
OSBORNE & ASSOCIATES 31003

80800/8085
nssemeiy mriGunGc pROGRnmminG

Lonce A. Leventhol

8080A/8085
RsscmBLv innGUAGC pROGRflmminG

lonce A* levertthal

Osborne & Associates, Inc.

Berkeley, California

Copyright ® 1978 by Adam Osborne & Associates. Incorporated.

All rights reserved. Printed in the United States of America. No part of this

publication may be reproduced, stored in any retrieval system, or transmitted

in any form or by any means, electronic, mechanical, photocopying, recording

or otherwise, without the prior written permission of the publishers.

Published by Adam Osborne & Associates, Incorporated

P.O. Box 2036, Berkeley. California 94702

Portions of Chapter 3 have been reprinted from Adam Osborne & Associates,

Incorporated, 8080 Programming for Logic Design with the permission and

consent of Adam Osborne & Associates, Incorporated.

DISTRIBUTORS OF OSBORNE & ASSOCIATES INC.
PUBLICATIONS

For information on translations and book distributors outside of the

United States of America, please write:

Osborne & Associates, Inc.

P.O. Box 2036

Berkeley, California 94702

United States of America

(415)548-2805

DISTRIBUTORS

L. P. F.N-T. "Ri." ES

ZVi)
•" r;.": '

;

!p/':;d

ILF
"* '.- ~>

: r . ._. ;."
; < ipj

Tel: 01

Production Staff

Osborne & Associates, Inc.

Curt Ingraham

Vicki Mitchell

Penny Lawrence
Jerry Beach

Karen de Robinson

Laurie Battle

Mary Borchers

Technical Editor

Typography

Graphics

Proofreader

Coordinator

Cover Design by K.L.T. van Genderen

Printed by Rotary Offset Printers

San Francisco, California

ACKNOWLEDGMENTS

The author would like to acknowledge the, following people:

Mr. William Tester of Grossmont College, who is responsible for the support

which made this book possible; Mr. Colin Walsh of Grossmont College, who
helped throughout with the design and development of the programming ex-

amples; Mr. Curt Ingraham of Osborne & Associates, who made many
editorial corrections; Mrs- Teddy Ferguson, who typed the original problem
assignments; Mr. Stanley Rogers of the Society for Computer Simulation,

who quietly but convincingly suggested many improvements in the author's

writing style; and his wife Donna, for her patience and understanding

throughout the writing of this book.

Others who provided assistance and suggestions were Mr. Jeffrey Haight,

Prof. Nicholas Panos, Mr. David Bulman, Mrs. Kati Bulman, Mr. Bernard

Laffreniere, Mr. Charles Robe, Mr. Michael Viehman, Mr. Richard Evans, Mr.

Frederick Lepow and Mr. William Long. Other students and colleagues also

helped to keep the author on the right track.

The author, of course, bears responsibility for any remaining errors, miscon-
ceptions and misinterpretations.

This book is dedicated to the memory of Bayar Goodman, who would have
appreciated and enjoyed this new technology.

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION TO ASSEMBLY LANGUAGE PROGRAMMING 1-1

