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ABSTRACT Section 2 briefly describes our statistical parametric shegn-
thesis framework. A description of the resources requitedtild-

This paper presents techniques for building speech syiaéredar-  ing parametric voices follows in Section 3 including stopgs for
geted at limited data scenarios - limited data from a targeaker;  building voices under the resource-scarce conditions.eEmEnts
limited or no data in a target language. A resource shariredesfy  and results are presented in Section 5.
within speakers and languages is presented giving progiiec-
tions for under-resourced languages. Our results showntiper-
tance of the amount of training data, the selection of laggeand
the mappings across languages in a multilingual settinge dtr
jective evaluations conclusively prove that the preseaaptation
techniques are well suited for building voices in resouscarce con-
ditions.

2. STATISTICAL PARAMETRIC SPEECH SYNTHESIS

We use Clustergen [6], a statistical parametric framewatkiwthe

Festvox [13] voice building suite. Fig. 1 shows a schemagja-r

resentation of the training and testing phases in Clusterdgye the

training phase, source and excitation parameters of thechkpare

Index Terms. Speech Synthesis, Adaptation, Voice conversion,e),(traCted' Text-normaljzation and Ietter-to-sound(LTﬂ.Bés'ar.e ap-

under-resourced languages. plied on the_transcrlptlon. The ;peec_h and phonetic trigptgmns
are automatically segmented using Hidden Markov Model (HMM
labeling. The speech features are then clustered usintpblapho-

1. INTRODUCTION netic and linguistic knowledge at a phoneme state levelesfer

duration, spectral (e.g. MFCC) and source (e.g. FO) featare

In today’s digital age, there is an increasing use and aageptof ~ PUilt during the training phase. During testing (i.e. TextSpeech)

text-to-speech(TTS) technologies in the internet, mqtfilenes and input text |s_processed to form phonetic strings. Thesagsdrialong

dialogue systems. Besides, the use of speech as an outpat-modVith the trained models are used to generate the featurengéess

ity also enables information access for low-literate argliglly im-  Which are vocoded into a speech waveform by a synthesis (étgr

paired users. There is a compelling case for the developmient MLSA for MFCCs).

speech synthesis technology in possibly all languageseofvtrid.

However, most languages have little or no resources redjdoe TRAINING TESTING

building synthesis systems. Even for languages rich indpeed

language resources, there is a need for efficient stratégieser- Speech Database

customization. Eliciting limited data<{ 2 mins) from the subject Transcription  Speech

should sufficiently allow adaptation of an existing synthesto his \ l

voice. In this paper, we address both these situations asines

scarce scenarios for bilding acceptable quality speecthegizers. Features mibes

While there is no definite notion of the minimum amount of re- \ /

sources required for training, availability of at least dvoeir of clean ‘

speech recordings is the norm for building high-quality diional HIMA Align

speech synthesizers. This is in addition to phonetic argligtic l Parameter

knowledge that requires annotated text resources in thguage. Generation

This can be expensive and non-trivial for most languagesnyMa Clustering {

languages still have limited or no resources required ttatiakt-to- Duration Soer et

speech systems. This makes building synthesis systenisrfialy ) Fontures  Foatures

using existing techniques. While, unit selection [10] @oues to be K\ K\

the underlying technique in most commercial systems, islire- / 4 /

ment of a large amount of well recorded and labeled speecehtdat

ensure optimal unit coverage makes it prohibitive for uresiource Fig. 1. Schematic diagram of the Clustergen framework

situations. Statistical parametric synthesis [16], ondtter hand

is more liberal in its requirements, produces a more fleximee In this framework, models are stored as Classification And Re

comparable in quality to unit selection synthesis. Hends ileal  gression Trees (CART) of the phone state. Each phone izegbdis

for building voices in resource-scarce conditions. a left-to-right Markov chain of three states (roughly cepending
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to the initial, middle and final states of a phone). The intdliate
nodes of the tree are questions about phonetic and othetehigls
of contextual information (e.qg., parts of speech). At thedf leodes of
the tree are the Gaussian codebooks corresponding to tiedaa
stances falling in that path of the tree. The parametricasgmtation
(multi-dimensional Gaussians, in this case) makes tramsftions
feasible via simple matrix algebraic operations. This fidity of
parametric models makes them well suited for adaptationgimed
in under-resource conditions. Although this frameworkimsikr to
HTS [1], Clustergen generates the utterance frame by fraatieer
than by state, allowing more detailed modeling.

