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Abstract
The goal in this paper is to investigate data selection techniques
for found speech. Found speech unlike clean, phonetically-
balanced datasets recorded specifically for synthesis contain a
lot of noise which might not get labeled well and it might con-
tain utterances with varying channel conditions. These channel
variations and other noise distortions might sometimes be use-
ful in terms of adding diverse data to our training set, however
in other cases it might be detrimental to the system. The ap-
proach outlined in this work investigates various metrics to de-
tect noisy data which degrade the performance of the system on
a held-out test set. We assume a seed set of 100 utterances to
which we then incrementally add in a fixed set of utterances and
find which metrics can capture the misaligned and noisy data.
We report results on three datasets, an artificially degraded set
of clean speech, a single speaker database of found speech and
a multi - speaker database of found speech. All of our experi-
ments are carried out on male speakers. We also show compa-
rable results are obtained on a female multi-speaker corpus.
Index Terms: Data selection, Found data, TTS, Telephone
speech.

1. Introduction
Conventional methods in speech synthesis use a cleanly
recorded, phonetically balanced dataset of recordings from a
single speaker. However, if we want to build a text-to-speech
(TTS) system as part of a speech-to-speech translation system to
be used in a disaster relief effort in areas such as Nepal, Orissa
or Pakistan where the languages spoken are dialects of Nepali,
Oriya and Pashto, then we are severely limited in our ability to
build such systems because we do not have access to a native
speaker. On the other hand, we might want to build a person-
alized voice for a target speaker who has a limited ability to
produce speech such as people afflicted with motor neuron dis-
ease or vocal cord paralysis. Such a voice would need to match
the physical and dialectical characteristics of the speaker. Both
of these scenarios are examples where we would like to build
TTS systems but are limited by an access to a large, clean, pho-
netically balanced dataset of recordings from a single speaker,
that matches our requirements.

To alleviate this problem, we propose to build systems from
the abundant but noisy data available on the web. Speech data,
especially from low resource languages, is becoming increas-
ingly available on YouTube and other streaming services in the
form of news and radio broadcasts, speeches, demo-videos, etc.
In addition, with the growing popularity of neural networks and
other big machine learning models, large multi-speaker datasets
mainly for the purposes of speech recognition, have become
available. Even if such data is unavailable on the web it can
be crowd sourced via the web [1],[2]. If we can properly use

this large variety of data available to us on the web, it would
allow us to build voices matching the dialectical and physical
characteristics of a particular speaker and also give us access
to an array of languages allowing us to build TTS systems for
low-resource languages.

Any data that is available readily in the public domain is
called found data. This includes data from audiobooks, public
speeches, news and radio broadcasts, Youtube data and tele-
phone conversations. This data has large variations in its type
and characteristics. Single speaker databases such as audio-
books, public speeches, channel broadcasts on Youtube, etc.,
have the advantage that they are spoken by the same speaker.
However in terms of diversity of the data they have their own
challenges. Audiobooks for instance, have large variations in
the prosody and intonation as well as the speech rate. Even
though, these variations in prosody make for interesting listen-
ing, they are difficult to model in current speech synthesis sys-
tems. Moreover, since current systems are built using single
isolated utterances, they do not account for long range depen-
dencies as seen in audiobooks over paragraphs and sections. On
the other hand public speeches and YouTube broadcasts have a
lot of channel noise due to variations in recording conditions
such as variations in microphone characteristics, room acous-
tics, distance from microphone, etc. These types of databases
require better data pre-processing and feature adaptation and
normalization techniques which will be robust to channel con-
ditions.