HOW THIS BOOK HAS BEEN PRINTED 1-1

THE MEANING OF INSTRUCTIONS 1-1

A COMPUTER PROGRAM 1-2

THE PROGRAMMING PROBLEM 1-2

USING OCTAL OR HEXADECIMAL 1-3

INSTRUCTION CODE MNEMONICS 1-5

THE ASSEMBLER PROGRAM 1-5

ADDITIONAL FEATURES OF ASSEMBLERS 1-6

DISADVANTAGES OF ASSEMBLY LANGUAGE 1-7

HIGH-LEVEL LANGUAGES 1-7

ADVANTAGES OF HIGH-LEVEL LANGUAGES 1-8

DISADVANTAGES OF HIGH-LEVEL LANGUAGES 1-8

HIGH-LEVEL LANGUAGES FOR MICROPROCESSORS 1-10

WHICH LEVEL SHOULD YOU USE? 1-1

1

HOW ABOUT THE FUTURE? 1 -1

2

WHY THIS BOOK? 1-12

2 ASSEMBLERS 2-1

FEATURES OF ASSEMBLERS 2-1

ASSEMBLER INSTRUCTIONS 2-1

LABELS 2-2

ASSEMBLER OPERATION CODES (MNEMONICS) 2-4

PSEUDO-OPERATIONS 2-4

THE DATA PSEUDO-OPERATION 2-5

THE EQUATE (OR EQUALS) PSEUDO-OPERATION 2-6

THE ORIGIN PSEUDO-OPERATION 2-7

THE RESERVE PSEUDO-OPERATION 2-7

HOUSEKEEPING PSEUDO-OPERATIONS 2-8

LABELS WITH PSEUDO-OPERATIONS 2-9

ADDRESSES AND THE OPERAND FIELD 2-9

CONDITIONAL ASSEMBLY 2-1

1

MACROS 2-1

1

COMMENTS 2-13

TYPES OF ASSEMBLERS 2-14

ERRORS 2-15

LOADERS 2-15

3 THE 8080A AND 8085 ASSEMBLY LANGUAGE 3-1

INSTRUCTION SETS 3-1

CPU REGISTERS AND STATUS FLAGS 3-2

8080A AND 8085 MEMORY ADDRESSING 3-3

ABBREVIATIONS 3-8
STATUS 3-9
INSTRUCTION MNEMONICS 3-9

INSTRUCTION OBJECT CODES 3-9

INSTRUCTION EXECUTION TIMES AND CODES 3-9
ACI — ADD WITH CARRY IMMEDIATE TO

ACCUMULATOR 3-19
ADC — ADD REGISTER OR MEMORY WITH CARRY TO

ACCUMULATOR 3-20
ADD — ADD REGISTER OR MEMORY TO ACCUMULATOR 3-22

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

3 (Cont.) ADI — ADD IMMEDIATE TO ACCUMULATOR 3-24

ANA — AND REGISTER OR MEMORY WITH
ACCUMULATOR 3-25

ANI — AND IMMEDIATE WITH ACCUMULATOR 3-27

CALL — CALL THE SUBROUTINE IDENTIFIED IN OPERAND 3-38

CC — CALL THE SUBROUTINE IDENTIFIED IN THE
OPERAND, BUT ONLY IF THE CARRY STATUS
EQUALS 1 3-29

CM — CALL THE SUBROUTINE IDENTIFIED IN THE
OPERAND, BUT ONLY IF THE SIGN STATUS
EQUALS 1 3-29

CMA — COMPLEMENT THE ACCUMULATOR 3-30

CMC — COMPLEMENT THE CARRY STATUS 3-31

CMP — COMPARE REGISTER OR MEMORY WITH
ACCUMULATOR 3-32

CND — CALL THE SUBROUTINE IDENTIFIED BY THE
OPERAND, BUT ONLY IF THE CARRY STATUS
EQUALS 3-33

CNZ — CALL THE SUBROUTINE IDENTIFIED IN THE
OPERAND, BUT ONLY IF THE ZERO STATUS
EQUALS 3-34

CP — CALL THE SUBROUTINE IDENTIFIED IN THE
OPERAND, BUT ONLY IF THE SIGN STATUS
EQUALS 3-34

CPE — CALL THE SUBROUTINE IDENTIFIED IN THE
OPERAND, BUT ONLY IF THE PARITY STATUS
EQUALS 1 3-35

CPI — COMPARE ACCUMULATOR CONTENTS WITH
IMMEDIATE DATA 3-36

CPO — CALL THE SUBROUTINE IDENTIFIED IN THE
OPERAND. BUT ONLY IF THE PARITY STATUS
EQUALS 3-37

CZ — CALL THE SUBROUTINE IDENTIFIED IN THE
OPERAND, BUT ONLY IF THE ZERO STATUS
EQUALS 1 3-37

DAA — DECIMAL ADJUST ACCUMULATOR 3-38

DAD — ADD A REGISTER PAIR TO H AND L 3-39

DCR — DECREMENT REGISTER OR MEMORY CONTENTS 3-40

DCX — DECREMENT REGISTER PAIR 3-42

Dl — DISABLE INTERRUPTS 3-43

El — ENABLE INTERRUPTS 3-43

HLT — HALT 3-45

IN — INPUT TO ACCUMULATOR 3-46

INR — INCREMENT REGISTER OR MEMORY CONTENTS 3-47

INX — INCREMENT REGISTER PAIR 3-49

JC —JUMP IF CARRY 3-50

JM —JUMP IF MINUS 3-50

JMP — JUMP TO THE INSTRUCTION IDENTIFIED

IN THE OPERAND 3-51

JNC —JUMP IF NO CARRY 3-51

JNZ — JUMP IF NOT ZERO 3-52

j PE _ JUMP IF PARITY EVEN 3-53

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

3 (Cont.) JPO — JUMP IF PARITY ODD 3-53

JZ — JUMP IF ZERO 3-54

LDA — LOAD ACCUMULATOR FROM MEMORY USING
DIRECT ADDRESSING 3-55

LDAX — LOAD ACCUMULATOR FROM MEMORY
LOCATION ADDRESSED BY REGISTER PAIR 3-56

LHLD — LOAD H AND L REGISTERS DIRECT 3-57

LXI — LOAD A 16-BIT VALUE, IMMEDIATE, INTO

A REGISTER PAIR 3-58

LXI — MOVE DATA 3-59

MVI — LOAD DATA IMMEDIATE INTO REGISTER OR
MEMORY 3-61

NOP — NONO OPERATION 3-63

ORA — OR REGISTER OR MEMORY WITH ACCUMULATOR 3-64

ORI — OR IMMEDIATE WITH ACCUMULATOR 3-66

OUT — OUTPUT FROM ACCUMULATOR 3-67

PCHL — JUMP TO ADDRESS SPECIFIED BY HL 3-68

POP — READ FROM THE TOP OF THE STACK 3-69

PUSH — WRITE TO THE TOP OF THE STACK 3-70

RAL — ROTATE ACCUMULATOR LEFT THROUGH CARRY 3-71

RAR — ROTATE ACCUMULATOR RIGHT THROUGH CARRY 3-72

RC — RETURN IF THE CARRY STATUS EQUALS 1 3-73

RIM — READ INTERRUPT MASK 3-74

RLC — ROTATE ACCUMULATOR LEFT 3-75

RM — RETURN IF THE SIGN STATUS EQUALS 1 3-76

RNC — RETURN IF THE CARRY STATUS EQUALS 3-76

RNZ — RETURN IF THE ZERO STATUS EQUALS 3-77

RP — RETURN IF THE SIGN STATUS EQUALS 3-77

RPE — RETURN IF THE PARITY STATUS EQUALS 1 3-78

RPO — RETURN IF THE PARITY STATUS EQUALS 3-78

RRC — ROTATE ACCUMULATOR RIGHT 3-79

RST — RESTART 3-80

RZ — RETURN IF THE ZERO STATUS EQUALS 1 3-81

SBB — SUBTRACT REGISTER OR MEMORY FROM
ACCUMULATOR WITH BORROW 3-82

SBI — SUBTRACT IMMEDIATE DATA FROM
ACCUMULATOR WITH BORROW 3-84

SHLD — STORE H AND L REGISTERS DIRECT 3-85

SIM — SET INTERRUPT MASK 3-86

SPHL — LOAD THE STACK POINTER FROM THE H AND
L REGISTERS 3-87

STA — STORE ACCUMULATOR IN MEMORY USING
DIRECT ADDRESSING 3-88

STAX — STORE ACCUMULATOR IN THE MEMORY
LOCATION ADDRESSED BY A REGISTER PAIR 3-89

STC — SET CARRY STATUS 3-90

SUB — SUBTRACT REGISTER OR MEMORY FROM
ACCUMULATOR 3-91

SUI — SUBTRACT IMMEDIATE DATA FROM
ACCUMULATOR 3-93

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

3 (Cont.) XCHG — EXCHANGE DE AND HL REGISTERS' CONTENTS 3-94

XRA — EXCLUSIVE-OR REGISTER OR MEMORY WITH
ACCUMULATOR 3-95

XRI — EXCLUSIVE-OR IMMEDIATE DATA WITH
ACCUMULATOR 3-97

XTHL — EXCHANGE TOP OF STACK WITH HL 3-98
• INTEL 8080A AND 8085 ASSEMBLER CONVENTIONS 3-99

ASSEMBLER FIELD STRUCTURE 3-99

LABELS 3-99

PSEUDO-OPERATIONS 3-99

LABELS WITH PSEUDO-OPERATIONS 3-101

ADDRESSES 3-101

CONDITIONAL ASSEMBLY 3-102

MACROS 3-103

BNPF FORMAT 3-103

4 SIMPLE PROGRAMS 4-1

GENERAL FORMAT OF EXAMPLES 4-1

GUIDELINES FOR PROBLEMS 4-2

EXAMPLES 4-3

ONES COMPLEMENT 4-3

8-BIT ADDITION 4-4

SHIFT LEFT ONE BIT 4-5

MASK OUT LEAST SIGNIFICANT FOUR BITS 4-6

CLEAR A MEMORY LOCATION 4-7

WORD DISASSEMBLY 4-7

FIND LARGER OF TWO NUMBERS 4-9

16-BIT ADDITION 4-10

TABLE OF SQUARES 4-12

16-BIT ONES COMPLEMENT 4-14

PROBLEMS 4-15

TWOS COMPLEMENT 4-15

8-BIT SUBTRACTION 4-15

SHIFT LEFT TWO BITS 4-15

MASK OUT MOST SIGNIFICANT FOUR BITS 4-15

SET A MEMORY LOCATION TO ALL ONES 4-15

WORD ASSEMBLY 4-15

FIND SMALLER OF TWO NUMBERS 4-16

24-BIT ADDITION 4-16

SUM OF SQUARES 4-16

16-BIT TWOS COMPLEMENT 4-17

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

SIMPLE PROGRAM LOOPS 5-1

EXAMPLES 5-4

SUM OF DATA 5-4

16-BIT SUM OF DATA 5-7

NUMBER OF NEGATIVE ELEMENTS 5-9

FIND MAXIMUM 5-11

JUSTIFY A BINARY FRACTION 5.-14

PROBLEMS 5-16

CHECKSUM OF DATA 5-16

SUM OF 16-BIT DATA 5-16

NUMBER OF ZERO. POSITIVE AND NEGATIVE NUMBERS 5-17

FIND MINIMUM 5-17

COUNT 1 BITS 5-17

CHARACTER-CODED DATA 6-1

EXAMPLES 6-3

LENGTH OF A STRING OF CHARACTERS 6-3

FIND- FIRST NON-BLANK CHARACTER 6-7
' REPLACE LEADING ZEROS WITH BLANKS 6-11

ADD EVEN PARITY TO ASCII CHARACTERS 6-13

PATTERN MATCH 6-16

PROBLEMS 6-19

. LENGTH OF A TELETYPEWRITER MESSAGE 6-19

FIND LAST NON-BLANK CHARACTER 6-19

TRUNCATE DECIMAL STRING TO INTEGER FORM 6-20

CHECK EVEN PARITY IN ASCII CHARACTERS 6-20

STRING COMPARISON 6-21

CODE CONVERSION 7-1

EXAMPLES 7-1

HEX TO ASCII 7-1

DECIMAL TO 7-SEGMENT 7-4

ASCII TO DECIMAL 7-7

BCD TO BINARY 7-8

ASCII STRING TO BINARY NUMBER 7-9

PROBLEMS 7-13

-ASCIITOHEX 7-13

7-SEGMENT TO DECIMAL 7-13

DECIMAL TO ASCII 7-13

BINARY TO BCD 7-13

BINARY NUMBER TO ASCII STRING 7-14

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

8

10

ARITHMETIC PROBLEMS 8-1

EXAMPLES 8-2

MULTIPLE-PRECISION ADDITION 8-2

DECIMAL ADDITION 8-4

8-BIT BINARY MULTIPLICATION 8-6

8-BIT BINARY DIVISION 8-11

SELF-CHECKING NUMBERS — DOUBLE ADD DOUBLE,
MOD 10 8-16

PROBLEMS 8-20

MULTIPLE-PRECISION SUBTRACTION 8-20

DECIMAL SUBTRACTION 8-20

8-BIT BY 16-BIT BINARY MULTIPLICATION 8-21

SIGNED BINARY DIVISION 8-21

SELF-CHECKING NUMBERS ALIGNED 1. 3. 7 MOD 10 8-22

TABLES AND LISTS- 9-1

EXAMPLES 9-1

ADD ENTRY TO LIST 9-1

CHECK AN ORDERED LIST 9-4

REPLACING A CHAIN WITH DATA 9-7

8-BIT SORT 9-10

USING A JUMP TABLE WITH A KEY 9-14

PROBLEMS 9-16

REMOVE ENTRY FROM LIST 9-16

ADD ENTRY TO ORDERED LIST 9-17

ADD ELEMENT TO CHAINED LIST 9-17

16-BIT SORT 9-18

USING AN ORDERED JUMP TABLE 9-18

SUBROUTINES 10-1

SUBROUTINE DOCUMENTATION 10-2

EXAMPLES 10-3

HEX TO ASCII 10-3

LENGTH OF A STRING OF CHARACTERS 10-7

ADD EVEN PARITY TO ASCII CHARACTERS 10-10

PATTERN MATCH 10-14

MULTIPLE-PRECISION ADDITION 10-18

PROBLEMS 10-21

ASCII TO HEX 10-21

LENGTH OF A TELETYPE MESSAGE 10-21

CHECK EVEN PARITY IN ASCII CHARACTERS 10-21

STRING COMPARISON 10-22

DECIMAL SUBTRACTION 10-23

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

11 INPUT/OUTPUT
TIMING INTERVALS (DELAYS)

DELAY ROUTINES
EXAMPLES
DELAY PROGRAM
A PUSHBUTTON (OR SPST MOMENTARY SWITCH)

A TOGGLE (SPDT) SWITCH
A MULTIPLE-POSITION (ROTARY, SELECTOR. OR
THUMBWHEEL) SWITCH

A SINGLE LED
7-SEGMENT LED DISPLAY

PROBLEMS
AN ON-OFF PUSHBUTTON
DEBOUNCING A SWITCH IN SOFTWARE
CONTROL FOR A ROTARY SWITCH
RECORD SWITCH POSITIONS ON LIGHTS

COUNT ON A 7-SEGMENT DISPLAY

MORE COMPLEX I/O DEVICES
EXAMPLES
AN UNENCODED KEYBOARD
AN ENCODED KEYBOARD
A DIGITAL-TO-ANALOG CONVERTER
AN ANALOG-TO-DIGITAL CONVERTER
A TELETYPEWRITER (TTY)

PROBLEMS
SEPARATING CLOSURES FROM AN UNENCODED
KEYBOARD
READ A SENTENCE FROM AN ENCODED KEYBOARD
A VARIABLE AMPLITUDE SQUARE WAVE GENERATOR
AVERAGING ANALOG READINGS
A 30 CHARACTERS-PER-SECOND TERMINAL

