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ABSTRACT

When developing synthesizers for new languages one must 
select  a  phoneset,  record  phonetically balanced  sentences, 
build up a pronunciation lexicon, and evaluate the results. 
An objective measure of voice quality can be very useful, 
provided it is calibrated across multiple speakers, languages, 
and databases.  As a  substitute  for  full  listening tests,  this 
paper adopts mean mel-cepstral  distortion as a measure of 
spectral  accuracy,  and  proposes  systematic  variation  of  a 
known English corpus as a method of calibration.  We find 
that doubling the database size reduces MCD by 0.12, while 
reverting to  a  grapheme-based  voice  increases  it  by 0.27. 
This offers a frame of reference for estimating voice quality, 
which is applied to a test suite of 8 non-English languages.

1. INTRODUCTION

Our interest lies in extending the reach of speech synthesis 
to “new,” i.e.  previously uncovered languages,  by making 
the voice development task easier  for  non-specialists.  The 
open  source  Festival/Festvox  speech  synthesis  toolkit  [1] 
contains  working  examples  of  major  languages  such  as 
English  and  Spanish,  plus  templates  for  less-resourced 
languages.  Dozens of synthesizers  have been built  for  the 
Festival system. Nonetheless, these tools are not for the faint 
of  heart  –  they  require  a  software  developer  having 
considerable  expertise  with  speech  and  language 
technologies, plus the patience to manually review labeled 
databases. In addition, the developer needs frequent access 
to a native speaker in the target language. The combination 
of  language and technology expertise  conspires  to  form a 
bottleneck to progress.

We are attempting to relieve this bottleneck by creating a 
a simplified development framework that is an enhancement 
of Festvox, and is part of a larger project called SPICE. The 
SPICE project  aims to deploy a web-based toolkit for  the 
rapid development of ASR and TTS technologies [2]. The 
first version of this toolkit has been now running as a live 
server  for  one  year  [3],  and  has  been  used  in  laboratory 
courses taught at Carnegie Mellon University in the U.S. and 
at Karlsruhle University in Germany. The TTS component is 

more advanced in the sense that it guides the user through 
the various stages of  text and speech collection,  phoneset 
definition,  pronunciation  dictionary  development,  voice 
creation, and evaluation. As an additional design goal,  we 
want  the  system  to  produce  an  intelligible  (if  not  high 
quality)  voice  with  as  little  as  5-10  minutes  of  recorded 
speech, and to noticeably improve with additional data.

The  efforts  of  a  dozen  students  to  create  new speech 
synthesizers with the SPICE toolkit are described in [4]. We 
found that 5 minutes of speech (i.e. the reading of about 100 
short  sentences)  is  enough for  an  initial  voice  –  with 15 
minutes  preferred  –  provided  the  material  is  phonetically 
balanced and the accompanying pronunciation dictionary is 
complete and accurate.  Yet anecdotal  experience confirms 
that lexicon creation is labor intensive, fatiguing, and error 
prone.  While  500  lexical  entries,  for  example,  is  small 
compared  to  100,000  typical  of  full-language  coverage, 
motivating users to complete just that much is not easy. One 
student expressed the general  sentiment as “can't  you just 
ask me about words that it can't predict correctly?”.1

There  are  a  number  of  ways  to  address  this  concern, 
including the simple retort  “no.” More  optimistically,  one 
can  refine  the  graphical  user  interface  used  for  lexicon 
creation, with the intention of reducing human burden [5]. 
Also,  while  it  introduces  issues  of  consistency,  multiple 
native speakers can work on the lexicon, if available. Yet, 
none  of  these  suggestions  offers  an  order-of-magnitude 
reduction in effort that our users implicitly seek. In response 
one  can  switch  from  phoneme-based  to  grapheme-bases 
synthesis,  as  such a synthesizer  requires  no pronunciation 
dictionary. This is inherently limited, for no human language 
possesses  a  one-to-one  mapping  between  graphemes  and 
phonemes. Less drastic is to retain phoneme-based synthesis, 
but to economize on human effort by seeking the minimal 
amount  of  information  (i.e.  word  pronunciations)  that  is 
needed.