Multi-speaker databases include news and radio broadcasts,
telephone conversations and voice search data. These types of
utterances are generally short, have a lot of fillers and non-
speech sounds and distortions. News broadcasts generally have
each segment consisting of multiple speakers and having many
queuing audio sounds like sequences of music and other data. In
terms of building TTS systems with such relatively clean, multi-
speaker corpora we need to look at various voice averaging and
voice conversion techniques to average over the different speak-
ers in the database in addition to data pre-processing techniques
in order to select an optimal subset for synthesis and remove
speakers who are very different and not representative of our
target speaker. Telephone conversations on the other hand pro-
vide a very rich set of data with multiple issues. They have low
sampling frequency and so are of low quality. Furthermore, they
contain lots of channel distortion, background distortions and
noisy utterances containing long periods of silences between
utterances, which causes problems with labeling and alignment.
The advantage of using this type of data is it can be easily ob-
tained. This kind of data needs good pre-processing methods in
order to be useful to build TTS systems which do not fail during
training.

In this paper we broadly categorize the error types found
in such data, into two main types, misalignment errors and er-
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rors due to variation in channel conditions. Misalignment er-
rors occur because certain types of sounds are not described in
the transcript such as claps, laughs, coughs, breaths, etc. The
second type of error is caused due to varying microphone con-
ditions, channel noise etc. Errors of type 1 are never good for
the system and we would like to detect and remove utterances
containing such errors from our training data . However, errors
of type 2 caused due to channel variation and noise, might in
some cases be good for training our models, adding to the diver-
sity. Thus our goal here is to find good measures which detect
for the misalignment errors and bad utterances which will be
detrimental to the system, while retaining the sentences which
even though they might not be representative of the training set,
might still provide valuable and diverse characteristics to the
training data.

This paper is organized as follows, In Section 2, we discuss
how our work fits into work that has been done so far in this
domain. In Section 3, we describe the datasets that we used and
in Section 4 describe the metrics we used for utterance selection
and our motivation in using these features. In Section 5, we
report our results on the artificial data we created and the natural
single and multi-speaker datasets. Finally, Section 6 concludes
our findings and discusses our future work in this direction.

2. Related Work
Previous methods have looked at building speech synthesis sys-
tems from audio books [3],[4] and ASR corpora [5]. Most of
these previous techniques have concentrated on techniques for
building average voices using a variety of speaker adaptation
techniques[6],[7],[8]. Even though results in this paper are re-
ported on English corpora, our experimental design has been
guided by the over-arching goal of building a system for low-
resource languages, i.e., languages where there is mostly noisy
data available in the public domain such as public speeches and
speech recorded over the telephone.

Furthermore, as far as we know there has been only one
previous study so far on data subset selection tasks for statis-
tical parametric synthesis from found speech [9]. This work
investigates low-level acoustic descriptors as indicators of ut-
terance naturalness and quality for selecting utterances. Similar
earlier experiments on data selection techniques have been in-
vestigated for unit-selection synthesis, optimizing for coverage
of linguistic units over utterances [10] and pruning out outliers
post-hoc with respect to duration at the phoneme level [11].

In this paper, we show that using a small subset of data
which is both representative of the target domain, but also di-
verse enough to be informative can produce better synthesis sys-
tems than using all of the noisy data available to us. We inves-
tigate some strategies to pick appropriate metrics to select good
utterances. We show results on experiments carried out on an
artificially degraded dataset to address the issues of misalign-
ment errors and errors caused due to large non-representative
channel conditions. We also evaluate the best metric found on
the artificially degraded corpus on two corpora of found data,
a single speaker corpus of public speeches and multi-speaker
dataset of telephone speech.

3. Data
3.1. Artificially Degraded Clean Corpus

Since the goal is to evaluate metrics to detect misaligned data
and data that is very different from the majority of the target

domain such as data recorded in very noisy environments we
created this dataset to act as ground truth and provide us an
insight into how well different metrics perform.

