-need,*PP,*Y,1>>

TS != <<t-out,*PP,*OUT1,1>>],1>>].

;;;

;;; PP -> P NP

;;;

*PP : [PP ! PP != <<cat,PP,PrepPhrase,1>>

PP != <<daughter,PP,*PREP,1>>

PP != <<daughter,PP,*NP,1>>

PP != <<sem,PP,*Fact,1>>

PP != <<env,PP,*PPEnv :: *EnvType &

[Env ! Env != <<anchor,*P2,*NPSem,1>>],1>>

PP != <<threads,PP,*T1 ::

[TS ! TS != <<t-need,*PP,*Y,1>>

TS != <<t-in,*X,*Z,1>>

TS != <<t-in,*PP,*PREP,1>>

TS != <<t-out,*PP,*OUT,1>>],1>>]

->

*PREP : [PREP !

PREP != <<cat,PREP,Preposition,1>>

PREP != <<sem,PREP,*Fact,1>>

PREP != <<env,PREP,*PEnv :: *Envtype &

[Env ! Env != <<label,*P2,arg2,1>>],1>>

PREP != <<threads,PREP,*T2 ::

[TS ! TS != <<t-need,*PREP,*X,1>>],1>>

],

*NP : [NP ! NP != <<cat,NP,NounPhrase,1>>

NP != <<sem,NP,*NPSem,1>>

NP != <<threads,NP,*T3 ::

[TS ! TS != <<t-need,*NP,*Y,1>>

TS != <<t-feed,*NP,*Z,1>>

TS != <<t-out,*NP,*OUT,1>>],1>>].

;;;

;;; Discourse -> S

;;;

*DS : [DS ! DS != <<cat,DS,Discourse,1>>

DS != <<daughter,DS,*S,1>>

DS != <<threads,DS,*ThreadDS ::

[TS ! TS != <<t-need,*DS,*X,1>>

TS != <<t-in,*DS,*S,1>>

TS != <<t-out,*DS,*OUT,1>>],1>>]

->

*S : [S ! S != <<cat,S,sentence,1>>

S != <<threads,S,*ThreadS ::

[TS ! TS != <<t-need,*S,*X,1>>

TS != <<t-out,*S,*OUT,1>>],1>>].

;;;

A.5. DPL-NL DESCRIPTION 209

;;; Discourse -> Discourse S

;;;

*DS1 : [DS ! DS != <<cat,DS,Discourse,1>>

DS != <<daughter,DS,*DS,1>>

DS != <<daughter,DS,*S,1>>

DS != <<threads,DS,*ThreadDS1 ::

[TS ! TS != <<t-need,*DS1,*X,1>>

TS != <<t-in,*Y,*OUT,1>>

TS != <<t-in,*DS1,*S,1>>

TS != <<t-out,*DS1,*OUT1,1>>],1>>]

->

*DS : [DS ! DS != <<cat,DS,Discourse,1>>

DS != <<threads,DS,*ThreadDS ::

[TS ! TS != <<t-need,*DS,*X,1>>

TS != <<t-out,*DS,*OUT,1>>],1>>],

*S : [S ! S != <<cat,S,sentence,1>>

S != <<threads,S,*ThreadS ::

[TS ! TS != <<t-need,*S,*Y,1>>

TS != <<t-out,*S,*OUT1,1>>],1>>].

;;;

;;; Fulldiscourse -> ds Discourse de

;;;

[DS ! DS != <<cat,DS,fulldiscourse,1>>

DS != <<part-of-discourse,DS,DS,1>>

DS != <<daughter,DS,*DS,1>>

DS != <<daughter,DS,*D,1>>

DS != <<threads,DS,

*ThreadDS ::

[TS ! TS != <<part-of-discourse,TS,DS,1>>

TS != <<t-in,*X,*D,1>>

TS != <<t-out,DS,*Y,1>>],1>>]

->

*D : [S ! S != <<cat,S,DisStart,1>>],

*DS : [DS ! DS != <<cat,DS,discourse,1>>

DS != <<threads,DS,*ThreadDS ::

[TS ! TS != <<t-need,*DS,*X,1>>

TS != <<t-out,*DS,*Y,1>>]

,1>>],

[S ! S != <<cat,S,DisEnd,1>>].