12 INTERRUPTS
8080 INTERRUPT SYSTEM
THE RESTART (RST) INSTRUCTION

8085 INTERRUPT SYSTEM
8214 PRIORITY INTERRUPT CONTROL UNIT

8259 PROGRAMMABLE INTERRUPT CONTROLLER
EXAMPLES
A STARTUP INTERRUPT

A KEYBOARD INTERRUPT
A PRINTER INTERRUPT
A REAL-TIME CLOCK INTERRUPT

A TELETYPEWRITER INTERRUPT
MORE GENERAL SERVICE ROUTINES

PROBLEMS
A TEST INTERRUPT
A KEYBOARD INTERRUPT

A PRINTER INTERRUPT
A REAL-TIME CLOCK INTERRUPT
A TELETYPEWRITER INTERRUPT

11-1

11-8

11-8

11-9

11-9

11-11

11-17

11-21

11-27

11-30

11-36

11-36

11-36

11-37

11-37

11-37

11-38

11-40

11-40

11-48

11-52

11-56

11-60

11-69

11-69

11-69

11-69

11-70

11-70

12-1

12-3

12-3

12-6

12-6

12-9

12-11

12-11

12-14

12-17

12-19

12-23

12-24

12-27

12-27

12-27

12-27

12-27

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

13 PROBLEM DEFINITION AND PROGRAM DESIGN 13-1

THE TASKS OF SOFTWARE DEVELOPMENT 13-1

DEFINITION OF THE STAGES 13-3

PROBLEM DEFINITION 13-3

DEFINING THE INPUTS 13-3
DEFINING THE OUTPUTS 13-4
PROCESSING SECTION 13-4
ERROR HANDLING 13-5
HUMAN FACTORS 13-5

EXAMPLES 13-6

RESPONSE TO A SWITCH 1 3-6

A SWITCH-BASED MEMORY LOADER 13-7
A VERIFICATION TERMINAL 13-10
REVIEW OF PROBLEM DEFINITION 13-13

PROGRAM DESIGN 13-14
FLOWCHARTING 13-14
EXAMPLES 13-16
RESPONSE TO A SWITCH ,13-16

THE SWITCH-BASED MEMORY LOADER 13-17
THE CREDIT-VERIFICATION TERMINAL 13-19

MODULAR PROGRAMS 13-23
EXAMPLES 13-24

RESPONSE TO A SWITCH 1 3-24
THE SWITCH-BASED MEMORY LOADER 13-24
THE VERIFICATION TERMINAL 13-24

REVIEW OF MODULAR PROGRAMMING 13-25
STRUCTURED PROGRAMMING 13-25
EXAMPLES 13-29

RESPONSE TO A SWITCH 13-29
THE SWITCH-BASED MEMORY LOADER 13-30

THE CREDIT-VERIFICATION TERMINAL 13-31

REVIEW OF STRUCTURED PROGRAMMING 13-34
TOP-DOWN DESIGN 13-35

EXAMPLES 13-36

RESPONSE TO A SWITCH 13-36

-THE SWITCH-BASED MEMORY LOADER 1 3-37

THE TRANSACTION TERMINAL 13-38
REVIEW OF TOP-DOWN DESIGN 13-39
REVIEW OF PROBLEM DEFINITION AND PROGRAM DESIGN 13-40

REFERENCES 13-41

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

14 DEBUGGING AND TESTING 14-1

SIMPLE DEBUGGING TOOLS 14-1

MORE ADVANCED DEBUGGING TOOLS 14-6

DEBUGGING WITH CHECKLISTS 14-8

LOOKING FOR ERRORS 14-9

DEBUGGING EXAMPLES 14-12

DECIMAL TO 7-SEGMENT CONVERSION 14-12

SORT INTO DECREASING ORDER 14-15

INTRODUCTION TO TESTING 14-21

TOOLS FOR TESTING 14-22

SELECTING TEST DATA 14-22

TESTING EXAMPLES 14-23

SORT PROGRAM 14-23

SELF-CHECKING NUMBERS 14-24

TESTING PRECAUTIONS 14-24

CONCLUSIONS 14-24

REFERENCES 14-25

15 DOCUMENTATION AND RE-DESIGN 15-1

SELF-DOCUMENTING PROGRAMS 15-1

COMMENTS 15-2

COMMENTING EXAMPLES 15-4

MULTIPLE-PRECISION ADDITION 15-4

TELETYPEWRITER OUTPUT 15-5

FLOWCHARTS AS DOCUMENTATION 15-6

STRUCTURED PROGRAMS AS DOCUMENTATION 15-6

MEMORY MAPS 15-7

PARAMETER AND DEFINITION LISTS 15-7

LIBRARY ROUTINES 15-8

LIBRARY EXAMPLES 15-9

SUM OF DATA 15-9

DECIMAL TO 7-SEGMENT CONVERSION 15-10

DECIMAL SUM 15-11

TOTAL DOCUMENTATION 15-12

RE-DESIGN 15-12

REORGANIZING TO USE LESS MEMORY 15-13

REORGANIZING TO USE LESS TIME 1 5-1

3

MAJOR REORGANIZATIONS 15-14

16 SAMPLE PROJECTS 16-1

PROJECT #1 : A DIGITAL STOPWATCH 16-1

PROJECT #2: A DIGITAL THERMOMETER 16-15

LIST OF FIGURES

FIGURE PAGE

5-1 Flowchart Of A Program Loop 5-2

5-2 A Program Loop Which Allows Zero Iterations 5-3

7-1 7-Segment Arrangement 7-4

1-1 An Output Demultiplexer Controlled By A Counter 11-3

1-2 An Output Demultiplexer Controlled By A Port 1 1-3

11-3 An Input Multiplexer Controlled By A Counter 11-4

1-4 An Input Multiplexer Controlled By A Port 11-4

11-5 An Input Handshake 11-6

11-6 An Output Handshake 11-7

1-7 A Pushbutton Circuit 11-11

1-8 A Toggle Switch Circuit 11-17

11-9 A Debouncing Circuit Based On Cross-Coupled NAND Gates 11-17

1-10 A Multiple-Position Switch 11-21

11-11 A Multiple-Position Switch With An Encoder 11-22

11-12 Interfacing an LED 11-27

1-13 Interfacing a 7-Segment Display 11-30

11-14 Display Organization 11-31

1-15 7-Segment Representations of Decimal Digits 11-32

1-16 A Small Keyboard 11-41

1-17 A Keyboard Matrix 11-41

1-18 I/O Arrangement For A Keyboard Scan 11-43

1-19 I/O Interface For An Encoded Keyboard 1 1 -48

1-20 The 8212 I/O Port 11-49

1-21 The 8212 I/O Port as an Interrupting Input Port 11-51

1-22a Signetics NE501 8 D/A Converter 11-53

1 -22b NE501 8 Connection to 8080 System 1 1 -54

1-23 Interface for an 8-Bit Digital-to-Analog Converter 11-54

1-24 The 8212 I/O Port As A Latched Output Port 11-54

1 -25 Teledyne 8703 A/D Converter 1 1 -58

1-26 Interface for an 8-Bit Analog-to-Digital Converter 11-59

1-27 Teletypewriter Data Format 11-61

1 -28 Flowchart for Receive Procedure 1 1 -62

1-29 Flowchart for Transmit Procedure 11-64

12-1 Using Pullup Resistors to Form the RST 7 Instruction 12-4

1 2-2 Using the 8228 System Controller to Form the RST 7

Instruction 12-5

I2-3 Using an 8212 I/O Port to Form the RST 7 Instruction 12-5

1
2-4 Forming Eight RST Instructions with a Priority Encoder 12-5

1 2-5 The 8214 Priority Interrupt Control Unit 12-8

1
2-6 The 8214 Priority Interrupt Control Unit Used as an

8-Level Controller 12-10

1
2-7 The 8259 Programmable Interrupt Controller 12-11

1
2-8 A Single Input Interrupt 12-12

LIST OF FIGURES (Continued)

FIGURE PAGE

13-1 Flowchart of Software Development 13-2

13-2 The Switch and Light System 13-6

13-3 The Switch-Based Memory Loader 13-8

13-4 Block Diagram of a Verification Terminal 13-10

13-5 Verification Terminal Keyboard 13-11

13-6 Verification Terminal Display 13-11

13-7 Standard Flow Diagram Symbols 13-15

13-8 Flowchart of a One-Second Response to a Switch 13-17

13-9 Flowchart of Switch-Based Memory Loader 13-18

13-10 Flowchart of Keyboard Entry Process 13-19

13-1

1

Flowchart of Keyboard Entry Process with SEND Key 13-20

13-12 Flowchart of Keyboard Entry Process with Function Keys 13-21

13-13 Flowchart of Receive Routine 13-22

13-14 Flowchart of an Unstructured Program 13-26

13-15 Flowchart of the If-Then-Else Structure 13-27

13-16 Flowchart of the Do-While Structure 13-27

13-17 Initial Flowchart for Transaction Terminal 13-39

13-18 Flowchart for Expanded KEYBOARD Routine 13-40

14-1 A Simple Breakpoint Routine 14-2

14-2 Flowchart of Register Dump Program 14-4

14-3 Results of a Typical Register Dump 14-5

14-4 Results of a Typical Memory Dump 14-5

14-5 Flowchart of Decimal to 7-Segment Conversion 14-13

14-6 Flowchart of Sort Program 14-16

16-1 I/O Configuration 16-2

16-2 I/O Configuration 16-16

16-3 Analog Hardware 16-17

16-4 Thermistor Characteristics (Fenwal GA51J1 Bead) 16-18

16-5 Typical E-l Curve for Thermistor (25°C) 16-18

16-6 Generating an Internal Clock Frequency 16-19

LIST OF TABLES

TABLE PAGE
1-1 Hexadecimal Conversion Table 1-4

2-1 The Fields of an Assembly Language Instruction 2-1

2-2 Standard 8080 Assembler Delimiters 2-2

2-3 Assigning and Using a Label 2-3

3-1 Frequently Used Instructions of the 8080A and 8085 3-5

3-2 Occasionally Used Instructions of the 8080A and 8085 3-6

3-3 Seldom Used Instructions of the 8080A and 8085 3-7

3-4 A Summary of 8080A/8085 Microcomputer Instruction Set 3-10
3-5 A Summary of Instruction Object Codes and

Execution Cycles 3-18

6-1 7-Bit ASCII Character Code Chart 6-2

1 1 -1 Data Input vs. Switch Position 1 1 -22

11-2 7-Segment Representations of Decimal Numbers 1 1-33

1 1-3 7-Segment Representation of Letters and Symbols 1 1-34

11-4 Comparison Between Independent Connections and Matrix

Connections for Keyboards 1 1 -42

12-1 The Restart Instruction 12-3

12-2 RST Instructions Produced by the Various Request Inputs 12-7

12-3 Interrupts Allowed for Various Status Register Values 12-7

14-1 Intel 8080 Restart Addresses 14-3

16-1 . Input Connections for Timer Keyboard 16-2

16-2 Output Connections for Timer Keyboard 16-2

QUICK INDEX

INDEX PAGE

A ADDRESS FIELD, NUMBERS AND CHARACTERS IN 3-101

ALGEBRAIC NOTATION 1-9

ALLOCATING RAM 2-7

ARITHMETIC AND LOGICAL EXPRESSIONS 2-10

ASCII. HANDLING DATA IN 6-1

ASCII CHARACTERS 2-10

ASSEMBLER 1-6

ASSEMBLER, CHOOSING AN 1-6

ASSEMBLER ARITHMETIC AND LOGICAL OPERATIONS 3-101

ASSEMBLER DIRECTIVE 2-4

ASSEMBLER OPERATIONS, ORDER OF 3-102

ASSEMBLY LANGUAGE, APPLICATIONS FOR 1-1

1

ASSEMBLY LANGUAGE FIELDS 2-1

ASSEMBLY LANGUAGE PROGRAM 1-5

B BASIC SOFTWARE DELAY 11-8

BETTER ALGORITHMS 15-14

BINARY, DECIMAL ACCURACY IN 8-3

BINARY INSTRUCTIONS 1-1

BLANKING A LEADING ZERO 16-22

BOOTSTRAP LOADER 2-15

BOTTOM-UP DESIGN 13-35

BREAKPOINT 14-2

C CHANGING THE RETURN ADDRESS 12-15

CHECKLIST. WHAT TO INCLUDE IN 14-8

CHOOSING A TIMING METHOD 1 1 -8

CHOOSING LABELS 2-3

CHOOSING USEFUL NAMES 15-2

CODING 13-3

CODING, RELATIVE IMPORTANCE OF 13-1

COMBINING CONTROL INFORMATION 1 1 -39

COMMENTING, QUESTIONS FOR 15-4

COMMENTING EXAMPLES 15-4

COMMENTING GUIDELINES 15-2

COMMENTING TECHNIQUES 2-13

COMMON-ANODE AND COMMON-CATHODE DISPLAYS 1 1-30

COMMON ERRORS 14-9

COMPILER 1-7

COMPILERS, COST OF 1-9

COMPUTER PROGRAM 1-2

CONTROL AND STATUS INFORMATION 1 1-38

CORRECTING KEYBOARD ERRORS 13-13

CORRECTING TRANSMISSION ERRORS 13-13

CROSS-ASSEMBLER 2-14

QUICK INDEX (Continued)