To simulate misaligned data we shifted 100 utterances in
the Arctic dataset for speaker RMS. For instance, the acoustics
of utterance 1 corresponded to the transcription for utterance 10.
To simulate varying channel conditions, we convolved another
set of 100 utterances with an impulse response recorded inside
a chamber. We then mixed the two sets to simulate having both
misaligned data and channel noise in the data. The total dura-
tion of this data was about an hour of speech (1000 utterances)
out of which ten minutes (100 utterances) were misaligned and
the other 10 minutes had very different channel characteristics.

3.2. Single-Speaker Found Data

The single speaker dataset was created using speeches from
the American President. We used subsets of three different
speeches. The third speech was chosen to be very noisy with
a lot of extraneous sounds such as claps and containing a lot of
reverberation. The other two speech subsets were much cleaner
in comparison. The total number of utterances in the dataset
was 495 utterances totaling about 1 hour of training data. This
subset of utterances was selected after running interslice [3] on
each of the speeches and selecting utterances that had a mini-
mum of four words. The utterances in this dataset tended to be
longer on an average than the Arctic dataset.

3.3. Multi-Speaker Found Data

For the multi speaker found corpus we used the CallHome
dataset and used all of the Males from this corpus. The Call-
Home corpus consists of 30 minutes of unscripted telephone
conversations. For these experiments we used only the primary
speakers from each of the conversations. We first created a clean
set of about 400 utterances by removing sentences transcribed
as containing laughs, breaths, fillers and other channel distor-
tions. The noisy version consisted of about 900 utterances. The
age range varied from 8 to 70 years for these conversations. The
data was further pre-processed to remove too short or too long
utterances. The same process was carried out for the Female
CallHome corpus.

4. Rank and Select Methods
In this paper, we would like to answer the question as to whether
all data is good data or can we do some pre-processing of the
data in order to remove the really bad utterances and obtain im-
provements as measured in terms of Mean Cepstral Distortion
(MCD) [12] between the original data of a held-out dataset and
the same data synthesized from the model trained on a subset of
the selected utterances. We therefore investigate various met-
rics for selecting the best subset that will help us build a good
TTS system. The selection of an appropriate subset of training
data can be done at various levels. It can be done at the utter-
ance level, the phoneme level, the HMM state level as well as
the frame level. In this paper, we have only investigated utter-
ance level selection. Thus, the main aim in this paper is to find a
measure of goodness of an utterance to be selected for training.
We investigate two scenarios with respect to our experiments.
Scenario 1 is where there is a seed set of utterances available,
while scenarios 2 involves building a model out assuming no
seed set is available.
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4.1. Seed data selection

For the artificially degraded corpus we assumed the phoneti-
cally balanced subset of 100 utterances of the Arctic RMS ut-
terances to be the seed. For the noisy datasets, since we did
not have a seed dataset to begin with, we investigated different
methods of finding this small seed subset of good utterances.
We investigated using only acoustic measures such as the 100
best performing utterances in terms of MCD, and on the other
hand purely optimizing for coverage of linguistic sub-units such
as obtaining phonetically balanced subset by counting the fre-
quency of occurrences for each HMM state. We also tried a
combination of the two, however, we found that optimizing for
linguistic coverage gave the best results in terms of MCD on a
held out test set.

4.2. Voice Building

For all of the experiments in this paper, we have used CLUS-
TERGEN [13] for the parametric speech synthesis. In addition,
we have only used the base voice building tools without using
Move-Label [14] and Random Forests [15]. Given the noisy na-
ture of the data we were not sure how robust it would be to use
Random Forests, which might have given some performance
improvements.

4.3. Metrics

We evaluated various metrics such as duration, spectral mea-
sures and other cross-correlation based measures that could be
directly calculated from the synthesized wavefiles.

4.3.1. Mean Cepstral Distortion (MCD)

The mean cepstral distortion [12] is a weighted Euclidean dis-
tance between the true and the predicted Mceps and is evalu-
ated for each predicted frame. We score each utterance by the
frame-wise MCD averaged across the utterance. The main intu-
ition in using the MCD was because this was a direct measure
of the frequency content of the signal and thus a higher MCD
would imply the synthesized wavefile is further away from the
true wavefile in terms of predicted Mceps on the trained model.
Thus, a really high MCD would imply that the acoustics in the
utterance are not being modeled well and so would indicate mis-
alignment errors and errors that are not representative of the
majority of the training data.

