
Improving Speech Systems Built From Very Little Data

John Kominek*, Sameer Badaskar*, Tanja Schultz*§, Alan W Black*

* Language Technologies Institute, Carnegie Mellon University, USA
§ Cognitive Systems Lab, Karlsruhe University, Germany

ABSTRACT

This  paper  studies  two  ways  for  helping  non-specialist 
users develop speech systems from limited data for new 
languages.  Focused  web  re-crawling  finds  additional 
examples of text matching the domain as specified by the 
user.  This improves the  language  model  and  cuts  word 
error  rate  nearly  in  half.  Iterative  voice  building  with 
interleaved  lexicon  construction  uses  the  voice  from  a 
previous iteration to help construct an improved voice. 4.5 
hours  of  the user’s time reduces  transcription error  rate 
from 32% to 4%. 

1. INTRODUCTION

The SPICE project is an initiative that deploys a web-based 
toolkit  for  the  rapid  development  of  Automatic  Speech 
Recognition  (ASR)  and  Text-to-Speech  (TTS)  [1].  The 
purpose  is  to  make  the  construction  of  these  speech 
processing technologies  available  to  the  world  at  large, 
and in particular to simplify the process for non-specialist 
users.  The  first  version  of  this  toolkit  has  been  now 
running as a live server  for  one year  [2],  and has been 
used  in  laboratory  courses  taught  at  Carnegie  Mellon 
University  in  the  U.S.  and  at  Karlsruhe  University  in 
Germany.  One  distinctive  characteristic  of  the  SPICE 
architecture  is  the ability to  interactively and  iteratively 
construct  systems customized  to  new speakers  and  new 
languages with an absolute minimum of data and effort, in 
practice with as little as 5-10 minutes of speech data [3].

In  a  semester-long assignment,  students  are  asked to 
choose a language and domain of interest and to use the 
SPICE system to: i) define a phoneme set, ii) collect a text 
corpus, iii) build a bigram language model, iv) generate a 
200-1000 utterance prompt list, v) record the prompt list 
from one or more native speakers, vi) construct a lexicon 
and  letter-to-sound rules,  vii)  build  acoustic  models  for 
ASR, viii) evaluate the recognizer, ix) build voice models 
for TTS, and x) evaluate the synthesizer. For end-to-end 
evaluation,  the  system provides  a  “talk-back”  function, 
where the speaker says a sentence which is transmitted to 
our server, decoded, synthesized, and played back to the 
user. A pair of systems can be hooked together to provide 
intermediated communication.

From the laboratories conducted to date,  students are 
successful about half the time. Much of the blame may be 
attributed  to  deficiencies  in  our  software.  However,  we 

observed  that  the  successful  students  arrive  with 
substantial experience in speech technologies. Those with 
less experience lack knowledge of what is reasonable at 
each  stage  of  data  collection,  and  where  the  “comfort 
zone” of  each technology component lies.  One possible 
solution  is  to  knowledge-engineer  additional  constraints 
into the system, effectively providing sturdier guide-rails 
for the purpose of preventing users from veering off track. 
Thus, the major challenge of this approach is how to find 
and where to place appropriate guide-rails. 

A more  robust  approach  is  to  build  a  system in  an 
iterative process with integrated user feedback. Here, the 
user bootstraps the system from 10 minutes of speech for 
example, evaluates it, and – with system support – mends 
various  deficiencies.  Deficiencies  typically  include 
insufficient  speech  data,  a  weak  acoustic  or  language 
model, and words missing from the lexicon. Previously in 
[4] we measured the relative effectiveness of working on 
the pronunciation dictionary versus simply recording more 
speech (as it pertains to synthesizer quality), and applied 
the results to eight non-English languages. We found that 
during early stage work it  is better  to collect  additional 
speech, while in later stages improving the lexicon offers 
greater gain for amount of labor spent. The location of the 
transition  point  seems to  lie  between  30m and  60m of 
speech,  but  naturally  it  depends  on  the  language  in 
question  and  on  the  relative  speed  of  recording  versus 
lexicon correction.

This paper reports on initial investigations in iterative 
system development,  as  applied  to  ASR and  TTS.  The 
starting point is a “seed application” consisting of a small 
amount of text, ten minutes of recordings, and a dictionary 
of  a  few hundred  words.  In  our  tests  we use  two seed 
applications, one in English (investigating TTS) and one 
in Hindi (investigating ASR). Both target the domain of 
cooking recipes. Using such a seed, we have developed a 
mechanism  for  expanding  the  text  corpus  using  the 
technique of  focused web  re-crawling [5]. This supports 
bigram language models with better coverage for ASR and 
also  provides  material  for  additional  speech  recordings 
For  evaluating  TTS,  speech  is  collected  in  five  stages, 
with  lexicon  development  interleaved.  The  voice  is 
evaluated after each stage by transcribing the heldout set. 

