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Abstract

This paper is an initial investigation into using knowleeggsed
parameters in the field of statistical parametric speecthegis
(SPSS). Utilizing the types of speech parameters used in the
Klatt Formant Synthesizer we present automatic techniépres
deriving such parameters from a speech database and fguildin
a statistical parametric speech synthesizer from theseeder
parameters. Although the work is exploratory, it shows ps@Em

in using more speech production inspired parameterization
statistical speech synthesis.

Index Terms:. statistical speech synthesis, Klatt formant syn-
thesizer.

1. Introduction

Over the last thirty years we have seen the advancement of
speech synthesis from hand crafted rule-driven formarnth&yn
sis techniques [1]; controlled inventory concatenativatisg-
sis [2], (e.g. diphones), large inventory unit selectionthgsis
[3], and the latest technology investigates statisticehmpeetric
generation based techniques [4]. We can view this progrnessi
as benefiting from improved machine learning modeling tech-
nigues which have in turn been aided by the advancement in
computation power and increasing database sizes. One-advan
tage is that synthesis is now feasible in languages whéie lit
phonetic or linguistic knowledge is available. Modelinghe
niques are often sufficient to capture language propertieb s
that adequate synthesis is possible with sometimes oriipgrt
raphy and audio of a reasonably small database [5].

However it is notable that the selection of parameteriratio
for SPSS is still a hot research topic. There is substantial a
tive work on finding improved excitation modeling technigue
[6, 7, 8]. Although alternative spectral parameterizai®also
being studied (MFCCs vs LSF [9]) these are currently mostly
addressed at derived functions from FFTs. We wish to expand
that search to investigate parameterizations that are taore
geted to human speech. For our initial study we returneddo th
earlier speech synthesis work of Dennis Klatt.

2. Klatt Formant Synthesis

Klatt Formant Synthesis [10] is a synthesis technique where
set of parameters are generated from text by rule from which
a waveform file is constructed from a cascade of modules to
give a resulting signal. The choice of parameters is based on
established theories of speech production and percepkivey
include source features (like glottal sampling; pitch; mea-
ments of aspiration and frication) and vocal tract feat\li&e

resonant nasal and formant frequencies, bandwidths and am-

plitudes). Though ground breaking at the time, the techmiqu
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required experts to construct such suitable values for pach
rameters by hand in order to optimally produce human sound-
ing speech. With the advent improved computational regsyrc
both speed and space, techniques that automatically tim f
recorded natural speech have prevailed as they can offar bot
more natural synthesis, and can require less phonetic knowl
edge of the language and speaker to create. However in re-
questioning the optimal parameterization for modern stial
parametric speech synthesis we decided to re-visit thénatig
selection of Klatt Formant Parameters to see how they parfor

in today'’s statistical synthesis framework. In additioruging
Klatt-like parameters in a statistically synthesizer, westralso
address the novel issue of automatically deriving thesarpar
eters for a large database of natural speech. We do not have
the expertise to do develop these parameters by hand orsacces
to the original MITalk to get expert aid. We therefore have de
veloped our own initial techniques to derive Klatt-like figes
directly from speech signals.

Broadly, Klatt parameters as described in [1] fall into #hre
categories — i) B and Formant parameters (amplitudes, fre-
quencies and bandwidths of the fifsformants and the nasal
formant), ii) quantified measures of articulatory featuam-
plitudes of aspiration, frication and nasality), and iidi¥ing
amplitude, Overall gain etc., A complete description of tKla
features is presented in Appendix A. The following sections
describe the techniques used for extraction of these paeasne

2.1. Formant Parameters

We use thdormantpackage from the ESPS toolkit [11] to ex-
tract the formant parameters. For each 50 second analysis wi
dow with a 5 millisecond shift, we get the frequency and the
bandwidth. We use thEFT program to compute the magni-
tude spectrum. The amplitude at the formant frequencies are
noted as the formant amplitudes. It is to be noted that there a
several practical considerations here like the kind of simoo
ing window, the number of points in the FFT, window size/fshif
etc. For the experiments here, we manually chose the param-
eters that best approximate the peaks on the spectra with the
extracted formant frequencies.

