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Abstract

With the recent improvements in speech technology, it is now
possible to build spoken dialog systems that basically work.
However, such systems are designed and tailored for the gen-
eral population. When users come from less general sections of
the population, such as the elderly and non-native speakers of
English, the accuracy of dialog systems degrades.

This paper describes Let’s Go, a dialog system specifically
designed to allow dialog experiments to be carried out on the
elderly and non-native speakers in order to better tune such sys-
tems for these important populations. Let’s Go is designed to
provide Pittsburgh area bus information. The basic system is
described and our initial experiments are outlined.

1. Background
Although many recent dialog systems have shown that we can
achieve effective spoken interaction with a computer, they tend
to target the ”average” portions of the population, those whose
speech and hearing fall within the norm of the whole popula-
tion. This has taught us much about how the dialog must change
when people interact with a computer instead of a human. We
have developed system architectures capable of finding and pre-
senting useful information for the average user, but these sys-
tems cannot be used by everyone. People who are, for some
reason, considered to be outliers in the general population can-
not yet access the information these systems provide. The ob-
jective of the Let’s Go project is to create a basic dialog system
that we can use to test how to extend system access to extreme
populations. The portions of the population that we have chosen
as representatives of the extreme are the elderly and non-native
speakers of English.

As we age, perception is lessened, attention is narrowed and
memory is limited. This makes it extremely difficult to listen
to and use the information a dialog system furnishes. When
we speak a foreign language, we often have not mastered all
of its sounds or its grammatical constructions. This makes it
difficult for a dialog system to understand what we want. Our
populations therefore complement each other since the elderly
provide an extreme in the use of speech output and non-natives
do the same for speech input.

Our specific interest in creating a dialog system for such
populations came first from the observation that elderly visi-
tors apparently had a much harder time using our spoken dialog
systems than younger users. To investigate this, we devised a
simple experiment with elderly visitors to CMU’s Homecom-
ing testing their comprehension of natural and synthetic speech
over the telephone under a number of conditions. The results
[1] show a drop in comprehension as age increases.

In this paper, we will describe the basic dialog system that
we have created to serve as our testbed. Let’s Go has its roots
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CMU Communicator [2] system architecture. From that
g point and with our experimental goals in mind, we have
modifications to the basic architecture, making it easier
nge necessary parts of the system as we adapt to the new
ations, such as making the parser more tolerant to gram-
al errors. With the system now in place we are experiment-
ith ways to: enhance the speech output so that the elderly
nderstand it better; detect what a non-native speaker meant

and offer hints of how to say it better.

ur system provides bus schedule information for the city
tsburgh. We are working with the Port Authority Transit
m (PAT) to use their bus schedules and recordings of actual
o their help desk to build our system.

2. Architecture

er to be able to develop and test techniques in improv-
oken dialog systems, a baseline system was built. CMU

ignificant experience in building spoken dialog systems.
we want to have significant control of the dialog system,

letely off-the-shelf systems supporting VoiceXML-like di-
dialog would be too restrictive. We therefore chose to

on the RavenClaw [3] system. This system is in turn built
the MIT Galaxy architecture [4] and uses the CMU Sphinx
h recognizer [5] and the Festival Speech Synthesis System

Telephone connection

Go is connected to a phone line via a Gentner board
an support any telephony system that is supported by the
y architecture.

Recognizer

se the CMU Sphinx II speech recognizer with gender-
c telephone-quality acoustic models from the Commu-
r system [2]. The data used for training consists of the
Communicator data collected over the last 4 years. We
atically split this data into male and female speech and
d separate models. Both models are then run in parallel
e best is selected. Like others, we have found this im-

s recognition accuracy.

e do have access to recordings from the PAT help line,
gh the content is often more general than just bus sched-

and the data has acoustic artifacts from the archiving com-
on used and therefore does not reflect the acoustic condi-
of the telephone speech we expect. Thus, at present, using
ng telephone bandwidth models is appropriate, but as we
t data, we will retrain our system.



2.3. Parsing and Language Modeling

Sphinx II uses a statistical language model (n-grams) for recog-
nition. The result of the recognition is then parsed by Phoenix,
a robust parser based on an extended Context Free Grammar al-
lowing the system to skip unknown words and perform partial
parsing [7].