Two high level ideas guide our investigation into low 
resource  system construction.  The  first  is:  how can one 
improve  on  an  initial  system?  Users  wanting  to  build 
usable systems are confronted with the quandary of “now 

{jkominek, sbadaska, tanja, awb}@cs.cmu.edu 

Accepted after peer review of full paper
Copyright © 2008 ISCA

September 22-26, Brisbane Australia1833



what?”. The second idea is: of the many ways the user can 
devote  development  time,  where  can  the  effort  be  best 
expended?  This  paper  provides  the  beginnings  of  an 
answer and some useful hard data to support it.

 
2. TEXT COLLECTION

One pitfall users of  SPICE are inclined to commit is not 
collecting enough text data. In  SPICE these data are used 
for  computing  a  statistical  language  model  and  for 
automatically selecting a prompt set. The user may upload 
plain text or point the system to a web page to crawl. 

2.1. Focused web re-crawling
The  SPICE user  specifies  the  domain  implicitly  by 
specifying either the URL of the text or by uploading a 
text file. The documents crawled from the target URL can 
be  analyzed  to  identify the domain related  terms which 
could be used to re-query a search engine for additional 
URLs.  The  downloaded  documents  are  cleaned  of  html 
tags.  Then  bigrams  in  the  text  are  scored  by  the  well 
known “term frequency inverse document frequency” (TF-
IDF) weighting scheme. The bigrams with highest TF-IDF 
score are treated as  domain terms and used to re-query a 
search engine (in our case,  Google).  Additionally,  terms 
with  highest  TF-IDF  score  along  with  their  respective 
scores  are  stored  as  a  model of  the  domain.  For  each 
bigram-query term, the top K (K=5) URLs returned by the 
search engine are then crawled for more documents. The 
crawler keeps track of visited pages to prevent duplicate 
downloads.

To minimize topical (domain) drift of the downloaded 
documents from the original domain, each of the crawled 
documents  is  cleaned  up  and  the  cosine  similarity with 
respect  to  the  domain  model  is  computed.  Documents 
whose similarity scores lie above a certain threshold are 
added  to  the  data  obtained  initially.  This  similarity 
computation and thresholding step ensures  purity of the 
additional text data while removing irrelevant content. We 
apply focused crawling to automatically gather additional 
domain related text data for enhancing the language model 
which in turn affects the performance of the ASR. 

2.2. Corpus expansion of recipe domain data 
For both our English and Hindi tests we chose the same 
topic domain of cooking recipes. Sentences typical of this 
domain are “sprinkle the cavity with salt and pepper,” and 
“in a small bowl, mix flour, beer, and sauce”. The English 
seed  application  contains  5,261  word  tokens;  after 
expansion the count is 215,217. The Hindi seed consists of 
192 hand-edited sentences totaling 1,523 words. This was 
expanded to 159,995 words in one run, and 360,395 in 
another, depending on the threshold settings. Three Hindi 
text sets are used to construct and evaluate three language 
models, as discussed in the following section.

For  the English database  used to  test  text-to-speech, 
1,111  utterances  were  recorded  from a  single  speaker. 
Removing  10%  for  testing  leaves  exactly  1,000  for 
training.  Discussion  of  TTS  experiments  is  deferred  to 
section 3.

2.3.  Effect  of  language  model  and out-of-vocabulary 
words on ASR performance
In the Hindi ASR experiments the speech data consists of 
192  utterances  (comprising  13  minutes)  from  a  single 
speaker,  with  20  utterances  held  out  for  testing.  This 
relatively  small  amount  is  used  to  adapt  multi-lingual 
GlobalPhone  acoustic  models  to  the  speaker  [6].  The 
training/test data was partitioned three times with separate 
experiments run on each partition

LM word 
count

Word Error Rate (WER) (%)
perplexity / OOV rate (%)

split 1 split 2 split 3 ave.

1 1523 95.88
5.2/68.7

97.92
6.9/57.9

84.93
7.8/50.0

92.91
6.6/58.9

2 159995 55.15
177/16.8

56.25
93.4/27.4

51.81
165/13.4

54.41
145/19.2

3 360395 54.12
214/15.0

52.08
113/25.0

50.60
187/11.3

52.27
171/17.1

Table 1. WER, perplexity, and OOV rates measured on 3 
training/test partitions for each of the 3 language models. 

The performance increase from 92.9% to 52.3% shown in 
table 1 is substantial and mostly a result of significantly 
reducing  the  OOV  rate  on  the  test  set  by  focused 
recrawling. We could achieve a comparable result only in 
a  cheating  experiment,  where  we  included  the  test 
sentences into the LM. Clearly,  this is not  a solution in 
practice. Furthermore, overspecialization makes a system 
less flexible. Recrawling increases the LM perplexity from 
6.6 to 171 but this is more than compensated by reducing 
the OOV rate from 58.9% to 17.1%. Non-technical users 
easily fall  prey to the deadly effect  of OOV words.  An 
enhanced recrawler could specifically target this problem 
by automatically maximizing vocabulary coverage. 