INDEX PAGE

D DATA. FORMING CLASSES OF 14-23

DEBOUNCING IN SOFTWARE 11-14

DEBOUNCING WITH CROSS-COUPLED NAND GATES 11-17

DEBUGGING 13-3

DEBUGGING. USING TEST CASES FROM 14-21

DEBUGGING A CODE CONVERSION PROGRAM 14-12

DEBUGGING A SORT PROGRAM 14-15

DEBUGGING INTERRUPT-DRIVEN PROGRAMS 14-11

DECIDING ON A MAJOR CHANGE 15-15

DECIMAL ADJUST 8-6

DECIMAL DATA OR ADDRESSES 2-9

DEFINING A SWITCH-BASED MEMORY LOADER 13-7

DEFINING A VERIFICATION TERMINAL 13-10

DEFINING NAMES 2-6

DEFINING SWITCH AND LIGHT SYSTEM 13-6

DEFINITION LIST, RULES FOR 15-7

DEFINITIONS. PLACEMENT OF 2-7

DELIMITERS 2-2

DIRECT MEMORY ACCESS 1 1 -5

DIVISION ALGORITHM 8-11

DOCUMENTATION 13-3

DOCUMENTATION PACKAGE 15-12

DOCUMENTING STATUS AND CONTROL TRANSFERS 1 1-40

DOCUMENTING SUBROUTINES 10-2

DOUBLE BUFFERING 12-16

E 8-BIT SUMMATION 5-4

8080 INTERRUPT RESPONSE 12-3

8080A DELAY LOOP CONSTANT 11-10

8085 DELAY LOOP CONSTANT 11-11

8085 INTERRUPT SYSTEM 12-6

8214 INTERRUPT CONTROL UNIT 12-6

8259 INTERRUPT CONTROLLER 12-9

EMPTYING A BUFFER WITH INTERRUPTS 12-18

ENABLING AND DISABLING INTERRUPTS 12-2

ENCODED KEYBOARDS 1 1 -48

EQU PSEUDO-OPERATION 3-100

ERROR CONSIDERATIONS 13-5

EXAMPLE FORMAT 4-1

EXAMPLES, GUIDELINES FOR 4-1

EXPANDING PROGRAM STUBS 13-36

EXPANDING THE KEYBOARD ROUTINE 13-38

F FILLING A BUFFER VIA INTERRUPTS 12-16

FLOWCHARTING, ADVANTAGES OF 13-15

FLOWCHARTING, DISADVANTAGES OF 13-16

FLOWCHARTING SECTIONS 13-19

FLOWCHARTING SWITCH AND LIGHT SYSTEM 13-16

FLOWCHARTING THE CREDIT VERIFICATION 13-19

FLOWCHARTING THE SWITCH-BASED MEMORY LOADER 13-17

FLOWCHARTS, HINTS FOR USING 15-6

FORMAT 2-2

FORTRAN 1-7

QUICK INDEX (Continued)

INDEX PAGE

G GENERAL SERVICE ROUTINES, TASKS FOR 12-24

H HAND ASSEMBLY 1-5

HAND-CHECKING QUESTIONS 14-9

HANDSHAKE 11-2

HASHING 9-4

HEXADECIMAL LOADER 1-4

HIGH-LEVEL LANGUAGES, ADVANTAGES OF 1-9

HIGH-LEVEL LANGUAGE, APPLICATIONS FOR 1-1

1

HIGH-LEVEL LANGUAGES, DISADVANTAGES OF 1-9

HIGH-LEVEL LANGUAGES, INEFFICIENCY OF 1-9

HIGH-LEVEL LANGUAGES, MACHINE INDEPENDENCE OF 1-8

HIGH-LEVEL LANGUAGES. OVERHEAD FOR 1-10

HIGH-LEVEL LANGUAGES, PORTABILITY OF 1-8

HIGH-LEVEL LANGUAGES, SYNTAX OF 1
-8

HIGH-LEVEL LANGUAGES. UNSUITABILITY OF 1-10

I IDENTIFYING KEY CLOSURES 11-44

INITIALIZING RAM 2-8

INPUT, FACTORS IN 13-4

INSTRUCTION EXECUTION, STATUS CHANGES WITH 3-9

INSTRUCTIONS, DEFINING A SEQUENCE OF 2-1

1

INTERFACING SLOW DEVICES 11-2

INTERRUPT HANDLING BY MONITORS 12-13

INTERRUPT SERVICE ROUTINE, LOCATION OF 12-13

INTERRUPT SYSTEMS. CHARACTERISTICS OF 12-1

' INTERRUPTS, DISADVANTAGES OF 12-2

INTERRUPTS, REASONING BEHIND 12-1

I/O AND MEMORY 11-1

I/O CATEGORIES 11-1

I/O DEVICES. SYNCHRONIZING WITH 1 1-38

J JUMP INSTRUCTIONS, LABELS IN 2-2

K KEY TABLE 16-6

KEYBOARD INTERRUPT 12-14

KEYBOARD SCAN 11-42

L LABEL FIELD 2-2

LABELING, RULES OF 2-4

LANGUAGE LEVELS, APPLICATION AREAS FOR 1-10

LANGUAGE LEVELS, FUTURE TRENDS IN 1-12

LINKING LOADERS 2-15

LOCAL OR GLOBAL VARIABLES 2-13

LOCATION COUNTER 2-7

LOGIC ANALYZER 14-7

LOGIC ANALYZERS, IMPORTANT FEATURES OF 14-8

QUICK INDEX (Continued)

INDEX PAGE
M MACHINE LANGUAGE, APPLICATIONS FOR 1-11

MACHINE LANGUAGE PROGRAM 1 -2

MACROASSEMBLER 2-14
MACROS. ADVANTAGES OF 2-13
MACROS, DISADVANTAGES OF 2-13
MAINTAINING REAL TIME 12-21
MAINTENANCE AND RE-DESIGN

'

1 3,3
MAJOR OR MINOR REORGANIZATION 15-13
MATRIX KEYBOARD

1 ^ .40
MEASURING PROGRESS IN STAGES 13-1
MEMORY DUMP 14.5
MEMORY LOADER ERROR HANDLING 13-9
META-ASSEMBLER 2-14
MICROASSEMBLER 2-14
MNEMONICS, PROBLEM WITH 1-5
MODULAR PROGRAMMING, ADVANTAGES OF 13-23
MODULAR PROGRAMMING, DISADVANTAGES^ 13-23
MODULAR PROGRAMMING. RULES FOR 13-25
MODULARIZING THE SWITCH AND LIGHT SYSTEM 1 3-24,

MODULARIZING THE SWITCH-BASED MEMORY LOADER . 13-24
MODULARIZING THE VERIFICATION TERMINAL 13-24
MULTIPLICATION ALGORITHM 8-7

N NAMES, CHOICE OF 2-6
NAMES, USE OF 2-6
NON-MASKABLE INTERRUPT 12-2

QUICK INDEX (Continued)

INDEX PAGE

OBJECT PROGRAM 1-2.1-6

OCTAL OR HEXADECIMAL 1-3

ONE-PASS ASSEMBLER 2-14

OPERATOR ERROR CORRECTION IN MEMORY LOADER 13-9

OPERATOR INTERACTION 13-5

ORG PSEUDO-OPERATION 3-100

OTHER MAJOR CHANGES 15-14

OTHER NUMBER SYSTEMS 2-9

OTHER SORTING METHODS 9-14

P PASSING PARAMETERS 10-1

POLLING 12-2

PORTABILITY 1-7

PRINTER INTERRUPT 12-17

PRIORITY 12-2

PROBLEM DEFINITION 13-3

PROCESSING, FACTORS IN 13-4

PRODUCING A SINGLE RESTART INSTRUCTION 12-4

PROGRAM DESIGN 13-3

PROGRAM DESIGN. BASIC PRINCIPLES OF 13-14

PROGRAM STUBS 13-35

PROGRAMMING GUIDELINES 4-2

R REAL-TIME CLOCK 12-19

REAL-TIME CLOCK. FREQUENCY OF 12-19

REAL-TIME CLOCK. PRIORITY OF 12-19

REAL-TIME CLOCK. SYNCHRONIZATION WITH 12-19

RE-DESIGN, COST OF 15-12

REDUCING TRANSMISSION ERRORS 1 1 -5

RE-ENTRANT SUBROUTINE 10-2

REGISTER DUMP 14-3

RELOCATING LOADER 2-15

RELOCATION 10-2

RESIDENT ASSEMBLER 2-14

RESTART INSTRUCTION 12-3

RIM INSTRUCTION 12-6

ROLLOVER 1 1 -48

3ST AS A BREAKPOINT 14-2

QUICK INDEX (Continued)

INDEX PAGE

S SAVING AND RESTORING REGISTERS AND PRIORITY 12-26

SAVING EXECUTION TIME 15-13
SAVING MEMORY 15-13
SEARCHING METHODS 9-7

SELECTING TEST DATA FROM CLASSES 14-23

SELF-DOCUMENTING PROGRAMS, RULES FOR 15-1

SEPARATING STATUS INFORMATION 1 1 -39

7-SEGMENT REPRESENTATIONS 11-32
SIM INSTRUCTION 12-6

SIMPLE SORTING ALGORITHM 9-10

SIMULATOR 14-6

SINGLE-STEP 14-1

SINGLE-STEP MODE. LIMITATIONS OF 14-2

SOFTWARE DEVELOPMENT, STAGES OF 13-1

SOURCE PROGRAM 1-6

SPECIAL INSTRUCTIONS 4-3

STANDARD PROGRAM LIBRARY FORMS 15-9

STANDARD TTY CHARACTER FORMAT 1 1-60

START BIT INTERRUPT 12-24

STARTUP INTERRUPT 12-11

STATUS CONDITIONS 3-71

STOPWATCH INPUT PROCEDURE 16-1

STROBE 11-5

STRUCTURED KEYBOARD ROUTINE 13-31

STRUCTURED PROGRAM FOR THE
CREDIT-VERIFICATION TERMINAL 13-31

STRUCTURED PROGRAMMING, ADVANTAGES OF 13-28

STRUCTURED PROGRAMMING, BASIC STRUCTURES OF 13-26

STRUCTURED PROGRAMMING, DISADVANTAGES OF 13-29

STRUCTURED PROGRAMMING. RULES FOR 13-35

STRUCTURED PROGRAMMING. WHEN TO USE 13-29

STRUCTURED PROGRAMMING FOR THE SWITCH-BASED
MEMORY LOADER 13-30

STRUCTURED PROGRAMMING IN THE SWITCH AND
LIGHT SYSTEM 13-29

STRUCTURED RECEIVE ROUTINE 13-33

STRUCTURED TESTING 14-22

STRUCTURES. EXAMPLES OF 13-28

STRUCTURES. TERMINATORS FOR 13-35

SUBROUTINE CALL USING RST 3-80

SUBROUTINE INSTRUCTIONS 10-1

SUBROUTINE LIBRARY 10-1

SWITCH AND LIGHT ERROR HANDLING 13-7

SWITCH AND LIGHT INPUT 13-6

SWITCH AND LIGHT OUTPUTS 13-6

SWITCH BOUNCE 11-14

SYMBOL TABLE 2-6

QUICK INDEX (Continued)