Ideally, we would like to train the statistical language model
on a corpus of transcribed dialogs corresponding to our particu-
lar task. Since the project started relatively recently and it took
time to obtain proper permission to record calls to the Port Au-
thority, we have just begun to receive specific data for our task
and have not yet had time to preprocess it. The only Port Au-
thority data we have used in the system so far is the set of official
names of the bus stops, as stored in the schedule database.

Our approach to language modeling was to first write a
grammar for our parser, then generate an artificial corpus of text
from the parsing grammar and third, train a statistical language
model on the artificial corpus. We wrote the grammar based on
a combination of our own intuition and a small scale Wizard-of-
Oz experiment we ran. The grammar rules used to identify bus
stops were generated automatically from the schedule database.

In order to make the parsing grammar robust enough to
parse fairly ungrammatical, yet understandable sentences, it
was kept as general as possible. When used for speech gen-
eration, however, a very general grammar produces a very large
amount of not only ungrammatical, but unnatural sentences. We
therefore modified the grammar to make it suitable for speech
generation and enhanced it by weighting the rules according to
our observations of how frequent they are in natural language.
We also adjusted the weight of the bus stop names according
to how frequently they are likely to be present in user requests,
again based on our own observations. Using the modified gram-
mar, we generated a 200,000-sentence corpus which is large
enough to cover most of the bus stop and time expressions in
the domain. We trained a 3-gram model on the corpus using the
CMU-Cambridge Statistical Language Modeling Kit [8].

Although the resulting language model is not as good as
one built from real data, it allows us to obtain a usable prototype
with which we can now collect and transcribe dialogs that take
place in the experiments with extreme populations, while we
await preprocessed real training data.

We are approaching the language modeling and dialog man-
agement with one of the main goals of the project in mind —
detecting incorrect lexical and grammatical structures in non-
native speech and offering correction. The language model on
the one hand needs to be general enough to accept sentence
structures and use of expressions that are not quite correct. For
example, asking for “the coming bus” instead of “the next bus”,
or “when the bus is coming” instead of “when is the next bus
coming” should be acceptable to our system. However, the
phrase “when done bus come here” would be difficult to ac-
cept. By accepting the former examples, we then want to give
the user subtle correction help so that the next time he/she uses
the word or expression it is correct. But this is not a language
learning system. Some of the users are calling just before they
run out the door to catch the bus. We therefore have at the most
two short sentences for the correction. We are starting to build
utterances where we take the incorrect response, “the coming
bus”, for example, and respond with “You want the next bus?”,
with higher pitch and intensity on the correct word, “next”. This
advances the dialog while giving corrective information at the
same time.
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Figure 1: Tree Structure of the Dialog Agents

Dialog Manager

g management in the Let’s Go system is based on Raven-
[3], a generic framework for dialog management. Raven-
features a task-independent dialog engine that carries out
alog according to a task specification. To build a dialog

for a new task, a dialog specification is written as a tree
ure where each node represents a “dialog agent”. Figure
simplified representation of the tree structure. Each leaf
is in charge of one of four elementary tasks:

Inform: send output to the user

Request: request information from the user

Expect: expect information without explicit request

Execute: performs non-dialog tasks such as calling the
database module

erminal agents (a.k.a. agencies) group other agents and
l their execution, capturing the higher level temporal and
l structure of the dialog.
ach call to the system starts with a welcome message that
pts the user to make a request. The system waits for the

answer and grabs concepts such as question type (e.g.
n is the next bus to X?”, “How can I go from X to Y?”)
parture and arrival times and places. If it has enough in-
tion to be able to submit a query to the database, it does
esents the results to the user, and prompts for a new query.
re information is needed to make a complete query (e.g.
er gave the destination but did not specify a place of de-
e), the system explicitly prompts the user to provide the

ng information (e.g. “Where are you leaving from?”).
ome agents (not represented in Figure 1) handle the ex-
confirmation of recognized concepts. In the current sys-
ach time a new piece of information is obtained from the

the system repeats what it understood so that the user can
t and verbally correct misrecognitions as they occur.

Backend Manager

ackend of the system is primarily a database of bus sched-
nd routing information provided by the Port Authority.
ort Authority system consists of 15,218 stops (although
stops have multiple names). There are 2423 routes (in-
g variations of routes according to time of day or week).