Figure 1 marks the formants on the FFT magnitude spec-
trum for a voiced segment of speech. The decision to extract
6 formants was merely practical, as the Klatt synthesizet sof
ware we use expectsformants. Also, human speech is fairly
well represented within the range of frequencies spanne@l by
formants.
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Figure 1: First formants marked on the FFT spectrum

2.2. Nasality, Aspiration and Frication

Klatt's original synthesizer proposes use of coefficients o
nasality, aspiration and frication. In this work, we use & di
criminative approach as described in [12] to find these featu

in a signal. In [12], Gaussian mixture models (GMMSs) are used
to find the likelihoods of these articulatory phenomena. We
build both positive and negative models for each phenomena
using features (e.g MFCC) from the training set. As the data
is already labeled with standard phonemes with a three state
HMM labeller we can make of this information to training the
models. We use only the frames labeled with the middle states
of the relevant phonemes, making the assumption that tte firs
and last states may cover transitions between the phoneines.
positive state refers to when a characteristic is preseagaln

ity, aspiration, and frication) and negative states refewhen

a characteristic is not present (non-nasality, non-aspiraand
non-frication). When training the positive state GMMs, fok
lowing phonemes are used: nasality,m, ng frication, f, hh,

s, sh, th, v, z, zhand aspirationhh. When training the neg-
ative states, all other phonemes not in these sets are used. |
addition, phonemes that bordered a positive state phoneene a
excluded from training the negative state GMM, so as to avoid
transitional effects (for example, a non-nasal phoneme lneay
colored with some nasality if it is next to a nasal phoneme, an
as such should not be used for training the non-nasal GMM).
Once these GMMs are trained, they are used to aid in both scor-
ing (i.e., how nasal a segment of speech is) and classificatio
(i.e., if asegment of speech is nasal or non-nasal). Thextecd
tors” can be used to output non-binary scores of these dcoust
events.

During the testing phase, each utterance is processed by
testing each short time feature sequence for each of the thre
detectors. Each detector assigns a scofetofa segment that is
detected to be in the negative state. A non-zero score graesbi
for positive classification of the events. The dynamic range
these scores may scaled to correspond to the decibel rasges a
specified in original Klatt implementation. Each detectdr a
dresses two tasks: assigning the actual score and thrasfpold
all negative state features. Some detectors investigatedea
scribed briefly below.

2.2.1. Maximum likelihood detector

This naive detector assigns the class with the higheiitiket
on the speech segment under consideration. Wheré thand
L_ are the likelihoods for the positive and negative statesifro

the respective GMM PDFs, the score is calculated as Eqgn 1.
Note that a score of zero is assigned whenever the negagiiee st
likelihood is greater than the positive state score, bysihoid-

ing any scores that are negative or imaginary.

S =logio(L+ — L- +1) Q)

2.2.2. Bayes detector

The Bayes detector attempts to take into considerationribe p
probabilities for the positive or negative states (obtdifrem
the training data). The detector scores each test speesteség
such that

log(L+) P(+|z) > P(—|z) )
0 P(+|z) < P(—|z)

Note that the likelihood from the GMM is in the form
P(x|i). To getP(i|x), Bayes rule may be used to transform
the comparison betweeR(x|i) and P(x|j) to a comparison
betweenP(z|i) P (i) and P(x|j) P(j), wherei andj could as-
sume positive and negative states. Note that the prior pittba
ties weight our decision.
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2.2.3. Linear Discriminant Analysis

An LDA detector is developed to separate the GMM outputs of
the positive and negative states. Here, the score outpbeis t
same as is found in Egn 2, but the decision criteria are based o
whether LDA determines a test MCEP to be either from the pos-
itive or negative state. To determine a threshold to usehier t
comparison, cross validation is done on the training datieto
termine the optimal threshold to use to separate the tweetas
Two versions of this detector are tested ; one that usesaatktr
ing data and one that used equal amounts of training data for
the positive and negative states (the latter made the detect
decision bias more fair.

Another detector is used that discounts the GMM scores.
Instead, LDA is applied to the features themselves. Thisress
tially projects a high dimensional vector into a single dime
sion. Cross validation is performed to obtain optimal thadds
to distinguish the positive state from the negative stataceD
projected onto one dimension, instances falling in the tiega
state are assigned a scoredadnd positive state instances were
given a score based on a scoring function. Here, a Gaussian
scoring function was used, but this could easily be extended
with the use of different scoring functions and dimensiothef
projected space.

These methods are tested on a development and training set
both in terms of error rates and cepstral distortion betwtben
reference features and the resynthesized utterance'srésat
All other parameters in the Klatt synthesizer remain camtsta
during resynthesis. The naive detector performed the ibest
terms of error rates, but the LDA detector (equal trainirgge¥i
based on MCEPs performed the best in terms of cepstral distor
tion, and is our chosen method for our final implementation.
These results are shown in Table 1. It should be noted that
perceptually, it is difficult to notice a difference betwethiese
different methods, and as such all may be considered as good
detectors for current purposes.