3. BOOSTING RESOURCESFOR VOICE BUILDING

In this section, the resources required for building a vaioe de-
scribed, The specific alternatives for dealing with eactd kifi re-
source scarcity—that of limited target speaker data angetdan-
guage data are presented in subsections 3.1 and 3.2 rgshecti
According to [11], the issues that need to be addressed Wwhild-

ing a voice for a new language are 1) Definition of a phonemg se

2) Creation of a lexicon and/or Letter-to-Sound(LTS) rul@sText
analysis, 4) Building prosodic models and 5) Building a waxm
synthesizer.

3.2. Limited datain atarget language

Lack of sufficient speech data for building speech systeraxiam-
mon problem for most minority languages of the world. Thel§slo
alPhone [8] project addresses this problem for speech nitog
by exploiting existing resources in several languagesédatera new
language synthesizer. Similar attempts in speech systfi2lsj14]
also succeeded in creating a new language synthesizengheri
sources from several languages. This process is brieflyidesidn
the next section.

3.2.1. Multilingual Speech Synthesis

The ‘source’ voice in case of a target language adaptatiamisil-
tilingual voice. The training data for such a voice is speiactuded
from several languages and the processed transcriptiotieine-
spective languages. Since the phonetic properties (aredshabf
the languages could be different, a global phoneset is exlefatr
the multilingual voice which assigns the same phoneticgmteto
phonemes of different languages with the same acousticgpizon

groperties. This strategy optimally shares the speecheatatess lan-

uages wherever appropriate. This also helps ‘boost’ tlumetic
coverage of each language. However, this process requirefutly
developed phone mappings between languages. The voicitisbu
a similar way as a monolingual voice after the mapping.

For languages that have an IPA, SAMPA or a phoneset defined  For the target language, the phoneset is mapped to that of the

on another standard, they may be adequate to produce sizettses
of acceptable quality. However, for languages that have stabe
lished phonesets, it takes a few expert hours to design cseglln
the acoustic phonetic information of the phonemes in thguage.
For languages that are fairly phonetic (high graphemektmrpme
correspondence), grapheme-based phonesets have beantshuav
adequate[17]. It should be noted that there is a certaitrarisiess in
the allophonic variations within a language or even amorgakers
and there is no one best phoneset, optimal for all voicesil&im
construction of a lexicon and LTS rules is non-trivial and #ffort
varies across languages, but a rule-based or a data-dsitaistical

model for LTS has become commonplace for synthesizers it mo

languages [18]. In the following sections, the issues wiithtéd
amount of speech data are presented.

3.1. Limited datafrom atarget speaker

As mentioned earlier, building a voice for a speaker reguirggood
amount clean recorded speech. Itis thus desirable to helveitpies

global set of the multilingual voice. The adaptation folkthie same
strategy as in a monolingual case transforming only the phn@s
appropriate to the data presented for the target languageshéwn
in our results, the choice of the languages included in thimitrg,

and the amount of data in each language also affects thetygoéli
the voice in a target language.

