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ABSTRACT 

This paper proposes a novel parameter generation algorithm for 
high-quality speech generation in Hidden Markov Model (HMM)­
based speech synthesis. One of the biggest issues causing significant 
quality degradation is the over-smoothing effect often observed in 
generated parameter trajectories. Global Variance (GV ) is known 
as a feature well correlated with the over-smoothing effect and a 
metric on the GV of the generated parameters is effectively used as a 
penalty term in the conventional parameter generation. However, the 
quality of the synthetic speech is far from that of the natural speech. 
Recently, we have found that a Modulation Spectrum (MS) of the 
generated parameters. which is also regarded as an extension of the 
GV, is more sensitively correlated with the over-smoothing effect 
than the GV This paper incorporates a metric on the MS as a new 
penalty term in the proposed parameter generation algorithm. The 
experimental results demonstrate that the proposed parameter gener­
ation algorithm considering the MS yields significant improvements 
in synthetic speech quality compared to the conventional parameter 
generation algorithm considering the G V 

Index Terms- HMM-based speech synthesis. over-smoothing, 
global variance, modulation spectrum, parameter generation 

1. INTRODUCTION 

Statistical parametric speech synthesis based on Hidden Markov 
Models (HMMs) [1] is an effective framework for generating di­
verse types of synthetic speech. Speech parameters, i.e., spectral 
and excitation features and HMM-state duration are simultaneously 
modeled with context-dependent HMMs in a unified framework 
[2]. In synthesis, the speech parameter trajectories are generated 
by maximizing the likelihood of the HMMs [3]. This approach 
allows us not only to produce smoothly varying speech parameter 
trajectories under a small footprint [4] but also to apply several tech­
niques for flexibly controlling synthetic speech [5, 6, 7] to various 
speech-based systems [8,9]. 

One of the critical problems in HMM-based speech synthesis 
is that the parameter trajectories generated from the HMMs are of­
ten over-smoothed. This phenomenon causes significant degradation 
of the perceptual quality and makes synthetic speech sound muffled 
[10]. To address this over-smoothing problem, Toda and Tokuda 
[11] proposed a parameter generation algorithm considering Global 
Variance (GV ). The GV is defined as the 2nd order moment of the 
parameter trajectory. The GV of the generated trajectories is often 
smaller than that of natural speech parameter trajectories. They inte­
grated a metric on the GV into the parameter generation algorithm to 
keep the GV close to natural one, and they reported that the speech 
quality was significantly improved. This conventional method has 
been widely studied [12, 13, 14] because of not only its practical 
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advantage for improving synthetic speech quality but also its mathe­
matically tractable formulation. However, the synthetic speech qual­
ity still sounds unnatural compared to the natural one. 

Recently, Takamichi et al.. [15] have found that a Modulation 
Spectrum (MS) of the generated parameter trajectory is more sen­
sitively correlated with the over-smoothing effect than the GV Be­
cause the MS is regarded as an extension of the GV, it enables to 
quantify more characteristics of the parameter trajectory than the 
GV [15] has reported compensating the MS of the generated tra­
jectories using a simple post-filter process. However, this frame­
work based on the post-filtering possibly causes adverse effects due 
to completely ignoring the HMM likelihood. Moreover, it is not 
straightforward to further apply various extensions, such as model 
adaptation [6] and joint optimization in training [16], to this frame­
work as it is not well formulated mathematically. 

This paper proposes a speech parameter generation algorithm 
considering the MS. The proposed algorithm generates the parame­
ter trajectories by maximizing a novel objective function consisting 
of the HMM and MS likelihoods. The MS likelihood works as a 
penalty term to make the MS of the generated parameters close to 
that of natural ones. The proposed algorithm is applied to both spec­
tral and Fo components. The experimental results demonstrate that 
the proposed algorithm significantly outperforms the conventional 
algorithm considering the GV 

2. CONV ENTIONAL PARAMETER GENERATION 
ALGORITHM CONSIDERING GLOBAL VARIANCE 

Context-dependent HMMs are trained using natural speech param­
eters. In synthesis, after constructing a sentence HMMs corre­
sponding to input text to be synthesized, the HMM state sequence 
q = [ql , ... , qt , ... , qT] T is determined , where qt is state index at 
frame t. Then, the parameter trajectory is generated by maximizing 
the objective function consisting of both HMM and GV likelihood 
as follows: 