2.3. Other Parameters

Parameters like thgain, skewandaturb have been set empiri-
cally. The resynthesis is perceptually checked to soundbas ¢
to the original speech as possible. The default values of the



[ TrueState | Naive | Bayes | GMMLDA | GMM LDAE | MCEP LDA | MCEP LDAE |
Nasal 1.43% | 3.40% | 7.26% 19.90% 15.95% 4.79%
Non-Nasal | 0.75% | 0.40% | 0.23% 0.40% 0.37% 1.41%
Fricative | 3.78% | 6.60% | 20.38% 6.33% 12.62% 7.79%
Non-Fricative | 5.00% | 3.82% | 6.80% 12.36% 7.05% 9.22%
Aspiration | 3.01% | 13.28% | 63.66% 8.52% 89.47% 10.03%
Non-Aspiration | 1.32% | 0.21% | 0.07% 4.00% 0.09% 15.89%
MCD mean | 11.88 | 11.95 11.96 11.95 11.79 1167
MCD variance | 0.36 | 0.37 0.38 0.38 0.26 0.26

Table 1: Error rates on positive and negative examples.

program are used for the rest of the parameters. Wherever ap- Synthesis of speech from unseen text based on Klatt paramete
propriate, silence and unvoiced segments are set to zedss or
faults. In all default values were used foof the40 parameters

suggested by Klatt.

3. Synthesis Experiments

We used the Arctiems database [13] for our experiments as it

using the techniques described in the previous sectionpéhe

rameters were then used within our Clustergen Statistiaal P

rameter Speech Synthesizer [14]. We effectively replabed t

MFCC features that we normally use with the Klatt Parameters

Although Clustergen offers various options for which featu
are used for clustering, and the option to build multiple mod
els for different subsets of the parameter vectors, we used t

simplest option and clustered with all the parameters.
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based statistical speech synthesis.

3.1. Resynthesis

For resynthesis of these generated parameters we useda[15],
C implementation of Klatt’s original Fortran code. The Fiy.
illustrates the schematic representation of the Klattlsgsizer.
offers one of clearest spoken standard American voice. We ex The input excitation is either an impulse train for voicedsds
tracted the 40 parameters for each 5 ms frame in the databases and noise for unvoiced sounds. This is input to aspiratioces

tion and resonators (corresponding to the formant res@snc
as illustrated in the Fig. 2.
The extracted Klatt features are used as input to the Klatt
synthesizer to reconstruct the speech signal. The reselsm
couraging with perceptually almost perfect resynthesig. &
compares the spectra of original and synthesized portiéns o
a voiced segment. Evidently, the peaks align precisely én th
lower frequency regions. We are still investigating theatta-
tion effect that is affecting the higher frequency ranges.
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Figure 3: Resynthesis vs original spectrum of 5ms speech seg

ment of the phonemeh
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3.2. Text-to-Speech

To investigate the Klatt-parameter based Clustergen frarie

for Text-to speech, we built CART trees of Klatt parameters
extracted for the speech database. The trees are clustered u
ing the same contextual questions that are commonly used in
MCEP based voice building. A Klatt parameter tree is trained

Figure 2: Schematic representation of Klatt-based syish&s

In the following sections, we describe two experiments —
1) resynthesis of speech from extracted Klatt parametat®2an



for each of the three HMM states within a phoneme. At run-
time, the parameter vectors are generated using the dayatio
FO and the Klatt parameter trees. For synthesizing speeah fr
the predicted parameter file, we use the same C code used for
resynthesis. The models for duration and FO are the same that
are built for the default voice (using MCEPs).

We compared the two voices built using MCEPs and Klatt
parameters. Since the same duration model is used for the
two voices, outputs are time-aligned. Appendix B shows the
spectrograms for a synthesized utterance of an unseeretest s
tence using the two parametrizations. As evident from tlee-sp
tograms, Klatt parameters sufficiently model the spectsal a
pects of speech. Perceptually, the speech is completedi int
ligible and listeners transcribed all the words in the secte
There is, however, the ‘processed’ quality to the synthttgs
is quite distinct from MCEP based synthesis.

Predicted parameters can be post-processed based on the
identity of the underlying phoneme by merely increasinger d
creasing its value as appropriate for the task (e.g, to make o
put speech sound more 'nasal’ or ‘bursty’). This flexibility
unique to knowledge-based parametrizations, like the cee w
presented in this work. For the example reported, we did not d
any post-processing on the predicted vectors except foomo
ing. We are currently working on objective comparisons @f th
two parametrizations.