4. EVALUATION OF VOICES

We use Mel-Cepstral Distortion (MCD), a spectral distaneasure

Jproposed for evaluating voice conversion performance. ghien by

the equation

24
MCD =10/in10, |23 (mc) — me()?
d=1

@)

Wheremcg) andmcff) are the target and the estimated spectral

that can work with just a few minutes of speech and produce gooVvectors respectively. MCD is known to correlate well witle thual-

quality output. Recalling from Section 2, building a voiceplies
constructing decision trees for duration, source and spidfetatures.
When the data is limited, phone coverage and contextualetgav
are both insufficient. This hurts any automatic techniquabel the
data. Even the estimated parameters (Gaussian means &rntes)
tend to be unreliable.

ity of a voice [12]. The significance of MCD is quantitativediiown

as a function of the training data size. A reductior0df2 MCD is
shown as being equivalent to doubling the amount of trainiag
used for building the voice. This is shown to be consistenvss
speakers and languages. The MCD measure is hence releant bo
in the limited target speaker and limited new language dathis

To compensate for this, data from one or more speakers may B¥OTK-

used to build the ‘source model’ upon which the adaptatiah-te
nigue can impose the target speaker’s identity.

This problem is studied extensively as ‘model adaptation- p
posed for speech recognition, starting with the work of [18{er
also successfully applied for speech synthesis [20]. Thersen

5. EXPERIMENTSAND RESULTS

In this section, we report our observations of the adaptatizh-
nigues in each limited data situation. In all experimen@dbnen-

of the source speakers on which to adapt may also be improvedional Mel-Frequency Cepstral Coefficients (static + dfgdtaures)

Techniques involving speaker clustering and cohort selediave
previously shown significant gains. There is also relatedkvin
voice transformation and feature space transforms [4]dbat with
limited target speaker data.

are used as the spectral representation. The featuresiatereld us-
ing phonetic and contextual questions. For growing the CAR&s
thresholded with a stop value of 50 instances at the leaf.nédle
adaptations are done only on the spectral features. A simptore



mapping is done for the fundamental frequency to adjusteadir 9

namic range of the target speaker. es

8 | pt i
5.1. Limited target speaker data
To evaluate the limited target speaker data scenario, weargeng a r sw 1
amounts of adaptation data of an American male speaker feden g tr ru
the arctic database [7]. As the source model, we use 41 Aareric 6 1
English speakers of the Wall Street Journal speech corgils An eh kr
‘average’ voice is built from 3 hours of speech data samplexshly 5 L ip i
across 41 speakers. It is shown that such an average voitmses ¢
to an arbitrary new speaker since it has the average chasdict of 4 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
all training speakers, and tends to be speaker independent. 0 20 40 60 80 100 120 140 160 180

We report two experiments of voice adaptation, one model
based, MLLR adaptation [19] and the other feature based;.igimt
density GMM-based estimation (GMM-JDE) [3]. Since the &rg _. L . - .
data is limited, adaptation is done only on the Gaussian smaad Fig. 3. MCDs of individual languages using a multilingual voice.
the original variances are retained. Note: en/zh have the same amount of training data and the same

Figure 2 shows the MCD of the estimated speech with respect tMCD score.
the reference data as a function of the amount of data usedémta-
tion. It can be seen that even with 20 utterances there isisant
improvement in the voice and it is closer to the target speakiee

Number of training utterances

: ; - : . pt, sw ru, en and zh) suggests that MCD (hence, voice quadity)
two techniques begin almost giving same improvements, agthb proportional to the training data size, and this holds evethé mul-

to converge with increasing adaptation data. The GMM-JQB-te . . .
nigue converges more quickly. MLLR outperforms the GMM-JDE.tIIInguaI §ettlng. The good per_fo_rmance of Turkish and m
technique when more adaptation data is presented. Thissst irrespective of the amount of training data may be explaimetheir