c = argmax logN (We; I1q, �qrV N (v (e) ; I1v' �v), (I) 
c 

where e = [ei,··· , eJ, ... , e�l T is a speech parameter vector 
sequence ofTframes,et = [cd1) , .. · , cdd) , .. · , Ct(D)] T is a 
D-dimensional parameter vector at frame t, d is a dimensional index, 
W is the weighting matrix for calculating the dynamic features [3], 
and N ( - ; 11,�) denotes Gaussian distribution of a mean vector 11 
and a covariance matrix�. I1q = [11;,,'" , l1;rl T and �q = 

diag [ �q, , ... , �qr] are the mean vector and the covariance matrix, 
where I1qt and �qt are a mean vector and a covariance matrix of the 
state qt. respectively. v (e) = [v (1), ·  .. , v (d) , ... , V (D)]T is 
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the G V vector [II] , where the d-th component v (d) is given by: 
1 T 

v(d) T 2)ct{d) - C(d))2, (2) 
t=l 

c(d) 1 T 
T 2>7 (d), (3) 

T=1 
where Mv and I;v are the mean vector and the covariance matrix 
of the GV, respectively. Wv is a weight of the GV likelihood. The 
maximization of the objective function is performed using the gra­
dient method. To determine the initial parameter trajectories, the 
parameter trajectories analytically determined by maximizing only 
the HMM likelihood are linearly transformed to maximize the GV 
likelihood [II] . Then, they are iteratively updated by maximizing 
the objective function. 

3. PROPOSED PARAMETER GENERATION ALGORITHM 
CONSIDERING MODULATION SPECTRUM 

3.1. Modulation Spectrum Definition 

Whereas the GV represents the temporal scaling of the parameter 
trajectory as a scalar value in each feature dimension, the MS ex­
plicitly represents the temporal fluctuation as a vector, and its sum 
over all modulation frequency except bias is equal to the GV [IS] . 
In this paper, we define the MS s (c) of the parameter trajectory c 
as follows: 

s (c) 

s (d) 
sd(m) 

[S(l)T , ... ,S(d)T,. ,S(D)Tr 
[Sd (0) , ·  .. , Sd (m) , ... , Sd (M - l)] T , 

(4) 
(5) 

R�,rn + I�,rn' (6) 

(� Ct{d) COSktr + (� Ct{d) Sinktr ,(7) 

where 2M is a length of Discrete Fourier Transform (OFT). k = 
- rrm jM is a modulation frequency. The MS likelihood is defined 
asN (s (c) j Ms , I;s) where Ms and I;s are a DM-by-l mean vector 
and a DM-by-DM covariance matrix, respectively. I;;1 is rep-
resented as [p(1) ... pCd). pCD)] where pCd) is DM-by-M s ' ' S '  ' s s 
matrix of which columns correspond to S (d). In this paper, the MS 
is calculated utterance by utterance and its mean vector and covari­
ance matrix are calculated from the whole utterances of the training 
data. 

3.2. Generation Algorithm 

We define an objective function Ls maximized in the proposed pa­
rameter generation algorithm as follows: 

argmax Ls, 

10gN (W Cj Mq , I;qt' N (s (c) j Ms , I;s) , ( 1 TWT�-lW TWT�-l ) Ws - "2c ""q C + C ""q Mq 

(8) 

(9) 

- � s (c)T I;; lS (C)+ S (C)T I;; lMs + K , (10) 
where Ws denotes the MS weight for controlling balance between 
the HMM and MS likelihoods, which is set to the ratio between the 
number of dimensions, i.e., Ws = Mj (3T) in this paper. K is 
a constant value to c. Because the objective function is given by 
a quartic form like that in the conventional algorithm considering 
the GV, it is hard to analytically solve its maximization problem. 
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We employ the steepest descent algorithm to iteratively update the 
generated parameter trajectory as follows: 

C-(i+1) -Ci) aLs I C +0: --
ac c=c(i)' (11) 

where 0: is the step size parameter, and i is an iteration index. The 
first derivative of Ls is calculated as 

aLs ( WT�-lW WT�-l ) 
8c = Ws - ""q C + ""q Mq , 

St (d) 
it (d) 

it,d (m) 

+ [s�T, ... ,s'tT, ... , s�Tr (12) 
[sd1) , .. · , sdd) , .. · , sdDW , (13) 
(S(C)-M.)Tpid)it(d), (14) 

=[Jt,d (0) , ·  , it,d (m), ·  , it,d (M - lW , (IS) 

= -2 (Rd,rn cos kt + Id,rn sin kt) . (16) 

3.3. Initialization 

For initialization, we can basically use the same idea as used in the 
conventional algorithm, i.e., first generating the parameter trajectory 
by maximizing only the HMM likelihood and then it is further trans­
formed to maximize the other likelihood. To transform the param­
eter trajectory so that the MS likelihood is increased, we use the 
MS-based post-filter [IS] , which is given by 

Sd (m)' = a�,rn 
(Sd (m) -f.L�,rn) + f.Ld,rn , ad,m 

(17) 

where f.Ld,rn and ad,rn are a mean and a standard deviation of Sd (m), 
respectively. f.Ld,rn and ad,rn are those of MS of generated trajecto­
ries. We in advance estimate f.L�,rn and ad,rn using the generated tra­
jectories included in the training data. Finally, the initial parameter 
trajectory c(O) is determined using the filtered MS and the original 
phase components of the parameter trajectory before the filtering. 