4. Discussion

The synthesis quality is fully understandable but has a-“pro
cessed” quality to it. Interestingly although the outputesgh
clearly contains the speaker identity of rms, the qualitslso
sounds like “DECtalk”. Thus it is clear that the Klatt parame
ters introduce a particular type of speech distortion duthéo
parametric and resynthesis techniques.

We are aware that expertly highly-tuned Klatt parameters
can produce synthesis quality far beyond the quality that ra
text to speech can give, and hoped that our techniques might
help improve text-to-speech quality for Klatt-like formayn-
thesis. But even our resynthesis quality is closer to TTPwiut
quality than we hoped. The resynthesis quality is not as good
as we hoped, suggesting there is still more work in improving
both the extraction of parameters and the method of resynthe
sis. Ultimately in statistical speech synthesis there breet
constraints on the appropriateness of a set of parametess. F
they must be automatically derivable from data bases of-natu
ral speech; second the parameters must give rise to higkyqual
resynthesis; and finally the parameters must be predictaiste
text.

5. Conclusion

In this paper, we revisit the classical knowledge based
parametrization of speech for use within the framework af st
tistical parametric speech synthesis. We present techsifpr
extraction of these parameters directly from speech date- A
lytical results are presented for resynthesis and textcassl-
eling/prediction of Klatt parameters. We intend to furtirer
prove our parameter extraction and vocoding algorithms. We
are also investigating the use of Klatt-style parameteas@ange

of speech applications like speech recognition, spealkettiit
cation and voice conversion.
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A. A detailed list of Klatt Parameters

[ No. [ Parameter| Description

1 fo fundamental frequency (pitch) of the segment

2 av Amplitude of voicing for the cascade branch in dB, Range 0-70

3 f1 First formant frequency in the range 200-1300 Hz

4 bl Cascade branch bandwidth of first formant in the range 4@ 30

5 f2 Second formant frequency in the range 550 - 3000 Hz

6 b2 Cascade branch bandwidth of second formant in the rang®@0-4z

7 3 Third formant frequency in the range 1200-4999 Hz

8 b3 Cascade branch bandwidth of third formant in the range 4 Hz

9 f4 Fourth formant frequency in 1200-4999 Hz

10 b4 Cascade branch bandwidth of fourth formant in the rangeGEBHz

11 5 Fifth formant frequency in the range 1200-4999 Hz

12 b5 Cascade branch bandwidth of fifth formant in the range 401D

13 6 Sixth formant frequency in the range 1200-4999 Hz

14 b6 Cascade branch bandwidth of sixth formant in the range 4D 2{z

15 fnz Frequency of the nasal zero in the range 248-528 Hz (cascadetbonly)
16 bnz Bandwidth of the nasal zero in the range 40-1000 Hz (cascedehb only)
17 Fnp (default 200) Frequency of the nasal pole in the range 248F52(constant)
18 Bnp (default 30) Bandwidth of the nasal pole in the range 40-188@constant)
19 asp Amplitude of aspiration 0-70 dB

20 Kopen (default 40) Open quotient of voicing waveform, range 0-60

21 Aturb (default 0) Amplitude of turbulence 0-80 dB, simulates khgajuality

22 tilt (default 0) Voicing spectral tilt in dB, range 0-24

23 af Amplitude of frication in dB, range 0-80 (parallel branch)

24 Skew (default 0) Spectral Skew - skewness of alternate peri@age 0-40

25 al Amplitude of first formant in the parallel branch, in 0-80 dB

26 blp Bandwidth of the first formant in the parallel branch, in Hz

27 a2 Amplitude of parallel branch second formant

28 b2p Bandwidth of parallel branch second formant

29 a3 Amplitude of parallel branch third formant

30 b3p Bandwidth of parallel branch third formant

31 a4 Amplitude of parallel branch fourth formant

32 b4p Bandwidth of parallel branch fourth formant

33 ab Amplitude of parallel branch fifth formant

34 b5p Bandwidth of parallel branch fifth formant

35 ab Amplitude of parallel branch sixth formant

36 b6p Bandwidth of parallel branch sixth formant

37 anp Amplitude of the parallel branch nasal formant

38 ab Amplitude of bypass frication in dB, 0-80.

39 avp Amplitude of voicing for the parallel branch, 0-70 dB.

40 Gain (default 80) Overall gain in dB range 0-80.

B. A comparison of Klatt/M CEP parameter based TTS
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Figure 4: Synthesized example from MCEP(above) and Kkiti{is) parameters for sententidis immaculate appearance was gone.”