INDEX PAGE

T TELETYPEWRITER INTERRUPT 12-23

TESTING 13-3

TESTING, RULES FOR 14-24

TESTING A SORT PROGRAM 14-23

TESTING AN ARITHMETIC PROGRAM 14-24

TESTING AIDS 14-22

TESTING SPECIAL CASES 14-23

THERMOMETER ANALOG HARDWARE 16-15

TIMING INTERVALS. METHODS FOR PRODUCING 11-8

TIMING INTERVALS. USES OF 11-8

TOP-DOWN DESIGN. ADVANTAGES OF 13-36

TOP-DOWN DESIGN. DISADVANTAGES OF 13-36

TOP-DOWN DESIGN. FORMAT FOR 13-39

TOP-DOWN DESIGN METHODS 13-35

TOP-DOWN DESIGN OF SWITCH AND LIGHT SYSTEM 13-36

TOP-DOWN DESIGN OF SWITCH-BASED MEMORY LOADER 13-37

TOP-DOWN DESIGN OF VERIFICATION TERMINAL 13-38

TRANSPARENT DELAY ROUTINE 11-8

TTY INTERFACE 1 1 -60

TTY RECEIVE MODE 11-61

TTY RECEIVE PROGRAM 1 1 -63

TTY TRANSMIT MODE 11-65

TTY TRANSMIT PROGRAM 1 1 -65

TWO-PASS ASSEMBLER 2-14

TYPICAL DEFINITION LIST 15-8

TYPICAL MEMORY MAP 15-7

U UART 11-65

UART INTERRUPTS 12-23

USING A CALIBRATION TABLE 16-20

USING A DIGITAL ENCODER 1 1-22

USING REGISTER M 4-2

USING RSTO 12-25

USING THE ACCUMULATOR 4-2

V VECTORING 12-2

VERIFICATION TERMINAL ERROR HANDLING 13-12

VERIFICATION TERMINAL INPUTS 1 3-1

1

VERIFICATION TERMINAL OUTPUTS 1 3-1

2

W WAITING FOR A KEY CLOSURE 1 1-42

Chapter 1

INTRODUCTION TO ASSEMBLY
LANGUAGE PROGRAMMING

This book describes assembly language programming. It assumes that you are

familiar with An Introduction To Microcomputers: Volume I— Basic Concepts
(particularly Chapters 6 and 7). This book does not discuss the general features of

computers, microcomputers, addressing methods, or instruction sets; you should

refer to An Introduction To Microcomputers: Volume I for that information.

HOW THIS BOOK HAS BEEN PRINTED
Notice that«text in this book has been printed in boldface type and lightface type.

This has been done to heJp you skip those parts of the book that cover subject

matter with which you are familiar. You can be sure that lightface type only ex-

pands on information presented in the previous boldface type. Therefore, only read

boldface type until you reach a subject-about which you want to know more, at which
point start reading the lightface type.

, THE MEANING OF INSTRUCTIONS

The instruction set of a microprocessor is simply the set of binary inputs which
produce defined actions during an instruction cycle. An instruction set is to a

microprocessor what a function table is to a logic device such as a gate, adder, or Shift

register.
,:

course, the actions which the microprocessor performs in response to the

instruction inputs are far more complex than the actions which combinatorial logic

devices perform in response to their inputs.

An instruction is simply a binary bit pattern— it must be pre-

sent at the data inputs to the microprocessor at the proper
time in order to be interpreted as an instruction. For example, in

the case of the 8080 microprocessor, when the 8-bit binary pattern 10000000 is the in-

put during an instruction fetch operation, it means:

"Add the contents of Register B to the contents of the Accumulator".

Similarly, the pattern- 001 1 1 110 means:

"Place the contents of the next word of program memory in.the Accumulator".

The microprocessor (like any other computer) only recognizes binary patterns as in-

structions. or data; it does not recognize words or octal, decimal, or hexadecimal num-
bers.

BINARY
INSTRUCTIONS

1-1

A COMPUTER PROGRAM
A program is a sequence of instructions which cause a computer to perform a par-

ticular task.

COMPUTER
PROGRAM

Actually, a computer program includes more than instructions; it

also contains the data and memory addresses which the

microprocessor needs to accomplish the task defined by the in-

structions. Clearly, if the microprocessor is to perform an addition, it must have two
numbers to add and a destination for the result. The computer program must somehow
determine the sources of the data and the destination of the result as well as the opera-

tion.

All microprocessors execute instructions sequentially unless one of the instructions

changes the execution sequence or halts the computer, i.e., the processor gets the next

instruction from the next consecutive memory address unless the present instruction

specifically directs it to do otherwise.

Ultimately every program becomes a set of binary numbers. For example, this is

the 8080 program which adds the contents of memory locations 60-fg and 61 1 g
and places the result in memory location 62-jg:

00111010
01100000
00000000
01000111
00111010
01100001
00000000
1 0000000
00110010
01100010
00000000

OBJECT
PROGRAM

MACHINE
LANGUAGE
PROGRAM

This is a machine language, or object program. If this program

were entered into the memory of an 8080-based microcomputer,

the microcomputer would be able to execute it directly.

THE PROGRAMMING PROBLEM
There are many difficulties associated with creating programs

as object, or binary machine language, programs. These are

some of the problems:

1) The programs are difficult to understand or debug (binary patterns all look the

same, particularly after you have looked at them for a few hours).

2) The programs are slow to enter since you must enter each bit individually.

3) The programs do not describe the task which you' want the computer to perform in

anything resembling a human readable format.

4) The programs are long and tiresome to write.

5) The programmer often makes careless errors Which are subsequently very difficult

to find.

1-2

For example;, the following version of the addition object program contains a single

bit error. Try to find it:

00111010
01100000
00000000
01000111
01110010
01100001
00000000
10000000
00110010
01100010
00000000

Although the computer handles binary numbers with ease, people do not. People find

binary programs long, tiresome, confusing, and meaningless. Eventually, a programmer
may start remembering some of the binary codes, but such effort should be spent more
productively.

USING OCTAL OR HEXADECIMAL
OCTAL OR
HEXADECIMAL

We can improve the situation somewhat by writing instruc-

tions using octal or hexadecimal, rather than binary numbers.

We will use hexadecimal numbers in this book because they are

shorter, and because they are the standard for the microprocessor industry. Table 1-1

defines the hexadecimal digits and their binary equivalents. The 8080 program to add
two numbers now becomes:

3A
60
00
47

3A
61

00
80
32

62
00

At the very least, the hexadecimal version is shorter to write and not quite so tiring to

examine.

Errors are somewhat easier to find in a sequence of hexadecimal digits. The er-

roneous version of the addition program, in hexadecimal form becomes:

3A
60

00
47
72
61

00
80
32
62
00

The mistake is easier to spot

1-3

HEXADECIMAL
LOADER

What do we do with this hexadecimal program? The microprocessor only unders-
tands binary instruction codes. The answer is that we must convert the hexadecimal
numbers to binary numbers. This conversion is a repetitive, tiresome task. People who
attempt it make all sorts of petty mistakes, such as looking at the wrong line, dropping a

bit, or transposing a bit or a digit.

This repetitive, grueling task is, however, a perfect job for a com-
puter. The computer never gets tired or bored and never makes
silly mistakes. The idea then is to write a program which takes

hexadecimal numbers and converts them into binary numbers. This is a standard
program provided with many microprocessors; it is called a "hexadecimal loader."

Is a hexadecimal loader worth having? If you are willing to write a program using binary

numbers, and you are prepared to enter the program in its binary form into the com-
puter, then you will not need the hexadecimal loader.

If you choose the hexadecimal loader, you will have to pay a price for it. The hex-

adecimal loader is itself a program which you must load into memory. Furthermore, the

hexadecimal loader will occupy y memory— memory which you may want to use in

some other way.

The basic tradeoff, therefore, is the cost and memory requirements of the hexadecimal

loader versus the savings in programmer time.

A hexadecimal loader is well worth its small cost.

Table 1-1. Hexadecimal Conversion Table

Hexadecimal Binary Decimal

Digit Equivalent Equivalent

1

0000
0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

A 1010 10

B 1011 11

C 1100 12

D 1101 13

E 1110 14

F 1111 15

A hexadecimal loader certainly does not solve every programming problem. The hex-

adecimal version of the program is still difficult to read or understand; for example, it

does not distinguish instructions from data or addresses, nor does the program listing

provide any suggestion as to what the program does. What does 32 or 47 or 3A mean?
Memorizing a card full of codes hardly is an appetizing proposition Furthermore, the

codes will be entirely different for a different microprocessor and the program will re-

quire a large amount of documentation.

1-4

INSTRUCTION CODE MNEMONICS
An obvious programming improvement is to assign a name to each instruction

code. The instruction code name is called a "mnemonic", or memory jogger. The
instruction mnemonic should describe in some way what the instruction does.

In fact, every microprocessor manufacturer (they can't remember PROBLEM
hexadecimal codes either) provides a set of mnemonics for the WITH
microprocessor instruction set But you do not have to abide by MNEMONICS
the manufacturer's mnemonics; there is nothing sacred about

them. However, they are standard for a given microprocessor, and therefore understood

by all users. These are the instruction names you will find in manuals, cards, books, arti-

cles, and programs. The problem with selecting instruction mnemonics is that not all in-

structions have "obvious" names. Some instructions do have obvious names (e.g.,

ADD, AND. OR), others have obvious contractions (e.g.. SUB for subtraction. XOR for

exclusive OR), while still others have neither. The result is such mnemonics as WMP,
PCHL, and even SOB (try and guess what that means!) Most manufacturers come up
with some reasonable names and some hopeless ones. However, users who devise their

own mnemonics rarely seem to do much better than the manufacturer.

Along with the instruction mnemonics, the manufacturer will usually assign names to

the CPU's registers. As with the instruction names, some register names are obvious

(e.g., A for Accumulator) while others may have only historical significance. Again, we
will use the manufacturer's suggestions simply to promote standardization.

ASSEMBLY
LANGUAGE
PROGRAM

If we use standard 8080 instruction and register mnemonics,
as defined by Intel, our 8080 addition program becomes:

LDA
60
00

MOV B.A

LDA
61

00
ADD B

STA
62
00

The program is still far from obvious but at least some parts are comprehensible.
ADD B is a considerable improvement over 80; LDA, MOV, and STA do suggest load-

ing, moving, and storing respectively. We now know which lines are instructions and
which are data or addresses. Such a program is an assembly language program.

THE ASSEMBLER PROGRAM
How do we get the assembly language program into the com-
puter? We have to translate it. either into hexadecimal or into bin-

ary numbers. You can translate an assembly language program
by hand, instruction by instruction. This is called hand assembly.