3. INCREMENTAL VOICE BUILDING

Incremental  voice  building  is  a  technique  that  uses  a 
previous version of a synthesizer to help construct a newer 
version.  Our  effort  focuses  on  incremental  lexicon 
building and is based on the observation that synthesized 
samples of words can assist in the task of pronunciation 
correction  [7].  The  procedure  is  conceptually  straight-
forward.

1834



1. Employing the previous synthesizer and its letter-
to-sound  rule  system,  up  to  four  alternate 
pronunciations  are  generated  for  each  lexical 
entry.  This  is  performed  as  a  batch  operation 
prior  to  involving  the  user  for  the  correction 
stage.

2. The alternate pronunciations are presented to the 
user  one  entry at  a  time,  with  the  most  likely 
pronunciation  listed  first.  Presentation  includes 
the word in the native script, phoneme strings for 
each  alternate,  and  the  corresponding wavefile. 
The user listens to the wavefiles and selects the 
closest match, or, if none is acceptable, types in 
an alternate pronunciation. In the  SPICE system 
the  typed-in  pronunciation  is  synthesized  for 
playback. Because this task can be tiring, the user 
was not expected to examine the full lexicon in 
one  sitting.  Review  sessions  lasted  20-30 
minutes,  and  ended  when  the  user  noticed 
encroaching fatigue.

3. The  user  records  an  additional  set  of  200 
prompts, spending about 25 minutes to complete 
this task. We designed the lexicon and recording 
activities to be interleaved and roughly balanced.

4. The updated lexicon and expanded speech data 
are used to rebuild the voice.

5. While  the  voice  is  being  rebuilt  the  user 
transcribes a set of heldout test utterances from 
which  the  transcription  error  rate  is  computed. 
This number is made available to the user as a 
measure  of  voice  quality,  and  is  compared  to 
previous values.

6. The user may now begin a new session at step 1. 
In  actual  practice,  a  number  of  engineering 
details  needed  to  be  attended  to  between 
iterations.  The  experiments  reported  here  were 
conducted over a span of several days.

3.1. Data characteristics and time usage
The English recipe-domain synthesizer  was built  in five 
iterations.  Ignoring overhead,  the user  spent  2  hours  to 
record 1000 short utterances plus 2.5 hours to improve the 
pronunciation  lexicon.  With  silences  trimmed  off,  each 
session yielded about 7 ½ minutes of speech data, totaling 
36m13s.  Table  2  provides  time  summaries  of  lexicon 
building. The column examine time gives the average time 
to  handle  a  lexical  entry,  viz.  selection  or  type-in 
correction. Average times vary from 5 to 17s. Notice that 
selecting  the  correct  pronunciation  (if  present),  is  2-3 
times more efficient. Also, the selection times decreased 
substantially  over  the  sessions.  This  is  due  to  a 
combination of factors: familiarization with the task and 
application, and the fact that the voice quality improves 
with each iteration.

lexicon words time (mm:ss) examine time (s)

stage total stage total selected type-in

104 104 20:40 20:40 9.8 15.9

140 244 28:55 49:35 10.1 16.7

193 437 31:10 80:45 7.2 14.4

217 654 26:01 106:46 4.7 14.4

310 964 41:23 148:09 5.9 12.3
Table  2.  Five  iterations  of  lexicon  expansion  on  the 
English  test.  The  seed  lexicon  of  394  words  is  not 
included.

3.2. Lexical coverage of prompts and corpus
The system works on lexical entries ordered by frequency, 
and one may take the counts from either the prompt list or 
from the text corpus. Choosing to cover all the words in 
the prompt list first optimizes model building (because the 
transcript  will  be  better).  Ordering  words  based  on  the 
corpus optimizes coverage of the language domain, at the 
risk of poorer acoustic models. 

Figure  1  compares  three  word  selection  strategies. 
They  are  1)  prompts  before  corpus,  2)  corpus  before 
prompts,  and  3)  one  from  each  alternately.  In  this 
experiment we adopted the first strategy – that is, seeking 
a pronunciation for each word in the prompt list first.

Figure 1. Token Coverage in the prompt set under three 
selection strategies. The black dots are the actual samples 
from incremental voice building. The prompt set has 1057 
unique words.