Lexical Entries

;;;

;;; Discourse start and end markers

;;;

ds -

[DS ! DS != <<cat,DS,DisStart,1>>

210 APPENDIX A. EXAMPLES

DS != <<AssignOut,DS,[T !],1>>]

de -

[DS ! DS != <<cat,DS,DisEnd,1>>]

;;;

;;; Proper nouns

;;;

Hanako -

[PN ! PN != <<cat,PN,ProperNoun,1>>

PN != <<use_of,PN,"Hanako",1>>

PN != <<type,PN,female,1>>

PN != <<sem,PN,h,1>>]

Anna -

[PN ! PN != <<cat,PN,ProperNoun,1>>

PN != <<use_of,PN,"Anna",1>>

PN != <<type,PN,female,1>>

PN != <<sem,PN,a,1>>]

Taro -

[PN ! PN != <<cat,PN,ProperNoun,1>>

PN != <<use_of,PN,"Taro",1>>

PN != <<type,PN,male,1>>

PN != <<sem,PN,t,1>>]

;;;

;;; Pronouns

;;;

he -

[PN ! PN != <<cat,PN,ProNoun,1>>

PN != <<use_of,PN,"he",1>>

PN != <<type,PN,male,1>>

PN != <<sem,PN,PN1,1>>]

she -

[PN ! PN != <<cat,PN,ProNoun,1>>

PN != <<use_of,PN,"she",1>>

PN != <<type,PN,female,1>>

PN != <<sem,PN,PN2,1>>]

her -

[PN ! PN != <<cat,PN,ProNoun,1>>

PN != <<use_of,PN,"her",1>>

PN != <<type,PN,female,1>>

PN != <<sem,PN,PN2,1>>]

it -

[PN ! PN != <<cat,PN,ProNoun,1>>

PN != <<use_of,PN,"it",1>>

PN != <<type,PN,neuter,1>>

PN != <<sem,PN,PN3,1>>]

;;;

;;; Common nouns

A.5. DPL-NL DESCRIPTION 211

;;;

man -

[N ! N != <<cat,N,noun,1>>

N != <<use_of,N,"man",1>>

N != <<type,N,male,1>>

N != <<sem,N,<<R1,MA1,1>>,1>>

N != <<env,N,ManEnv,1>>]

donkey -

[N ! N != <<cat,N,noun,1>>

N != <<use_of,N,"donkey",1>>

N != <<type,N,neuter,1>>

N != <<sem,N,<<R1,DA1,1>>,1>>

N != <<env,N,DonkeyEnv,1>>]

hat -

[N ! N != <<cat,N,noun,1>>

N != <<use_of,N,"hat",1>>

N != <<type,N,neuter,1>>

N != <<sem,N,<<R1,HA1,1>>,1>>

N != <<env,N,HatEnv,1>>]

;;;

;;; Quantifiers

;;;

a -

[D ! D != <<cat,D,Determiner,1>>

D != <<use_of,D,"a",1>>

D != <<sem,D,<<Q1,E1,A2,A3,1>>,1>>

D != <<ind,D,I1,1>>

D != <<env,D,AEnv,1>>]

every -

[D ! D != <<cat,D,Determiner,1>>

D != <<use_of,D,"every",1>>

D != <<sem,D,<<Q1,A1,A2,A3,1>>,1>>

D != <<ind,D,I2,1>>

D != <<env,D,EveryEnv,1>>]

;;;

;;; Verbs

;;;

sings -

[VP ! VP != <<cat,VP,Verb,1>>

VP != <<use_of,VP,"sings",1>>

VP != <<sem,VP,<<R1,A1,1>>,1>>

VP != <<env,VP,SingEnv,1>>]

smiles -

[VP ! VP != <<cat,VP,Verb,1>>

VP != <<use_of,VP,"smiles",1>>

VP != <<sem,VP,<<R1,A1,1>>,1>>

212 APPENDIX A. EXAMPLES

VP != <<env,VP,SmileEnv,1>>]

walks -

[VP ! VP != <<cat,VP,Verb,1>>

VP != <<use_of,VP,"walks",1>>

VP != <<sem,VP, <<R1,WA1,1>>,1>>

VP != <<env,VP,WalkEnv,1>>]

talks -

[VP ! VP != <<cat,VP,Verb,1>>

VP != <<use_of,VP,"talks",1>>

VP != <<sem,VP,<<R1,TA1,1>>,1>>

VP != <<env,VP,TalkEnv,1>>]

likes -

[V ! V != <<cat,V,Verb,1>>

V != <<use_of,V,"likes",1>>

V != <<sem,V,<<R1,A1,A2,1>>,1>>

V != <<env,V,LikeEnv,1>>]

;;;

;;; Prepositions

;;;

with -

[PREP ! PREP != <<cat,PREP,Preposition,1>>

PREP != <<use_of,PREP,"with",1>>

PREP != <<sem,PREP,<<P1,A1,A2,1>>,1>>

PREP != <<env,PREP,WithEnv,1>>]