Hand assembly of a three-instruction sequence may be illustrated as follows:

HAND
ASSEMBLY

Instruction Name Hexadecimal Equivalent

ADD B
LDA
STA

80
3A
32

1-5

As in the case of hexadecimal to binary conversion, hand assembly is a rote task which

is uninteresting, repetitive, and subject to numerous minor errors. Picking the wrong
line, transposing digits, omitting instructions, and misreading the codes are only a few

of the mistakes you may make. Most microprocessors complicate the task even further

by having instructions with different word lengths. Some instructions are one word

long while other instructions are two or three words long. Some instructions require

data in the second and third words, others require memory addresses, register num-
bers, or who knows what?

ASSEMBLER

SOURCE
PROGRAM

OBJECT
PROGRAM

Assembly is another rote task which we can assign to the

microcomputer. The microcomputer never makes any
mistakes when translating codes; it always knows how many
words and what format each instruction requires. The program
which does this job is called an "assembler". The assembler

program translates a user program, or "source" program writ-

ten with mnemonics, into a machine language program, or

"object" program, which the microcomputer can understand.

The assembler's input is a source program and its output is an object program.

The tradeoffs we discussed in connection with the hexadecimal loader are mag-
nified in the case of the assembler. Assemblers are more expensive, occupy more

memory, and require more peripherals and execution time than do hexadecimal

loaders. While users may (and often do) write their own loaders, few care to write their

own assemblers.

Assemblers have their own rules which you must learn to abide by. These include

the use of certain markers (such as spaces, commas, semi-colons, or colons) in ap-

propriate places, correct spelling, the proper control information and perhaps even the

correct placement of names and numbers. These rules typically are a minor hindrance

which can be quickly overcome.

ADDITIONAL FEATURES OF ASSEMBLERS
Early assembler programs did little more than translate the mnemonic names of instruc-

tions and registers into their binary equivalents. However, most assemblers now pro-

vide such additional features as:

1) Allowing the user to assign names to memory locations, input and output devices,

and even sequences of instructions.

2) Converting data or addresses from various number systems (e.g., decimal or hex-

adecimal) to binary and converting characters into their ASCII or EBCDIC binary

codes.

3) Performing some arithmetic as part of the assembly process.

4) Telling the loader program where in memory parts of the program or data should be

placed.

5) Allowing the user to assign areas of memory as temporary data storage, and to

place fixed data in areas of program memory.

6) Providing the information required to include standard programs from program libr-

aries, or programs written at some other time, in the current program.

7) Allowing the user to control the format of the program listing and the input and

output devices employed.

All of these features, of course, involve additional cost and memo-
ry. Microcomputers generally have much simpler assemblers than

do larger computers, but the tendency always is for the size of as-

semblers to increase. You will often have a choice of assemblers.

The important criterion is not how many off-beat features the assembler has, but rather

how convenient it is to work with in normal practice.

1-6

CHOOSING
AN
ASSEMBLER

DISADVANTAGES OF ASSEMBLY LANGUAGE
The assembler, like the hexadecimal loader, does not solve all the problems of

programming. One problem is the tremendous gap between the microcomputer in-

struction set and the tasks which the microcomputer is to perform. Computer in-

structions tend to do things like add the contents of two registers, shift the contents of

the Accumulator one bit. or place a new value in the Program Counter. On the other

hand, a user generally wants a microcomputer to do something like check if an analog

reading has exceeded a threshold, look for and react to a particular command from a

teletypewriter, or activate a relay at the proper time. An assembly language program-

mer must translate such tasks into a sequence of simple computer instructions. The
translation can be a difficult, time-consuming job.

Furthermore, if you are programming in assembly language, you must have detailed

knowledge of the particular microcomputer you are using. You must know what
registers and instructions the microcomputer has, precisely how the instructions affect

the various registers, what addressing methods the computer uses, and a myriad of

other information. None of this information is relevant to the task which the microcom-

puter must ultimately perform.

In addition, assembly language programs are not portable. I PORTABILITY
Each microcomputer has its own assembly language, which ^"~^^—~^^~
reflects its own architecture. An assembly language program written for the 8080 will

not run on the Motorola 6800, the Fairchild F8, or the National Semiconductor PACE.

For example, the addition program written for the Motorola 6800 would be:

LDAA $60
ADDA $61

STAA $62

The lack of portability not only means that you won't be able to use your assembly
language program on another microcomputer, but it also means that you won't be able

to use any programs that weren't specifically written for the microcomputer you are

using. This is a particular drawback for microcomputers, since these devices are new
and few assembly language programs exist for them. The result, too frequently, is that

you are on your own. If you need a program to perform a particular task, you are not

likely to find it in the small program libraries that most manufacturers provide. Nor are

you likely to find it in an archive, journal article, or someone's old program file. You will

probably have to write it yourself.

HIGH-LEVEL LANGUAGES
COMPILERThe solution to many of the difficulties associated with as-

sembly language programs is to use, instead, "high-level" or

"procedure-oriented" languages. Such languages allow you to describe tasks in

forms that are problem oriented rather than computer oriented. Each statement in

a high-level language performs a recognizable function; it will generally corres-

pond to many assembly language instructions. A program called a compiler transl-

ates the high-level language source program into object or machine language in-

structions.

Many different high-level languages exist for different types of [FORTRAN

I

tasks. If, for example, you can express what you want the com-
puter to do in algebraic notation, you can write your program in FORTRAN (Formula
Translation Language), the oldest and most widely used of the high-level languages.
Now, if you want to add two numbers, you just tell the computer:

SUM = NUMB1+NUMB2

1-7

That is a lot simpler (and a lot shorter) than either the equivalent machine language pro-

gram or the equivalent assembly language program. Other high-level languages in-

clude COBOL (for business applications). ALGOL (another algebraic language), PL/I (a

combination of FORTRAN, ALGOL, and COBOL), and APL and BASIC (languages that

are popular for time-sharing systems).

ADVANTAGES OF HIGH-LEVEL LANGUAGES
Clearly high-level languages make programs easier and faster to write. A common
estimate is that a programmer can write a program about ten times as fast in a
high-level language as compared to assembly language. That is just writing the pro-

gram; it does not include problem definition, program design, debugging, testing, or

documentation, all of which become simpler and faster. The high-level language pro-

gram is, for instance, partly self-documenting. Even if you do not know FORTRAN, you
probably could tell what the statement illustrated above does.

High-level languages solve many other problems associ- MACHINE
ated with assembly language programming. The high-level INDEPENDENCE
language has its own syntax (usually defined by a national or OF HIGH-LEVEL
international standard). The language does not mention the in- LANGUAGES
struction set, registers, or other features of a particular com-
puter. The compiler takes care of all such details. Programmers can concentrate on their

own tasks; they do not need a detailed understanding of the underlying CPU architec-

ture, for that matter, they do not need to know anything about the computer they are

programming.

PORTABILITY
OF HIGH-LEVEL
LANGUAGES

Programs written in a high-level language are portable—
at least, in theory. They will run on any computer or

microcomputer that has a standard compiler for that language.

At the same time, all previous programs written in a high-level

language for prior computers are available to you when programming a new computer.

This can mean thousands of programs in the case of a common language like FORTRAN
or BASIC.

DISADVANTAGES OF HIGH-LEVEL LANGUAGES
Well, if all the good things we have said about high-level languages are true, if you
can write programs faster and make them portable besides, why bother with as-

sembly languages? Who wants to worry about registers, instruction codes,

mnemonics, and all that garbage! As usual there are disadvantages which balance

the advantages.

One obvious problem is that you have to learn the "rules" or

"syntax" of any high-level language you want to use. A high-

level language has a fairly complicated set of rules. You will find

that it takes a lot of time just to get a program that is syntactically

correct (and even then it probably will not do what you want). A high-level computer
language is like a foreign language. If you have a little talent, you will get used to the

rules and be able to turn out programs that the compiler will accept. Still, learning the

rules and trying to get the program accepted by the compiler doesn't contribute

directly to doing your job.

Here, for example, are some FORTRAN rules:

• Labels must be numbers in the first five card columns

• Statements must start in column seven

• Integer variables start with the letters I, J, K, L, M, or N

1-8

SYNTAX OF
HIGH-LEVEL
LANGUAGES

Another obvious problem is that you need a compiler to transl- COST OF
ate programs written in a high-level language. Compilers are COMPILERS
expensive and use a large amount of memory. While most assem-

blers occupy 2K to 16K bytes of memory (1K = 1024), compilers occupy 4K to 64K
bytes. So the amount of overhead involved in using the compiler is rather large.

INEFFICIENCY
OF HIGH-LEVEL
LANGUAGES

Furthermore, only some compilers will make the implementa- ALGEBRAIC
tion of your task simpler. FORTRAN, for example, is well-suited NOTATION
to problems that can be expressed as algebraic formulas. If,

however, your problem is controlling a printer, editing a string of characters,- or monitor-

ing an alarm system, your problem cannot be easily expressed in algebraic notation. In

fact, formulating the solution in algebraic notation may be more awkward and more
difficult than formulating it in assembly language. The answer is, of course, to use a

more suitable high-level language. Some such languages exist, but they are far less

widely used and standardized than FORTRAN. You will not get many of the advantages

of high-level languages if you use these so-called. system implementation languages.

High-level languages do not produce very efficient

machine language programs. The basic reason for this is that

compilation is an automatic process which is riddled with com-
promises to allow for many ranges of possibilities. The com-
piler works Tiuch like a computerized language translator— sometimes the words are

right but the sounds and sentence structures are awkward. A simple compiler cannot
know when a variable is no longer being used and can be discarded, or when a register

should be used rather than a memory location, or when variables have simple relation-

ships. The experienced programmer can take advantage of shortcuts to shorten execu-

tion time or reduce memory usage. A few compilers (known as optimizing compilers)

can also do this but such compilers are much larger and slower than regular compilers.

The general advantages and disadvantages of high-level languages are:

Advantages:

• More convenient descriptions of tasks

• More efficient program writing

• Easier documentation

• Standard syntax

•Independence of the structure of a particular computer

•Portability

•Availability of library and other programs

Disadvantages:

•Special rules

• Extensive hardware and software support required

•Orientation of common languages to algebraic or business

problems

•Inefficient programs

•Difficulty of optimizing code to meet time and memory requirements

• Inability to use special features of a computer conveniently

ADVANTAGES
OF
HIGH-LEVEL
LANGUAGES

DISADVANTAGES
OF
HIGH-LEVEL
LANGUAGES

1-9

OVERHEAD
FOR
HIGH-LEVEL
LANGUAGES

HIGH-LEVEL LANGUAGES FOR MICROPROCESSORS
Microprocessor users will encounter several special difficulties when using high-

level languages. Among these are:

• Few high-level languages exist for microprocessors

• No standard languages are widely available

• Few compilers actually run on microcomputers. Those that do often require very

large amounts of memory
• Most microprocessor applications are not well-suited to high-level languages

• Memory costs are often critical in microprocessor applications

The lack of high-level languages is partly a result of the fact that microprocessors are

quite new and are the products of semiconductor manufacturers rather than computer

manufacturers.