3.3. Lexicon construction – usage of wavefiles
When working on the lexicon, each word is accompanied 
by  up  to  four  alternate  pronunciations  displayed  as  a 
phoneme string and synthesized using the voice from the 
previous stage. To study user behavior we measured the 
frequency of wavefile playings. The distribution is shown 
in Figure 2. In difficult cases wavefiles are played eight 
times or more, but most often once is enough. The average 
number of counts ranged from 3.7 (stages 1 and 2) to 1.8 

Word Count

0 500 1000 1500 2000

P
e
rc

e
n
t 

co
v
e
ra

g
e

25

50

75

100
Prompt Token Coverage

Legend

prompts then corpus
alternating selection
corpus then prompts

1835



(stage  4).  Table  3  lists  how  often  each  alternate  was 
chosen  when  no  corrections  were  made.  Instead  of 
randomized  ordering,  our  experience  suggests  that  it  is 
better to place the most likely pronunciation first.

Figure 2. Distribution of the number of times that the user 
plays the wavefiles for a word.
 

distribution of pronunciation selections

stage 1st 2nd 3rd 4th % 1st

1 54 9 5 2 77.1

2 61 17 12 1 67.0

3 93 27 2 2 75.0

4 132 18 4 7 82.0

5 155 26 22 5 74.5
Table 3. Distribution of selection choices of each stage.

3.4. Transcription listening tests
Transcription word error rates on a held out test set is a 
direct  measure  of  comprehensibility.  After  4.5h  of  user 
effort  the final  result  is  33 errors  out  of 724  words,  or 
4.6%, down from an initial rate of 32%. Ten of these may 
be  considered  “soft”  (the for  a),  while  remainder  are 
“hard” errors (bowl for dough). In the final voice building 
iteration, 41 minutes of lexicon work resulted in an 2.62% 
reduction  in  absolute  WER,  or  3.8%  per  hour.  In  the 
previous stage 51 minutes of total effort (25 recording, 26 
lexicon) reduced WER by 3.32%, or 3.9% per hour. This 
suggests  that  the  bulk  of  improvement  is  due  to  an 
improved lexicon. Our experiments in [4] found that when 
a voice is small (less than 30m) collecting more speech 
data is most efficient path to improvement, then after some 
threshold lexicon work wins out. Truly separating the two 
effects, though, requires that substantially more conditions 
be built and evaluated.

Voice Transcription Errors

utts lexicon effort INS DEL SUB WER

200 356 0:25 18 45 167 31.77

400 460 1:08 19 48 111 24.59

600 600 2:00 16 24 90 17.96

800 793 2:56 7 10 59 10.50

1000 1010 3:47 6 6 40 7.18

1000 1320 4:28 5 1 27 4.56
Table  4.  Transcription error  counts  and rates  for  a  724 
word test set. Total effort is given in hours and minutes.

 4. CONCLUSION

To improve existing seed ASR and TTS systems we have 
prototyped  two  innovations  for  SPICE:  1)  focused  web 
recrawling to enhance the language model, and 2) iterative 
voice building with interleaved lexicon construction. We 
conjecture  that  if  users  can  experience  tangible 
improvement  while  working,  they  will  be  much  more 
willing to  devote  the  effort  required  to  develop  speech 
system for new languages.

6. REFERENCES

[1] SPICE, http://cmuspice.org.
[2] Schultz,  T.,  Black,  A.,  Badaskar,  S.,  Hornyak,  M., 

Kominek, J., SPICE: Web-based Tools for Rapid Language  
Adaptation  in  Speech  Processing  Systems,  Interspeech 
2007, Antwerp.

[3] Kominek,  J.,  Schultz,  T.,  Black,  A.  Voice Building  from 
Insufficient Data – Classroom Experiences with Web-based  
Language  Development  Tools,  ISCA  Speech  Synthesis 
Workshop 6, Bonn, German, 2007.

[4] Kominek,  J.,  Schultz,  T.,  Black,  A.  Synthesizer  Voice  
Quality  of  New  Languages  Calibrated  with  Mean  Mel  
Cepstral  Distortion,  SLTU-2008  Workshop,  Hanoi, 
Vietnam.

[5] Chakrabarti,  S.,  van den Berg, M., Dom, Byron.  Focused 
crawling: a new approach to topic-specific (web) resource  
discovery, Computer Networks, vol. 31, no. 11-16, 1999.

[6] Schultz, T., GlobalPhone: A Multilingual Speech and Text  
Database  developed  at  Karlsruhe  University.  ICSLP, 
Denver CO, USA, 2002.

[7] Davel,  M.,  Barnard,  E.  The  Efficient  generation  of  
pronunciation  dictionaries:  human  factors  during  
bootstrapping, Interspeech 2004, Jeju, Korea.

Num Wavefile Plays

0 4 8 12 16

O
cc

u
ra

n
ce

 C
o
u
n
t

0

100

200

300

400

500
Distribution of Wave Play Count

1836


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	------------------------------
	Abstract Book
	Abstract Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Also by Tanja Schultz
	Also by Alan W. Black
	------------------------------