Achieving economy of effort presupposes a way to self-
measure a system's knowledge as it is being built. We want 
to  operationalize  this  at  two  levels:  1)  measuring  the 
correctness of a particular lexical entry, that it may “just ask 

1 The “it” refers to the system's incrementally learned letter-to-
sound rules, used to predict the pronunciation of the next word 
presented to the user.



about  the  words  it  doesn't  know”,  and  2)  measuring  the 
voice  quality  as  a  whole,  i.e.  knowing when it  is  “good 
enough.” This paper focuses on the second aspect. 

We  adopt  mean  mel-cepstral  distortion  (MCD)  as  an 
objective  measure  of  global  voice  quality.  To  provide 
calibration marks we have run extensive tests on English, 
against which builds of other languages may be compared. 
Our  complement  of  languages  in  this  study  are  French, 
German,  Tamil,  Hindi,  Mandarin,  Bulgarian,  Thai,  and 
Konkani. Konkani is minor language of central India notable 
for lacking a native writing system. It is without question the 
most “under-resourced” language we have encountered.

Section  2  describes  our  testing  framework  used  to 
address a list of specific questions (see 2.4) that focus on 
automatic evaluation of TTS for new languages. Section 3 
provides results that suggest answers. Section 4 summarizes 
and points out unfinished business.

 
2. MEASUREMENT AND TESTING

Before  defining  our  formulation  of  the  MCD objective 
measure, there are a number of caveats worth stating at the 
outset. First is that it is not by any means complete, nor fully 
reliable. That is, there are many other factors that contribute 
to  the  perception  of  voice  quality.  For  example  –  this  is 
point number two – it takes no account of speech dynamics, 
either  short-range  differentials  or  long-range  prosodic 
effects. Thirdly, distortions in the pitch contour are ignored. 
Thus,  for  tonal  languages  such  as  Thai,  Cantonese,  and 
Mandarin,  the  measurements  must  be  considered  suspect. 
Nonetheless,  [6]  shows that  when this  distortion  measure 
decreases the corresponding voice quality does improve, so, 
in lieu of something better, it is a useful proxy.

2.1. Mel-cepstral distortion as an objective measure
In  speech  processing  systems  it  is  common to  analyze  a 
waveform into a sequence of multi-dimensional coefficients 
(vectors)  at  regularly  spaced  intervals  called  frames.  For 
TTS  applications,  typical  parameters  are  25-D  mel 
frequency-scaled cepstral coefficients with a frame step size 
of  5  ms.  We represent  this  sequence  of  frames  as v d t 
where d is the dimension index ranging from 0..24, and t is 
time, or more precisely, the frame index. Two waveforms – 
the target v targ and reference v ref – have a mean mel-cepstral 
distortion defined as an extension of the simple Euclidean 
norm, such that

MCD  vtarg , v ref = 
T ' ∑

t=0
ph t ∉SIL

T −1 ∑d=s

D

vd
targ t−vd

ref t2   (1a)

    

= 102
ln 10

=6.14185                           (1b)

where the scaling factor   is  present for historical reasons 
[6],  the  shorter  of  the  two  wavefiles  is  given  as
T=min∣vtarg∣,∣v ref∣ frames in length such that T '≤T is 

the  number  of  non-silence  frames,  while  the  expression
ph t ∉SIL excludes frames that lie inside silence regions, 

and  s is  the  “starting”  dimension  of  the  inner  sum,  and 
equals either 0 or 1. When s = 0, eqn (1) includes the zeroth 
cepstral dimension, the component known to correspond to 
overall  signal  power.  In  this  paper,  results  are  computed 
with  s  = 1, i.e. the power term is ignored.  We adopt this 
choice so that the distortion measure is not influenced by the 
speaker's loudness, something that is less controlled in web-
based audio collection compared to studio recordings. Note 
that some numbers reported in the literature implicitly assign 
s = 0, and thus are not directly comparable to ours.