3.4. Application to FO Contour Generation 

The proposed parameter generation is also applied to the Fo com­
ponents modeled with Multi-Space probability Distribution (MSD)­
HMM [ 17] . In the Fo parameter generation, after unvoiced/voiced 
determination, Fo values at only voiced frames are generated from 
the corresponding probability density functions while setting the pre­
cision matrices (inverse matrix of the covariance matrix) at the un­
voiced/voiced boundaries to zero matrices to allow discontinuous 
transitions. Therefore, the MS is calculated from the concatenated 
voiced frames in this paper. Moreover, we reform Ct (d) of Eq. (7) 
as Ct (d) - c (d) as pointed out in [IS] . In this implementation, the 
MS is directly affected by the discontinuous transitions at the un­
voiced/voiced boundaries. This causes some adverse effects in the 
MS-based post-filtering process. To avoid this, we adopt the initial­
ization method used in the conventional GV-based algorithm rather 
than the MS-based post-filtering in this paper. 

3.5. Discussion 

Though we can also integrate the GV term into the proposed objec­
tive function, i.e., a product of the HMM, GV, and MS likelihoods, 
the proposed objective function effectively recovers the GV likeli­
hood as well without it because the MS involves the GV as we de­
scribed. Figures I and 2 illustrate an example of the GV and the MS 
of the generated parameter trajectories. "HMM," "GV," and "MS" 
indicate the results of the generated parameter trajectories using the 
traditional algorithm without the GV [3] , the conventional algorithm 
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Fig. 2. Examples of MS of generated the 9-th mel-ceptral coefficient. 

with the GV [II] , and the proposed algorithm with the MS, respec­
tively. "nat" indicates those of natural speech parameter trajectories. 
We can find that the proposed generation algorithm well recovers 
not only the MS but also the GY. On the other hand, "GV" cannot 
recover the MS appropriately. It makes the MS slightly larger but 
the resulting MS is still very different from the natural one. This is 
because the GV can model only an average value of the MS compo­
nents over modulation frequencies. 

The footprint of the synthesis system using the proposed al­
gorithm is slightly larger compared to that using the conventional 
algorithm with the GV because the MS is M D-dimensional vec­
tor whereas the GV is D-dimensional vector. We may reduce the 
footprint by considering only low modulation frequency components 
which has more dominant effect on speech perception [ 18] . 

Finally, the MS-based post-filter [ 15] tends to generate the over­
transformed trajectory and synthesize over-emphasized speech be­
cause it completely ignores the criterion like the HMM likelihood. 
On the other hand, the proposed algorithm can effectively generate 
the naturally-fluctuated parameter trajectory by jointly maximizing 
both the HMM and MS likelihoods. In addition, as the proposed 
algorithm is well formulated mathematically, it is straightforward 
to apply various techniques, such as context dependent modeling, 
adaptation, and joint optimization in training. 

4. EXPERIMENTAL EVALUATION 

4.1. Experimental Condition 

We trained a context-dependent phoneme Hidden Semi-Markov 
Model (HSMM) [ 19] for an English male speaker "RMS" and an 
English female speaker "SLT" from the CMU ARCTIC database 
[20] . We used 593 sentences from subset A for training and 100 sen­
tences from subset B for evaluation. Speech signals were sampled 
at 16 kHz. The shift length was set to 5 ms. The Oth-through-24th 
mel-cepstral coefficients were extracted as a spectral parameter and 
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Fig. 3. HMM likelihood for the Fig. 4. HMM likelihood for the 
generated spectral parameters. generated Fo contours. 

log-scaled Fo and 5 band-a periodicity [21, 22] were extracted as 
excitation parameters. The STRAIGHT analysis-synthesis system 
[23] was employed for parameter extraction and waveform gen­
eration. The feature vector consisted of spectral and excitation 
parameters and their delta and delta-delta features. 5-state left -to­
right HSMMs were used. The DFT length to calculate the MS was 
set to 8 192. Diagonal covariance matrices were used in the HSMM, 
the GV probability density function, and the MS probability density 
function. 