Very few high-level languages exist for microprocessors. The most common are the PL/I

type languages such as Intel's PL/M. Motorola's MPL, and Signetics' PLjuS.

Even the few high-level languages that exist do not conform to recognized standards,

so the microprocessor user cannot expect to gain much program portability, access to

program libraries, or use of previous experience or programs. The main advantages re-

maining are the reduction in programming effort and the smaller amount of detailed

understanding of the computer architecture that is necessary.

The overhead involved in using a high-level language with

microprocessors is considerable. Microprocessors themselves are

better suited to control and slow interactive applications than they

are to the character manipulation and language analysis involved

in compilation. Therefore most compilers for microprocessors will

not run on a microprocessor-based system. Instead, they require a much larger com-

puter; i.e. they are cross-compilers rather than self-compilers. A user must not only bear

the expense of the larger computer but must also physically transfer the program from

the larger computer to the micro.

A few self-compilers are available. These compilers run on the microcomputer for

which they produce object code. Unfortunately, they require large amounts of memory
(16K or more), plus special supporting hardware and software.

High-level languages also are not generally weil-suited to

microprocessor applications. Most of the common languages

were devised either to help solve scientific problems or to han-

dle large-scale business data processing. Few microprocessor

applications fall in either of these areas Most microprocessor applications involve send-

ing data and control information to output devices, and receiving data and status infor-

mation from input devices. Often the control and status information consists of a few

binary digits with very precise hardware-related meanings. If you try to write a typical

control program in a high-level language, you often feel like someone who is trying to

eat soup with chopsticks. For tasks in such areas as test equipment, terminals, naviga-

tion systems, and business equipment, the high-level languages work much better than

they do in instrumentation, communications, peripherals, and automotive applications.

Applications better suited to high-level languages are those which

require large memories. If. as in a valve controller, electronic game,

appliance controller, or small instrument, the cost of a single

memory chip is important, then the inefficiency of high-level

languages is intolerable. If, on the other hand, as in a terminal or

test equipment, the system has many thousands of bytes of memory anyway, the ineffi-

ciency of high-level languages is not as important. Clearly the size of the program and

UNSUITABILITY
OF HIGH-LEVEL
LANGUAGES

APPLICATION
AREAS FOR
LANGUAGE
LEVELS

1-10

APPLICATIONS
FOR MACHINE
LANGUAGE

APPLICATIONS
FOR ASSEMBLY
LANGUAGE

the volume of the product are important .factors as well. A large program will greatly in-

crease the advantages of high-level languages. On the other hand, a high-volume ap-

plication will mean that fixed software development costs are not as important as

memory costs which are part of each system.

WHICH LEVEL SHOULD YOU USE?
That depends on your particular application. Let us briefly note some of the factors

which may favor particular levels:

Machine Language:

• Low-volume applications involving small, simple programs

• Applications where the prototype is the final product

• Simple control applications involving a limited number of

calculations

Assembly Language:

• Small to moderate sized programs

• Applications where memory cost is a factor

• Real-time control applications

• Limited data processing

• High-volume applications

High-Level Languages:

• Large programs

• Low-volume applications requiring long programs

• Applications requiring large memories

• More computation than input/output or control

• Compatibility with similar applications using larger computers

• Availability of specific programs in a high-level language which can be used in

the application

Many other factors are also important, such as the availability of a larger computer for

use in development, experience with particular languages, and compatibility with other

applications.

If hardware will ultimately be the largest cost in your application, you should favor as-

sembly language. But be prepared to spend extra time in software development in ex-

change for lower memory costs and higher execution speeds. If software will be the

largest ccst in your application, you should favor a high-level language. But be pre-

pared to spend the extra money required for the supporting hardware and software.

Of course, no one except some theorists will object if you use both assembly and high-

level languages. You can write the program originally in a high-level language and then

patch some sections in assembly language. However, most users prefer not to do this

because of the havoc it creates in debugging, testing, and documentation.

APPLICATIONS
FOR HIGH-LEVEL
LANGUAGE

1-11

HOW ABOUT THE FUTURE?
We expect that the future will tend to favor high-level languages for the following
reasons:

FUTURE TRENDS
IN LANGUAGE
LEVELS

•Programs always seem to add extra features and grow larger

• Hardware and memory are becoming less expensive

• Software and programmers are becoming more expensive

• Memory chips are becoming available in larger sizes, at lower
"per bit" cost, so actual savings in chips are less likely

•More compilers are becoming available

•More suitable and more efficient high-level languages are being developed

• More standardization of high-level languages will occur

Assembly language programming of microprocessors will not be a dying art any more
than it is now for large computers. But longer programs, cheaper memory, and more ex-
pensive programmers will make software costs a larger part of most applications. The
edge in many applications will therefore go to high-level languages.

WHY THIS BOOK?
If the future would seem to favor high-level languages, why have a book on as-
sembly language programming? The reasons are:

1) Most current microcomputer users program in assembly language (almost 2/3. ac-

cording to one recent survey).

2) Many microcomputer users will continue to program in assembly language since

they need the detailed control that it provides.

3) No suitable high-level language has yet become widely available or standardized.

4) Many applications require the efficiency of assembly language.

5) An understanding of assembly language can help in evaluating high-level

languages.

The rest of this book will deal exclusively with assemblers and assembly language pro-

gramming. However, we do want readers to know that assembly language is not the
only alternative. You should watch for new developments that may significantly reduce
programming costs if such costs are a major factor in your application.

1-12

Chapter 2
ASSEMBLERS

This chapter discusses the functions performed by assemblers, beginning with features

common to most assemblers, and proceeding through more elaborate capabilities such

as macros and conditional assembly. You may wish to skim this chapter for the present

and return to it when you feel more comfortable with the material.

FEATURES OF ASSEMBLERS

As we mentioned previously, today's assemblers do much more than translate as-

sembly language mnemonics into binary codes. But we will first describe how an

assembler handles the translation of mnemonics before describing additional as-

sembler features. Finally we will explain how assemblers are used.

ASSEMBLER INSTRUCTIONS
Assembly language instructions (or "statements") are divided

into a number of fields, as shown in Table 2-1.

The operation code field is the only field which can never be
empty; it always contains either an instruction mnemonic or a

directive to the assembler, called a pseudo-instruction, pseudo-operation, or

pseudo-op.

The address field may contain an address or data, or it may be blank.

ASSEMBLY
LANGUAGE
FIELDS

Table 2-1. The Fields Of An Assembly Language Instruction

Operation Operand

Label Code Or Or Comment Field
Field Mnemonic Address

Field Field

START LDA VAL1 LOAD FIRST NUMBER INTO A
MOV B.A SAVE IN B

LDA VAL2 LOAD SECOND NUMBER INTO A
ADD B ADD FIRST NUMBER TO A
STA SUM STORE SUM

NEXT ? ? NEXT INSTRUCTION

VAL1 DS
VAL2 DS
SUM DS

2-1

I
FORMAT

I

The comment and label fields are optional. A programmer will assign a label to a

statement or add a comment as a personal convenience, e.g., to make the program
easier to read.

Of course, the assembler must have some way of telling

where one field ends and another begins. Assemblers which use

punched card input often require that each field start in a specific card column. This is

a fixed format. However, fixed formats may be inconvenient when the input medium is

paper tape; fixed formats are also a nuisance to programmers. The alternative is a free

format where the fields may appear anywhere on the line.

If the assembler cannot use the location on the line to tell the
|
DELIMITERS

j

fields apart it must use something else. Most assemblers use a

special symbol or delimiter at the beginning or end of each field. The most obvious

delimiter is the space character. Commas, periods, semi-colons, colons, slashes, ques-

tion marks and other characters which would not otherwise be used in assembly

language programs also may serve as delimiters. Table 2-2 lists standard Intel 8080 as-

sembler delimiters.

Table 2-2. Standard 8080 Assembler Delimiters

after a label

'space' between operation code and add -ess

between operands in the address field

before a comment

LABEL
FIELD

You will have to exercise a little care with delimiters. Some assemblers are fussy

about extra spaces or the appearance of delimiters in comments or labels. A well-

written assembler will handle these minor problems, but many assemblers are not

well-written. Our recommendation is simple: avoid potential problems if you can.

The following rules will help:

1) Do not use extra spaces, particularly after commas which separate operands.

2) Do not use delimiter characters in names or labels.

3) Include standard delimiters even if your assembler does not require them. Your pro-

grams will then be assembled by any assembler.

LABELS
The label field is the first field in an assembly language in-

struction; it may be blank. If a label is present, the assembler

assigns to the label the value of the address for the memory loca-

tion into which the first object program byte for that instruction is loaded. You may
subsequently use the label as an address or as data in another instruction's operand

field. The assembler will replace the label with the assigned value when creating an ob-

ject program.

Labels are most frequently used in Jump, Call or Branch in-

structions. These instructions place a new value in the Program

Counter and so alter the normal sequential execution of instruc-

tions. JUMP 1 50-) 6 means "place the value 1 50-| 6 in the Program

Counter". The next instruction to be executed will be the one in

memory location 150-| 6- The instruction JUMP START means "place the value

assigned to the label START in the Program Counter". The next instruction to be ex-

ecuted will be the one in the memory location to which the label START has been

assigned. Table 2-3 contains an example.

LABELS
IN

JUMP
INSTRUCTIONS

2-2

Table 2-3. Assigning And Using A Label

ASSEMBLY LANGUAGE PROGRAM

START LOAD ACCUMULATOR 100

• MAIN PROGRAM

JUMP START

When the machine language version of this program is executed, the instruction JUMP
START causes the address of the instruction labeled START to be placed in the Program

Counter. The instruction with the label START will be executed next.

Why use a label? Here are some reasons:

1) A label makes a program location easier to find and remember.

2) The label can be moved to correct a program. You do not have to change any sub-

sequent label references; the assembler will make all the necessary changes.

3) The assembler or loader can relocate the whole program by adding a constant (a

relocation constant) to each address in which a label was used. Thus we can move
the program to allow for the insertion of other programs or simply to rearrange

memory.

4) The program is easier to use as a library program, i.e., it is easier for someone else to

take your program and add it to some totally different program.

5) You co not have to figure out memory addresses. Figuring out memory addresses is

particularly difficult with microprocessors which have instructions that vary in

length.

It makes sense to assign a label to any instruction which you might want to use as a

destination or otherwise identify.

The next question is what label to use. The assembler often CHOOSING
places some restrictions on the number of characters (usually 5 LABELS
or 6), the eading character (often must be a letter), and the trailing

L"~~""'",^"~

characters (often must be letters, numbers, or one of a few special characters). Beyond
these restrictions, the choice is up to you.

Our own preference is to use labels that suggest their purpose, i.e., mnemonic labels.

Typical examples are ADDW in a routine that adds one word into a sum, SRETX in a

routine that searches for the ASCII character ETX, or NKEYS for a location in data

memory that contains the number of key entries. Meaningful labels are easier to

remember and contribute to program documentation. Some programmers prefer to use

a standard label format, such as starting with L0000. These labels are self-sequencing

(you can skip a few numbers to permit insertions), but they do not help document the

program.