Although we have the database tables that the Port Author-
ity uses internally, we had to make several alterations in how
the data is stored to make it possible to find the information
we need to provide to the user because the original structure
was not suited for retrieving time information. Also, the Port
Authority data often contains abbreviations for stops — some-
times several different abbreviations for the same stop. These
abbreviations were converted to a consistent form that is more
suitable for speech input and output. To more easily match stop
names, we chose to fully expand all abbreviations, since that
allows us to say that “5th Ave”, “5th Ave.”, and “Fifth Avenue”
all reference the same street, but maintains its distinction with
“5th Street”.

Stops can be specified in one of three ways: the nearest in-
tersection to the stop (“Forbes [Avenue] at Murray [Avenue]”),
a neighborhood (“Oakland”), or a landmark or other point of in-
terest (“Pittsburgh International Airport”, “Waterworks Mall”).
Of these, only the first are stored in the database. Thus we
map neighborhoods and landmarks to intersections. However,
both neighborhoods and landmarks can refer to several different
stops. We need to be able to denote stops as departure or arrival
points, and also identify which stop in a list is the one being
referred to, given the context of the rest of the query. For exam-
ple, not all stops within a neighborhood are on every route that
goes through that neighborhood. At this point, this is handled
by a “Stop Matcher” module that creates a mapping between a
neighborhood or landmark and the appropriate stop. It will cur-
rently only return a single stop, although it will eventually need
to return multiple stops.

The backend receives query information from the dialog
manager, which consists of the type of query, information iden-
tifying the departure and arrival points, possibly a specific route,
and time information. The departure and arrival information
is passed through the Stop Matcher module to identify which
stops to search for in the database. After executing one or more
lookups to retrieve information from the database, the module
then responds to the dialog manager with a result, which either
contains the answer to the user’s query, or a failure code identi-
fying a problem (for example, asking for a time for a bus going
between two stops that are not connected by any bus route).

2.6. Language Generation

For language generation, we are using Rosetta, which is a lan-
guage generation toolkit originally designed for the CMU Com-
municator. Rosetta is capable of generating utterances from
templates, filling in slots with information received from the
dialog manager. It can also randomly select from a list of tem-
plates for a given response. The generated utterances are then
sent to the TTS module (in this case, Festival) for synthesis.

Rosetta identifies different kinds of actions that require
utterances to be generated; these actions are their own self-
contained modules that have mappings between different con-
cepts and the templates that generate utterances for those con-
cepts. This system uses three different modules for language
generation: one to provide information to the user, one to re-
quest information from the user, and one that confirms informa-
tion the user has given the system. Within these modules, there
are a variety of templates that generate utterances. For exam-
ple, the Request module has a “query.departure place” template
which generates the utterance “Where are you leaving from?”,
which requests the corresponding concept from the user. The
Inform module has a “current time” template that randomly
generates “The time is now [current time].” or “It is currently
[current time].”
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one major part of this project is to investigate the best
t voice quality, we want to have significant control of the
etic voice output. In our initial design, we opted for the
t solution that would give us a working system. Our very
ersion simply used a diphone synthesizer. The quality of
tter is basically inadequate for anyone but the dedicated to
stand, and particularly not suitable for our target groups,
derly and non-natives, with limited abilities in English.

nce we had a basic system running with a relatively stable
age generation system, we built a limited-domain synthe-
using the techniques described in [9]. That is, we built
cific synthesized voice that is explicitly designed for the
of output we required. To do this we programmatically
ructed all the phrases and templates that the language gen-
n system could output. We then filled in the bus stop
s, bus numbers, times, etc., generating a list of sentences
nd 12,500). We then synthesized these to phoneme strings
reedily selected utterances with the best diphone coverage,

generated a list of 202 utterances. Then we removed this
the completed list and greedily selected a second set. This
one three times, generating a diphone-rich prompt set (for
omain) of 600 prompts. These were recorded and a voice
utomaticaly built using the FestVox [10] build process in-
g labeling phonetic data with a Sphinx acoustic model
d from this data.

he result is a high quality voice that works well for the
ces generated by our system. It does not, however, deal

all bus stop names at present (or at least not consistently
We are currently working with a subset of the 15,000. A
name-specific selection technique would potentially offer
consistent coverage.