4.3.2. Duration

For durations, we used the root mean square error between the
predicted duration for each senone in the utterance compared
to the true label given to an utterance after training 30 iterations
using Baum Welch. The predicted durations were obtained from
two models, one was from the entire noisy dataset and the other
was on a model trained with a small seed set of a 100 utterances.
The main goal here was to eliminate the really bad utterances
which would in turn have bad labeling. This measure was ex-
pected to give good results on the misaligned data.

4.3.3. Modulation Spectrum

Since the modulation spectral trajectories capture the tempo-
ral dynamics of components of the spectral envelopes [16], we
decided to investigate it as a global indicator of differences in
spectral dynamics between the true and synthesized wavefiles.
Moreover, using the Modulation Spectrum as a postfilter has
shown gains in synthesis [17]. Thus, we expected this metric

to be an informative measure in capturing large channel differ-
ences between recordings. We scored each utterance with the
mean error between the modulation spectrum of the true and the
synthesized wavefile in order to obtain a score per utterance.

4.3.4. Global Variance

This was another global spectral measure we tried since it im-
proves results when used as a post-filter [18]. The idea here was
to investigate whether differences in global variance of the pre-
dicted Mceps as compared to the true ones are correlated to the
noisiness in the data.

4.3.5. Cross- correlation based measures

The main intuition in using this metric was to detect the mis-
aligned data. If the two sentences are similar they should have
a high peak when the two wavefiles, the true training wavefile
and the synthesized wavefile are cross-correlated. We experi-
mented with three cross-correlation based measures. We sim-
ply cross-correlated the two wavefiles and used the maximum
of the resulting cross-correlated sequence as the measure. We
also experimented by cross correlating the Teager Energy op-
erator of the two wavefiles and the Hilbert envelope. The Tea-
ger energy operator gives a running energy estimate [19] of the
wavefile and is supposed to capture the energy of the system
that produced the speech rather that the energy in the speech it-
self. Thus, we hoped that this metric would also be helpful in
capturing channel distortions. The Hilbert envelope on the other
hand, computes the discrete-time analytic signal of the real part
of a complex signal. The intuition in using this measure was to
make it easier to detect the differences in misaligned data, since
it can be used as a correlate to the envelope of the speech signal.

4.3.6. Instantaneous Frequency

The instantaneous frequency is supposed to capture the the av-
erage of the sinusoids at each point in time in a signal. The
utterances were scored by taking the mean of the absolute dif-
ference between the instantaneous frequencies in the synthe-
sized and the true wavefiles. So we would expect that signals
that are similar acoustically will have smaller differences in er-
ror between the true and synthesized waveforms while signals
differing in acoustics will have higher errors.

5. Empirical Evaluation
This section discusses the results on artificially degraded speech
as well as noisy speech. We first describe the evaluation of var-
ious metrics on the artificially degraded data for both types of
errors and a combination of the two. These metrics are eval-
uated on how accurately they can detect the artificially mis-
aligned sentences and sentences that have been degraded with
noise. The best performing metric is then used to iteratively se-
lect 10% of the best utterances which are then used to re-train
the models. The models can be retrained at each iteration by re-
clustering the state models while assuming fixed segmentation
or the models can be re-trained by re-aligning the models each
time using only the selected utterances and then re-clustering
based on the new segmentation obtained. The baseline is cal-
culated as the average MCD error on a held out test set from
a model trained on all of the noisy data. In addition, we also
investigate how this metric scales with larger amounts of noisy
data.
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5.1. Metric Evaluation

We carried out two sets of experiments. The results in Ta-
ble 1 show results when using synthesized wavefiles obtained
from a system trained with a small almost phonetically bal-
anced seed dataset of about 100 utterances (approximately 10
minutes of speech). The results in Table 2 show results assum-
ing the wavefiles are synthesized from a model trained on the
entire dataset. Since the goal is to find the best metric which
can detect the noisy utterances, we have reported the detection
accuracy of each metric in detecting the artificially degraded
utterances. Thus an accuracy of 90 implies that 90 out of the
worst 100 sentences by some metric were the artificially de-
graded sentences.