For our purposes the target and reference waveforms are 
the synthesized and original versions of the same utterance. 
Synthesizing from text, though, presents a problem. Because 
the durations of phonemes are predicted, the time alignment 
will diverge from the original, rendering eqn (1) misleading. 
This can be improved by performing dynamic time warping 
between the target and reference, but such compensation is 
only partially reliable. Instead, it is better to use the original 
waveform  as  a  detailed  template  for  resynthesis. The 
reference and target frames thus align 1-to-1, improving the 
precision of distortion measurements.

2.2. Test suites with 10-fold cross validation 
When  the  test  set  consists  of  multiple  utterances  (as  is 
normal),  the  individual  MCD scores  of  wavefile  pairs  are 
averaged. In addition, we perform 10-fold cross validation 
on a given database using a 90/10 training/test split. So if a 
database  has  1000  utterances,  these  are  divided  into  10 
partitions p, each with a training set of 900 and a test set of 
100. The test utterances constitute ten non-overlapping sets 
and  are  uniformly  sampled  at  indices {n}p  given  by  the 
expression {n}p=n pmod 10=0, p=0..9 .  Having  ten 
values per experiment makes it is easy to compute standard 
deviations for the purpose of significance testing.

2.3. Prediction features 
When performing resynthesis, the task of the synthesizer is 
to compute the target from a combination of the reference 
and  the  original  text: v targ=F text , v ref  with  the 
constraint that attributes of the reference such as phoneme 
durations may be a  part  of the function, but  not  the mel-
cepstral  vectors themselves.  (That  wouldn't  be fair  game.) 
The  choice  of  prediction  features  and  the  mathematical 
machinery used for constructing the approximation function 
F is a critical element of synthesizer design. Festival uses 
CART trees for predicting values from feature vectors. The 
machine learning algorithm used for training CART trees is 



(in a small play on words) a  program named wagon. Wagon 
is a part of the publicly available Edinburgh Speech Toolkit 
[7], and is integrated into the CLUSTERGEN [8] component 
of Festival used for these experiments.

Let a feature vector  x have dimension N. For a frame at 
time  index  t,  let x t = f 1t  , f 2t  , ... , f N t  where 
each vector component has a corresponding function  f that 
defines the feature value. As an example, one function may 
define the name of the phoneme to which the current frame 
belongs. Next we introduce a set of binary-branching CART 
trees with the function  phx  such that each phoneme-
state  ph has  a  dedicated  tree.  In  combination,  these  trees 
(typically containing thousands of nodes) predict the melcep 
vectors for the target waveform from feature vectors.2 Each 
frame is predicted separately in sequential order.

X N ℝD : v targ t = ph t x t  (2)

We divide  features  into  four  classes:  the  set  of  name 
symbolics,  position  values,  IPA  symbolics,  and  linguistic 
symbolics. Name symbolics include the name of the current 
phoneme and that of the immediate neighborhood, plus the 
names of  HMM states  within a  phoneme.  Position values 
include the location of a frame within a state, e.g. how far it 
is  from  the  starting  time,  plus  derivative  values.  IPA 
symbolics  are  a  subset  of  International  Phonetic 
Association-defined features. For example manner and place 
of articulation. These depend on and are derived from the 
phoneme set of a given language. Linguistic symbolics are 
the  output  of  high-level  functions  such as  parts-of-speech 
taggers and functions that decompose words into syllables.

This  classification  is  not  arbitrary.  Name  symbolics 
requires only that each basic speech unit has a unique name. 
Names may equate with the classical concept of phonemes, 
or  may be graphemes, or some other  symbol set.  Position 
values  also  share  the  property  of  being  language-
independent, but are different in being real-valued numbers. 
IPA symbolic features, in contrast, are language-dependent 
and  assume that  a)  the  names  are  phonemes,  and  b)  the 
phoneme set  is  appropriate.  This  issue  is  highly relevant 
because  the  ultimate  target  users  of  SPICE  are  people 
without deep background in phonetics. Finally, the demands 
presented  by linguistic  features  is  even higher:  namely,  a 
computational linguist that can program functions in Lisp. 