3. Discussion

liberately choose the constrained domain of bus informa-
or our domain, so that we can better control the low level
ts of information presentation rather than be distracted
he higher level problems in dialog control. However, al-
h apparently simple at first, there are still a number of is-
n the bus information domain that must be addressed.

aming a bus stop appears simple at first but more com-
s you look closer at the system. Users may employ a wide
of phrases to refer to bus stops, and we wish to make
stem deal with this. Although there are problems in ab-
tion expansion, and typos in the core data, the idea of a
ical name for a bus stop is fairly well defined. “Murray at
rd” refers to the stop on Murray Avenue where it meets
rd Avenue. However there may be multiple stops at a
oads that have different names. “South Craig at Forbes”
the same bus stop as “Forbes at South Craig”, though a

n user is likely to conflate these as “Forbes and Craig”.

ur initial system offers a number of rule-derived alterna-
ames for stops but this will be insufficient in a general
. Thus we are investigating methods to give more gen-
atches of user-given names to bus stops, which must also
cient. For example “Forbes” (a major thoroughfare in

urgh) has many stops and is used by many routes, thus
es” alone seems insufficient to identify a stop. But the
outes have only one stop on Forbes, and thus it is possible
er to that stop in the context of the 54C: “from East Carson
2nd to Forbes”



SYSTEM: Welcome to the CMU Let’s Go! Bus
Information System. How may I help
you?

USER: I’d like to go to Forbes and Murray.
SYSTEM: To Forbes and Murray. Where are you

leaving from?
USER: Carnegie Mellon.
SYSTEM: From Carnegie Mellon. There are five

buses running between Carnegie Mel-
lon and Forbes and Murray: the 501,
the 59U, the 61A, the 61B, and the 61C.
What else can I do for you?

USER: When is the next one?
SYSTEM: The next 61C going to Forbes and Mur-

ray will leave Carnegie Mellon at 5:13
PM.

Figure 2: Example of a Let’s Go dialog

4. Evaluation
So far, we have only carried out empirical evaluations of the
system.

An intial experiment was to try to elicit how users might
speak to a bus information system. The idea was to see how
they would formulate their queries in specific situations. We
designed five scenarios for which the user needed to get some
specific information on a bus (e.g. line number between a start
point and an end point or time of the next bus at a given stop).
We set up a dedicated phone line in our office and asked people
in the Language Technologies Institute to pick one or two sce-
narios and call us. We did not try to emulate human-machine
conversations and rather acted as if we were operators from the
Port Authority. In all, we recorded 28 phone calls from 17 dif-
ferent callers (7 native and 10 non-native speakers of English).
This data was used to manually extend the initial set of grammar
rules for parsing and refine our dialog model.

The information gathered from this experiment was used in
designing the input language for the system.

Since our initial telephone-based system has only recently
become operable, we have not as yet carried out any formal
tests. However, we have made the following observations.

The system works well for simple requests. When some
information is missing, it is able to request it explicitly from
the user. Hence, the dialog can be very short when the user ex-
presses a complete query in one sentence (e.g. “When is the
next bus leaving X going to Y?”). It can be longer and more
system-directed if part of the request is missing or not recog-
nized (see Figure 2 for an example of such a dialog). Systematic
explicit confirmation from the system can be annoying for some
users but we found that, given the current number of speech
recognition errors, it is important for the user to monitor the
understanding of the system.

As said above, speech recognition is acceptable but far from
perfect. We think that this is mainly due to the limitations of the
“artificial” language model. As we get more experience with
the system and collect data from a wider range of users, we are
adjusting the generative grammar and thus improving the LM’s
quality. Ultimately, we will collect enough real data to train a
model directly on it.

Our baseline synthesizer was the standard diphone synthe-
sizer in Festival which is not sufficient (particularly over the
telephone), hence our move to a domain synthesizer. Although
building a domain synthesizer is more work, it is clear that a
better output voice is necessary before we can make the system
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ble to a wider populations.
aming bus stops is a non-trivial problem, and we are look-
general techniques to be able to match what our users may
hen referring to stops.

5. Conclusions
ave described the Let’s Go spoken dialog system, a
one-based mixed-initiative spoken dialog system for
urgh area bus information. The individual components are
ibed, highlighting the specific issues in constructing such
em with general dialog tools. Let’s Go is specifically de-
d to improve dialog systems for the elderly and non-native
ers of English, two important populations who have diffi-
in using standard spoken dialog systems.
he Let’s Go project is currently setting up specific experi-
with our target populations to better understand their lim-
s in accessing information through telephone-based spo-

ialog systems.
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