Table 1: Evaluation metrics on artificially degraded set as-
suming a model built from a small seed set of utterances. (%
Accuracy of detection)

Metric
Mis-
alignment
Noise

Channel
Noise

Mixed
Noise

Mean Cepstral Distortion 99 88 95.0
Duration 85 36 63.0
Modulation Spectrum 51 27 35.5
Global Variance 59 4 34.0
Cross-corr 87 1 32.5
TEO Cross-corr 20 43 51.5
Hilbert Env. Cross-corr 45 1 34.5
Instantaneous Freq. 53 2 17.5

Table 2: Evaluation metrics on artificially degraded set assum-
ing a model built from all utterances. (% Accuracy of detection)

Metric
Mis-
alignment
Noise

Channel
Noise

Mixed
Noise

Mean Cepstral Distortion 100 94 96.5
Duration 87 43 67.0
Modulation Spectrum 21 25 31.5
Global Variance 86 4 47.0
Cross-corr 44 1 30.5
TEO Cross-corr 36 51 55.5
Hilbert Env. Cross-corr 39 1 33.5
Instantaneous Freq. 13 3 16.0

We see that the MCD and duration parameters outperform
all of the other metrics on both misaligned data as well as chan-
nel noise. It makes sense given the fact that these are the two
main parameters about the vocal production mechanism that we
model. Moreover, we see that both of these measures do better
on the model trained with the entire noisy dataset, because on
the noisy dataset, the really bad utterances will be synthesized
wrongly, while the good ones that fit the majority of the data
will be synthesized nicely. However, it is not guaranteed that
the model trained on the seed dataset encompasses all of the
diversity in the data and so might even reject utterances which
might provide it information and make it a better model.

The cross-correlation metrics do much better on the model
trained with the clean seed subset of about 100 utterances. We

find that it is much easier to detect misaligned data than it is to
detect channel mismatch. The Teager energy operator is quite
successful in detecting channel mismatch, as compared to all of
the other correlation metrics.

5.2. Re-alignment vs. Re-clustering

The subset of utterances selected was used to either re-cluster
and re-align the models to obtain labels suited to the iteratively
changing data subset or fix the labels by training on the entire
corpus of noisy data and then only re-cluster based on the utter-
ances selected with the MCD metric. Figures 1-4 show plots of
iteratively selecting the best 10% of utterances and using these
utterances to either only re-cluster the state models (blue line)
or re-align at each iteration and re-cluster based on new seg-
mentation obtained (pink line) We find that realigning the la-

Figure 1: Iterative MCD for artificially misaligned data

bels each time helps and results in a much lower MCD on both
of the single speaker datasets as illustrated in Figures 1 and 2.
However, the trend is opposite in case of the multi-speaker cor-
pora for both males and females as shown in Figures, 3 and 4.
This might be because each subset has a different set of speak-
ers and having labels trained from the entire data set might be
better than having labels from a smaller set which does not en-
compass all of the diversity in the data. In addition, we find
that in case of the noisy datasets as seen in Figures 2, 3 and
4, we see that the results with realignment are not monotoni-
cally decreasing upto a certain point and have a slightly erratic
behavior. This might be because at every iteration, the align-
ment shifts based on the limited amount of training data, which
in some cases might be representative of the test set , while in
some others it might not be. In contrast, re-clustering the data,
assuming fixed labels obtained by running Baum-Welch on the
entire set always results in the MCD decreasing monotonically
to a certain point and then increasing as bad data keeps getting
added.