Being  able  to  demonstrate  that  language-dependent 
features are not critical to voice quality would prove to be a 
great relief. Table 1 is a prelude to the results of Section 3, 
and summarizes results that demonstrate exactly this. 

2 It is not uncommon to refer to melceps  as “feature vectors.” This 
nomenclature  should  not  be  confused  with  the  present  usage. 
CART trees transform points of one feature space to another.

Feature class Number Lang-dep. Δ MCD

no CART trees 1 no baseline

name symbolics 16 no - 0.452

position values 7 no - 0.402

IPA symbolics 72 yes - 0.001

linguistic sym. 14 yes + 0.004
Table 1. Four features classes, number of features in each 
class,  language-dependent  status,  and  change  of  MCD. 
Absolute changes below 0.08 are not statistically significant.

2.4. Investigative questions 
Within our framework we pose the following questions.

• How important are the language-dependent features in 
CART tree training?

• What minimal leaf node size (“stop value”) is optimal? 

• At what rate does a voice improve as more speech is 
collected? Is there a threshold beyond which collecting 
additional speech offers little added benefit?

• At what rate does a voice improve as the phoneme-based 
pronunciation lexicon is expanded? Is is more important 
to work on the lexicon or to collect more speech?

• Can an objective measure of  MCD be converted into a 
judgment about whether a voice is “good” or “bad”? 

• Can this information be used to motivate the user?

To  address  these  questions,  our  approach  is  based  on 
exhaustive  experimentation  of  a  well  studied  English 
database (the ARCTIC slt voice [9]). Non-English languages 
are evaluated with respect to the range of these results.

3. EXPERIMENTAL RESULTS

The empirical results of this paper fall into five parts. First 
we investigate the predictive ability of various features sets 
and  conclude  that  our  language-specific  features  are  not 
required  for  good  performance.  Section 3.2  illustrates  the 
effect of  database size. Section 3.3 compares the standard 
phoneme-based  voice  with  a  grapheme-based  build. 
Combined, these two experiments provides a simple frame 
of reference for evaluating other languages, as presented in 
3.4. Finally, section 3.5 estimates the relative effectiveness 
of improving the lexicon versus collecting additional speech.

The computational workload is substantial: the following 
results have been mined from the creation and evaluation of 
over five thousand speech synthesizer variants.



3.1. Feature importance in CART tree training
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Figure 1. Performance of each feature class in isolation.

Figure 1 plots the mean mel-cepstral distortion curves for 
the  four  feature  classes  trained  in  isolation.  Linguistic 
information alone is the poorest predictor.  Also evident is 
that  the minimum points  of the other  three curves  are  all 
about  equal,  and  lie  within  one  standard  deviation 
(experimentally  found  to  be  0.04).  Despite  this  equality, 
position features result in a broader basin. For smaller stop 
values (below 50), IPA and name features are considerably 
more prone to over-fitting. The relative fragility of  feature 
classes, with position features being most stable predictors, 
is an aspect that has not been previously noted.

Figure 2 shows the results of combining name features 
with  linguistic,  IPA,  and  position  features  in  pairs. 
Confirming  Figure  1,  linguistic  features  provide  no 
significant  reduction  in  MCD distortion.  IPA  features  do 
improve the curve somewhat, compared to name features in 
isolation,  but  only  in  the  less  interesting  area  of  under-
training  (stop  values  greater  than  80).  In  contrast,  the 
combination  of  name  and  position  features  results  in  a 
substantial  improvement  of  0.40.  Also,  the  optimal  stop 
value drops from a range of 70-80 to 20-30, indicating that 
this combination of information is less prone to over-fitting. 
The  extra  addition  of  IPA  features  results  in  a  barely-
significant reduction from 4.74 to 4.70, though it also shifts 
the optimal point right, and broadens the “valley,” as shown 
in Figure 3. 