We compared the following parameter trajectories, HMM: pa­
rameters generated by the traditional generation [3] , GV: parameters 
generated by the conventional algorithm considering the GV [ 1 1] ,  
MS: parameters generated by the proposed algorithm considering 
the MS, and nat: natural speech parameters. To confirm the effect of 
the generation algorithms, we did not compare them to parameters 
filtered by the MS-based post-filter [ 15] . In order to avoid slightly 
artificial sounds caused by enhancing the high modulation frequency 
components of "MS" speech, we applied 50 Hz-cutoff low pass filter 
to the generated parameter trajectories used in the subjective evalu­
ationl. We first conducted an objective evaluation by the likelihoods 
used in the conventional and proposed generation algorithms. Then, 
we conducted a subjective evaluation on speech quality. The "GV" 
was used in the aperiodic component to generate synthetiC speech. 

4.2. Objective Evaluation Using Likelihood 

The generation algorithms were evaluated by the HMM, G V, and MS 
likelihoods for the generated trajectories. Additionally, we estimated 
the log-MS log Sd (m) probability density function and also calcu­
lated its likelihood to deeply discuss the results. Figures 3-10 show 
4 types of likelihoods for spectral and Fo components, respectively. 
Note that these results were averaged between two speakers. 

HMM and GV likelihoods: We can find in Fig. 3 and Fig. 4 
that the HMM likelihoods for both spectral and Fo components in 
the proposed algorithm ("MS") are lower than the traditional algo­
rithm ("HMM") and the conventional algorithm ("GV"), but they 
are still reasonably higher than those of natural speech parameter 
trajectories ("nat") . For the GV likelihoods shown in Fig. 5 and 
Fig. 6, "MS" can effectively recover the GV likelihood as in the 

1 As a result of our preliminary subjective test, we have found that there 
was no Significant quality difference between analysis-synthesized speech 
samples with/without the MS components over 50 Hz. 
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Fig. 7. MS likelihood for the gen- Fig. 8. MS likelihood for the gen-
erated spectral parameters. erated Fo contours. 

"GV" These results demonstrate that the proposed algorithm well 
preserves the conventional criteria. 

MS and log-MS likelihoods: In the spectral component, it is 
observed in Fig. 7 that the MS likelihood of "MS" is larger than 
that of "HMM" and "GV" In the Fo component shown in Fig. 8, 
the MS likelihood of "MS" is larger than that of the "GV" From the 
comparisons between "MS" and "GV," which use the same initial 
parameter trajectories but different objective functions, it is shown 
that the proposed objective function is effective for recovering the 
MS likelihood. However, the MS likelihood of "HMM" is higher 
than that of "MS." Moreover, in both spectral and Fo components, 
the MS likelihoods of "HMM" are higher than those of "nat." These 
results are hard to interpret. To analyze them, the Fig. 9 and Fig. 10 
illustrate the log-MS likelihoods. We can see more reasonable results 
in these figures. These results imply that a probability density of the 
MS is well modeled by the Gaussian distribution on the logarithm 
domain. Nevertheless, we confirmed there was no perceptual quality 
difference between the MS modeling and the log-MS modeling in 
the proposed parameter generation algorithm. 

4.3. Subjective Evaluation 

We conducted a preference test (AB test) on speech quality by 8 
listeners. The pair of synthetic speech of "GV" and "MS" was pre-
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Fig. 11. Preference scores on speech quality with 95% confidence 
interval. 

sented to listeners in a random order. Listeners were asked which 
sample sounded better in terms of speech quality. 

The result of the preference test for two speakers is illustrated 
in Fig. 1 1. We can see that the score of "MS" increases over the 
"GV" This result shows that the proposed algorithm can generate 
better quality of synthetiC speech than the conventional algorithm 
considering the GV 

5. CONCLUSION 

In this paper, we have integrated a Modulation Spectrum (MS) into 
the parameter generation algorithm in HMM-based speech synthe­
sis. The parameter trajectories are generated by jointly maximiz­
ing the HMM and MS likelihoods. The experimental results have 
demonstrated that the proposed algorithm can recover the MS while 
preserving the conventional HMM and Global Variance (GV) likeli­
hoods. Moreover, the result of perceptual evaluation on speech qual­
ity has shown that the proposed algorithm yields significantly better 
quality than the conventional algorithm considering the GV As fu­
ture work, we will conduct more investigations, such as a compar­
ison to the MS-based post-filter [ 15] and application to continuous 
Fo modeling [24] . Moreover, we will incorporate the MS into the 
training phase like the GV-constrained trajectory training [ 16] . 
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