Thus, we find that even though realigning data gives a
higher increase in MCD, it is also more time consuming. In
addition, there is no clear trend as to where we need to stop
and ignore the data, unlike the case when only re-clustering on
the data, in which case there is a clear point after which perfor-
mance of the system degrades. However in all of the four plots,
Figures 1 - 4 we see that the MCD metric with re-clustering and
no re-alignment, is in fact doing better than the baseline. More-
over, the lowest MCD obtained on the artificially misaligned
data is the same as obtained when testing on a model trained
only with the clean data. This shows us that this metric is in-
deed rejecting the noisy data which is not helpful to the system.
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Figure 2: Iterative MCD for Single speaker found data

Figure 3: Iterative MCD for multi-speaker found data-Male

5.3. How does it scale?

The question then arises can this metric scale when larger
amounts of data are misaligned and can this high performance
in terms of accuracy hold up even when half the dataset has
been artificially misaligned? From the figure, Fig.5, we see that
yes indeed, this method based on pruning out misaligned data
does work even when more than half the data is misaligned. In
fact, the gain obtained over the baseline, a change of 0.3 MCD
is significant. A 0.12 MCD change has been shown to be a
significant, almost equal to the improvements obtained by dou-
bling the amount of training data [12]. We also find that results
with realignment which is almost 0.3 lower in MCD from the
baselines is more beneficial in this case as compared to just re-
clustering which is 0.14 MCD lower than the baseline.

6. Conclusions
In this paper, we show that our claim that not all data is good
data holds. We see that selecting a smaller, cleaner subset for
voice building is much better and less time consuming than
building from the full noisy dataset.

We explore various utterance level metrics which would be
indicators of the measure of goodness of an utterance. We show
results considering both the availability of a small seed set of
about 100 utterances and building from all of the noisy data
without access to such a seed dataset. We find that there is no
advantage in having access to a seed dataset and we can instead
get similar if not better results by training our initial model on
the entire dataset. From all of the measures we explored, we
find that the mean cepstral distortion performs the best followed
by the error in the duration prediction. We surprisingly find that
the various cross-correlation based metrics are not good indica-

Figure 4: Iterative MCD for multi-speaker found data-Female

Figure 5: Iterative MCD for Arctic RMS containing 50% mis-
aligned data

tors of the presence of misaligned data. In addition, contrary
to our expectations, we find the global spectral measures, i.e.,
modulation spectrum and global variance perform poorly in de-
tecting changes in channel conditions.

In terms of the errors we find that it is much easier to de-
tect misaligned data than it is to detect noisy channel variations.
We also find that the data selection does scale even when 50%
of the dataset has been misaligned and yields a MCD which
is 0.3 lower than the baseline. In addition, we find that re-
clustering works better on the multi-speaker dataset while re-
aligning works better and gives a lower MCD on the two single
speaker corpora. However, when re-clustering on these datasets
the MCD monotonically improves upto a certain point, while
the behavior of the average MCD with each iteration is erratic
when also realigning each time.

We show preliminary results in this paper on data selection.
We show that it scales well on misaligned data and gives us
significantly better results than using the entire subset of noisy
data. In the future, we would like to test our methods on large
non-English corpora such as the Babel[20] datasets, that con-
tain speech recorded over telephones mainly for the purposes of
keyword spotting.

Furthermore, in this paper we investigate various utterance-
level metrics to detect and prune out utterances. In the future,
we would like to investigate methods detailed in [21], which
given pairwise dissimilarities between the source and target
sets, tries to find a source set that best encodes the target set
and can efficiently describe it. In addition, this paper details ex-
periments only using one metric at a time, however in the future
we would like to explore experiments with various metric com-
binations and see if we can improve the performance further.
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