. : . : simple phonetic structures.
of the two techniques, MLLR exploits data more effectivaly this .
q P y For testing the new languages, we choose German (DE) and Tel-

task. ugu (TE) languages. The phonemes of these languages arednapp
to their closest alternative from any of the nine differeatiguages
7.4 4 ‘ MLLR o included as training. The overlap in the acoustic phonetatifre
72 GMM = 1 values of these phonemes are used to determine the clodemess
7 b ] tween phonemes (currently no weight is given to differertustic
6.8 | phonetic features). The multilingual voice is incremelgtadapted
) ‘ with data from the target language. Figure 4 shows the padoce
8 6.6 | N il of the adaptation as MCD gains as a function of increasinguautraf
= 6471 s 1 adaptation data. It can be seen that the German voice hastigel
62 « ¢ o o 4 lower MCD than the Telugu voice even without any adaptatidris
6| * ] may be explained by the fact that Telugu belongs to the Diawid
language family which is not represented in the trainingleages,
:2 | e while European languages are well represented. Inforrstdring

tests also show that while the voices are understandaldg,hive

0 50 100 150 200 250 300 350 new accents caused by the training languages.

Number of utterances

Fig. 2. Performance with increasing size of adaptation data from 14 MLLR on DE - x-

target speaker 13 & MLLRonTE = )
12 ¢ 1

5.2. Limited new language data A 11t ]

[®) s

For simulating a limited new language data condition, a subfthe = 10+ . 1

Globalphone database is selected. This subset consistéderhale g

speakers, one from each of Chinese (ZH), English (EN), Germa 91 ° @ o

(DE), Japanese (JP), Croatian (KR), Portuguese (PT), &uéRl), 8 f T ]

Spanish (ES), Swedish (SW) and Turkish (TR). Of these, Geisa TR

set aside as a test target language. The remaining 9 largaage 7 : ‘ : : ‘

included in different amounts to also study the effect ohdate in 0 20 40 60 80 100 120

a multilingual setting. 10% of the sentences are set asidestiag Number of utterances

data for each language.

Figure 3 presents the MCDs of the individual languages usingrig. 4. German (DE) and Telugu (TE) language MCDs with increas-
the same multilingual voice. The x-axis is the amount ofrfraj ~ ing adaptation data
data contributed by each language. The near-linear patte¢es,



6. LANGUAGE SELECTION EXPERIMENTS

In this section, we report our experiments with changingshleset
of languages included in training the multilingual voiceoif, the
initial subset of 9 languages chosen for training in the jotey sec-
tion, two subsets are created one including all but Engligh the
other consisting of all but Chinese language. The choicchede
languages is for two reasons: 1) They are phonetically qlistinct
and 2) They contribute the same number of training sentefases
can be seen in the overlayed en/zh tags in the Fig. 3)

84 r

MCD

78 | 1
76 | e

7.4 et

72
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90

Fig. 5. German adaptation with different Training languages

From 6, as we expected the removal of English, a language pho-

netically similar to German, gives worse results, while témoval
of Chinese, does not make much difference to the quality off@a
voice.

9langs-EN —x
9 langs -——-=--
9langs-ZH -+

MCD

0 20 40 60 80 100 120
Number of training utterances

Fig. 6. Telugu adaptation with different Training languages

For the same experiment for creation of the Telugu voice, we

find the removal of English does not make much differencectwhi
we believe is due to the fact that Telugu and English are picaily
not very close. The unexpected result though is that the vahod
Chinese improves the results. This shows that languagetieie
is clearly important. One hypothesis for this result is thetfthat
Telugu has a larger number of stop distinctions than Endksb.
aspirated and unaspirated) such allophones do appear IisEbgt

are not phonetic. The initial models have these distinstioon-
flated, but become distinct with more adaptation data. Hewev
Chinese, aspirated and unaspirated allophones do not wgthin
stops, hence the training data actually biases the initiahp mod-
els more and requires more training data to contract.

7. CONCLUSIONS

This work proposes adaptation techniques for under-resaulan-
guages that clearly give promising results. The selectfoimital
models, although can be done by simple acoustic phonetiarea
matching, our results show that more subtle selection ¢iirpho-
netic models and the languages that contribute to them mayegen
better results. We have yet to discover an efficient autanma¢ithod
to improve these existing techniques.

The second important result is that the resulting synthpsadity
seems to be linearly related to amount of training data, eggass
several languages.
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