From these experiments we conclude that the language-
neutral name and position features used in combination are 
sufficient  predictors;  that  IPA  features  contribute  only  a 
modest  amount,  while linguistic  features are  not  required. 
Stated another way, in a language with the phonemes /AA/ 
and /AE/, these could just as well be named Aardvark and 
Aesop. Knowing that  one is a low back unrounded vowel 
while the other is mid-low front, is not critical.

 Figure 2. Performance of feature classes combined in pairs, 
with the single class names shown for reference.
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Figure  3.  The  cumulative  effect  of  incrementally  adding 
name, position, and IPA features. Linguistic features provide 
no additional improvement. 

3.2. Effect of database size
In Section 3.1 all experiments were performed on the same 
single-speaker  database  containing  slightly  less  than  one 
hour of speech. The MCD values for this database cannot be 
directly compared to other voices due to differing amounts 
of  recordings.  Venturing  the  bold  assumption  that  no 
particular  speaker  is  harder  to  model  than  any other,  we 
contend that  MCD distortion can be normalized by size. To 
provide normalization points, the  ARCTIC slt database was 
subdivided into amounts of ½, ¼, 1/8, and 1/16 hour. (As 
measured  by  wavefiles  lengths.  With  silence  and  pauses 
excluded, the real amount of speech is about 10% less.)
In Figure 4 the effect of database size is seen as a series of 
layered  curves,  with a  nearly linear  decrease in distortion 
observed as the amount of speech doubles. The voices were 
trained using name and position features,  with data points 
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calculated  as  the  average  of  10-fold  experiments  of  a 
90/10% training/heldout split.  For sake of comparison, the 
lowermost, downward-shooting dashed curve is derived by 
evaluating on the training set. Where it decreases while the 
other curves turn upward is the region of over-fitting (found 
to the left 20). Notice that the optimal stop value is stable 
over a wide range of database sizes, a reassuring result.
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Figure  4. The  effect  of  database  size  on  MCD.  For 
comparison, the lowermost curve tests on the training set.

The series of curves of Figure 4 do not reveal an asymptotic 
lower limit. Consequently, we do not know when it becomes 
pointless to collect more speech. Our expectation, based on 
working  with  larger  English  databases,  is  that  MCD 
distortion levels-out somewhere between 10 and 20 hours. 
Due  to  the  increased  data  collection  and  computational 
requirements, finding this limit is an effort still in progress.

3.3. Effect of not having a lexicon for English
The results of Section 3.2 provide one half of a calibration 
reference. The other half is a size-versus-MCD curve from a 
corresponding  bad voice.  In combination, the two provide 
lower  and  upper  guide-rails.  A  voice  created  in  another 
language can be placed in the context of good-to-bad for a 
given size, and good-to-bad overall.

To serve this purpose the bad voice cannot be randomly 
bad.  The  most  appropriate  thing  is  to  mimic  the  voice 
creation experience of a person using the  SPICE tools. The 
equivalent,  then,  is  a  version of  ARCTIC slt  in  which the 
fully detailed lexicon is replaced with very basic letter-to-
sound rules. To this end, we've implemented a grapheme-
based voice.3 Given the highly irregular spelling of English, 
such  a  voice  is  trained  on  a  large  percentage  of  mis-
pronunciations. Hence, the MCD curve for this voice can be 
considered a generous upper bound. These two conditions 

3 During training all numbers are expanded to word form.

are  contrasted  in  Figure  5,  where  the  vertical  distance 
between  them  mostly  ranges  from  0.25  to  0.3.  It  is 
reasonable  to  believe  that  the  vertical  gap  is  a  language-
dependent  attribute.  A  language  with  a  regular  writing 
system,  such  as  Spanish,  will  display  a  narrow gap  and, 
unlike English, not present a useful context for calibrating 
other languages.
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Figure 5. Curves of grapheme-bases versus phoneme-based 
English voices, built from 1 hour of speech. The difference 
in MCD at a stop value of 20 is 0.268. 

3.4. Evaluating languages other than English
The best form of evaluation is via large-scale listening tests 
such as is conducted during the Blizzard Challenge events 
[10]. While it is crucial to have SPICE users listen to their 
voice  during  development  (e.g.  transcription  of  unseen 
sentences), it is also valuable to have an automated means of 
evaluation.  Figure  6  places  the  MCD distortion  values  of 
French,  German,  Tamil,  Hindi,  Bulgarian,  Mandarin, 
Vietnamese and Konkani voices in context of the upper and 
lower  English  curves.  Each  is  trained  from  90%  of  the 
available data and tested on the residual 10%.

In  informal  review with the developers,  the voices  for 
Vietnamese,  Konkani,  and  Mandarin  were  deemed  to  be 
poor. French, German, and Tamil were deemed good. Hindi 
and Bulgarian behaved acceptably within-domain but not so 
well out of domain. In semi-formal listening tests, the Hindi 
and  German  voices  scored  75%  on  in-domain  word 
comprehension  [4].  These  assessments  are  generally 
consistent with the picture of Figure 6. That Hindi and Tamil 
scored so well is notable. While the grapheme-to-phoneme 
relation of these languages is comparatively straightforward, 
the low distortion is likely due to their limited domain of 
application. The 10% heldout sentences  contained phrases 
present  in  the  training  data,  and  so  do  not  thoroughly 
exercise  the  voice.  Finally,  the  two  tonal  languages  are 
inconclusive and are in need of further investigation.



Figure 6. Eight languages placed in context of the bounds of 
a grapheme-based (upper line) and a phoneme-based English 
voice (lower line).

3.5. Best use of effort - better lexicon or more speech?
For each of the dots plotted in Figure 6, the pair of English 
calibration lines allow one to make a rough assessment of 
voice  quality,  and  to  recommend a  course  of  action.  The 
course of action can be: record more data, fix the lexicon, or 
both.  The  French  voice  is  already  in  good  shape.  The 
German voice  could  use  an  improved  lexicon.  Hindi  and 
Tamil could benefit from additional speech data. Mandarin, 
Konkani, and Bulgarian need more data and better lexicons. 
(Vietnamese, the outlier, had other technical issues.)

Which  is  more  important  –  improving  the  lexicon  or 
collecting more speech? For English, the gap between, and 
slope of the two curves in Figure 6 provides one answer: 
fixing the lexicon offers  an improvement equal  to that  of 
collecting five times the amount of recorded speech. In our 
experience, an efficient and careful voice talent can record 
three utterances per minute, while the rate of fixing words in 
the lexicon is maybe twice that. Table 2 suggests that when 
the database is small (less than half an hour) it is better to 
record more speech, saving lexical work until later.

approx.  
data 

size (h)

number 
utter-
ances

 number 
unique 
words 

Δ word/  
Δ utt. 
ratio

effect of  
fixing 

lexicon

double 
speech 
data

1/16 77 384 4.99 0.261 –– 

1/8 154 645 3.39 0.270 0.2012

1/4 311 1103 2.92 0.273 0.1047

1/2 607 1770 2.25 0.280 0.1319

1 1132 2766 1.92 0.268 0.1176
Table 2. A comparison of the MCD improvement from either 
fixing the lexicon or doubling the speech database size.  

 4. CONCLUSION

While  expert  attention  to  phoneme definition  and  lexicon 
tuning  can  greatly  improve  voice  quality,  for  non-expert 
users extra data collection may be an easier route to success. 
We are planning listening tests to better correlate MCD with 
intelligibility and perceived quality scores.

Returning to the questions posed in Section 2.4, our data 
leads us to conclude that a) our language-dependent training 
features  are  unimportant,  b)  a  doubling  of  speech  data 
results  in a  drop  in  MCD  of  0.12,  c)  at  a  fixed  size,  the 
difference between grapheme- and phoneme-based English 
voices is 0.27, d) collecting additional speech is more time-
efficient  than lexicon correction,  up to  about one hour of 
data, e) MCD can be used to estimate the quality of voices in 
new languages (as in Figure 6), and f) yes, it is motivating.

However,  global  MCD measurements  do  not  indicate 
when a particular word is mispronounced. Our next goal is 
to identify such words and judiciously present to the user the 
minimal number of entries for lexical correction.
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