2-3

RULES OF
LABELING

Some label selection rules will keep you out of trouble. We
recommend the following:

1) Do not use labels which are the same as operation codes or

other mnemonics. Most assemblers will not allow this usage; others will, but it is

very confusing.

2) Do not use labels which are longer than the assembler permits. Assemblers have
various truncation rules.

3) Avoid special characters (non-alphabetic and non-numeric). Some assemblers will

not permit them; others only allow certain ones. The simplest practice is to stick to

letters and numbers.

4) Start each label with a letter. Such labels are always acceptable.

5) Do not use labels that could be confused with each other. Avoid the letters I, and
Z and the numbers 0, 1 and 2. Also avoid things like XXXX and XXXXX. There's no
sense in tempting fate and Murphy's laws.

6) When you are not sure if a label is legal, do not use it. You will not get any real

benefit from discovering exactly what the assembler will accept.

These are recommendations, not rules. You do not have to follow them but don't blame
us if you waste time on silly problems.

ASSEMBLER OPERATION CODES (MNEMONICS)
The main task of the assembler is the translation of mnemonic operation codes
into their binary equivalents. The assembler performs this task using a fixed table

much as you would if you were doing the assembly by hand.

The assembler must, however, do more than just translate the operation codes. It must
also somehow determine how many operands the instruction requires and what
type they are. This may be rather complex— some instructions (like a Halt) have no
operands, others (like an Addition or a Jump instruction) have one, while still others

(like a transfer between registers or a multiple-bit shift) require two. Some instructions

may even allow alternatives, e.g., some computers have instructions (like Shift or Clear)

which can either apply to the Accumulator or to a memory location. We will not discuss

how the assembler makes these distinctions; we will just note that it must do so.

PSEUDO-OPERATIONS
Some assembly language instructions are not directly transl- ASSEMBLER
ated into machine language instructions. These instructions DIRECTIVE
are directives to the assembler; they assign the program to cer-

tain areas in memory, define symbols, designate areas of RAM for temporary data

storage, place tables or other fixed data in memory, and perform other housekeeping
functions.

To use these directives or pseudo-operations a programmer places the pseudo-opera-

tion's mnemonic in the operation code field, and an address or data in the address field,

if the specified pseudo-operation requires it.

The most common pseudo-operations are:

DATA
EQUATE or DEFINE
ORIGIN

RESERVE

2-4

Different assemblers use different names for these operations but the purposes are the

same. Housekeeping pseudo-operations include:

END
LIST

NAME
PAGE
SPACE
TITLE

We will discuss these pseudo-operations briefly, although their functions are usually

obvious.

THE DATA PSEUDO-OPERATION
The DATA pseudo-operation allows the programmer to enter data into program
memory. This data may include:

• Lookup tables

• Code conversion tables

• Messages
• Synchronization patterns

• Thresholds

• Names
• Coefficients for equations

• Commands
• Conversion factors

• Weighting factors

• Characteristic times or frequencies

• Subroutine addresses

• Key iden tifications

• Test patterns

• Character generation patterns

• Identification patterns

• Tax tables

• Standard forms

• Masking patterns

The DATA pseudo-operation treats the data as a permanent part of the program.

The format of a DATA pseudo-operation is usually quite simple. An instruction

like:

DZCON DATA 12

will place the number 1 2 in the next available memory location and assign that

location the name DZCON. Usually every DATA pseudo-operation has a label, unless it

is one of a series of DATA pseudo-operations. The data and label may take any form
that the assembler permits.

Most assemblers allow more elaborate DATA instructions which handle a large amount
of data at one time, e.g.,

EMESS DATA 'ERROR'

SQRS DATA 1,4.9.16,25

A single instruction may fill many words of program memory, limited only by the length

of a line. Note that if you cannot get all the data on one line, you can always follow one

2-5

DATA instruction with another, e.g.

MESSG DATA 'NOW IS THE'

DATA TIME FOR ALL'

DATA 'GOOD MEN'
DATA TO COME TO THE'

DATA 'AID OF THEIR'

DATA 'COUNTRY'

Microprocessor assemblers typically have some variations of standard DATA
pseudo-operations. DEFINE BYTE OR FORM CONSTANT BYTE handles 8-bit numbers;
DEFINE WORD OR FORM CONSTANT WORD handles 16-bit numbers or addresses.
Other special pseudo-operations may handle character-coded data.

THE EQUATE (or EQUALS) PSEUDO-OPERATION
The EQUATE pseudo-operation allows the programmer to DEFINING

NAMESequate labels and names with addresses or data. This pseudo-
operation is almost always given the mnemonic EQU. The
names may refer to device addresses, numeric data, starting addresses, fixed ad-

dresses, etc.

The EQUATE pseudo-operation assigns the numeric value in its operand field to
the label in its label field. Here are two examples:

TTY
LAST

EQU
EQU

5

5000

Most assemblers will allow you to define one label in terms of another, e.g.

LAST
ST1

EQU
EQU

FINAL
START+1

The label in the operand field must, of course, have been previously defined. Often, the

operand field may contain more complex expressions, as we shall see later. Double
name assignments (two names for the same data or address) may be useful in patching

together programs which use different names for the same variable (or different spell-

ings of what was supposed to be the same name).

SYMBOL
TABLE

USE OF
NAMES

Note that an EQU pseudo-operation does not result in the as-

sembler placing anything into memory. It simply places an ad-
ditional name in a table (called a symbol table) which the as-

sembler maintains. This table, unlike the mnemonic table, must be in RAM since it

varies with each program. The assembler program will always need some RAM to hold

the symbol table; the more RAM it has, the more symbols it can accept. This RAM is in

addition to any which the assembler needs as temporary storage.

When do you use a name? The answer is whenever you have a

parameter that has some meaning besides its ordinary numeric
value, or the numeric value of the parameter might be changed.

We typically assign names to time constants, device addresses, masking patterns, con-

version factors, and the like. A name like DELAY, TTY, KBD, NROW, or OPEN not only

makes the parameter easier to change, but it also adds to program documentation. We
also assign names to memory locations that have special purposes; they may hold data,

mark the start of the program, or be available for intermediate storage.

What name do you use? The best rules are much the same asjn

the case of labels, except that here meaningful names really

count. Why not call the teletypewriter TTY instead of X15, a bit

time delay BTIME or BTDLY rather than WW, the number of the

"GO" key on a keyboard GOKEY rather than HORSE? This advice seems straightforward

but a surprising number of programmers do not follow it.

CHOICE
OF
NAMES

2-6

PLACEMENT
OF
DEFINITIONS

LOCATION
COUNTER

Where do you place the EQUATE pseudo-operations? The
best place is at the start of the program, under appropriate

comment headings such as I/O ADDRESSES. TEMPORARY
STORAGE. TIME CONSTANTS, or PROGRAM LOCATIONS. This

makes the definitions easy to find if you want to change them. Furthermore, another

user will be able to look up all the definitions in one centralized place. Clearly this prac-

tice improves documentation and makes the program easier to use.

Definitions used only in a specific subroutine should appear at the start of the

subroutine.

THE ORIGIN PSEUDO-OPERATION
The ORIGIN pseudo-operation (almost always abbreviated ORG) allows the pro-

grammer to locate programs, subroutines, or data anywhere in memory. Programs

and data may be located in different areas of memory depending on the memory con-

figuration Startup routines, interrupt service routines, and other required programs

may be scattered around memory at suitable addresses.

The assembler maintains a Location Counter (comparable to

the computer's Program Counter) which contains the location

in memory of the next instruction or data item being pro-

cessed. An ORG pseudo-operation causes the assembler to place a new value in the

Location Counter, much as a Jump instruction causes the CPU to place a new value in

the Program Counter. The output from the assembler must not only contain instructions

and data, but must alsoindicate to the loader program where in memory it should place

the instructions and data.

Microprocessor programs often contain several ORIGIN statements for the following

purposes:

Reset (startup) address

Interrupt service addresses

Trap addresses

RAM storage

Memory stack

Still other ORIGIN statements may allow room for rater insertions, place tables or data in

memory, or assign vacant RAM space for data buffers. Program and data memory in

microcomputers may occupy widely scattered addresses.

Typical ORIGIN statements are:

ORG RESET
ORG 1000
ORG INT3

Some assemblers assume an origin of zero if the programmer does not put an ORG
statement at the start of the program. The convenience-is slight; we recommend the in-

clusion o1 an ORG statement to avoid confusion.

THE RESERVE PSEUDO-OPERATION
The RESERVE pseudo-operation allows the programmer to

allocate RAM for various purposes such as data tables, tem-
porary storage, indirect addresses, a Stack, etc.

ALLOCATING
RAM

2-7

Using the RESERVE pseudo-operation, you assign a name to the memory area and
declare the number of locations to be assigned. Here are some examples.

NOKEY RESERVE 1

TEMP RESERVE 50
VOLTG RESERVE 80
BUFR RESERVE 100

You can use the RESERVE pseudo-operation to reserve memory locations in program
memory or in data memory; however the nature of the RESERVE pseudo-operation is

more meaningful when applied to data memory.

In reality, all the RESERVE pseudo-operation does is increase the assembler's Location
Counter by the amount declared in the operand field. The assembler does not actually

produce any object code at all.

Note the. following features of RESERVE:

1) The label of RESERVE pseudo-operation is assigned the value of the first address

reserved. Forexample, the sequence:

ORG 3000
BUF1 RESERVE 100
BUF2 RESERVE 50
VOLTS RESERVE 5

assigns to the label BUF1 the value 3000, to BUF2 3100, and to VOLTS 3150.

2) You must specify the number of locations to be reserved. There is no default case.

3) No data is placed in the reserved locations. Any data that, by chance, may be in

these locations will be left there.

INITIALIZING
RAM

Some assemblers allow the programmer to place initial

values in RAM. We strongly recommend that you do not
use this feature— it assumes that the program (along with

the initial values) will be loaded from an external device (e.g., paper tape or floppy disk)

each time it is run. Most microprocessor programs, on the other hand, reside in non-

volatile ROM and start when power comes on. The RAM in such situations does not re-

tain its contents, nor is it reloaded. Always include instructions to initialize the RAM in

your program.

HOUSEKEEPING PSEUDO-OPERATIONS
There are various housekeeping pseudo-operations which affect the operation of

the assembler and its program listing rather than the output program itself. Com-
mon housekeeping pseudo-operations include:

1) END, which marks the end of the assembly language source program.

2) LIST, which tells the assembler to print the source program. Some assemblers allow

such variations as NO LIST or LIST SYMBOL TABLE to avoid long, repetitive list-

ings.

3) NAME or TITLE, which prints a name at the top of each page of the listing.

4) PAGE or SPACE, which skips to the next page or next line, respectively, and im-

proves the appearance of the listing, making it easier to read.

5) PUNCH, which transfers subsequent object code to the paper tape punch. This

pseudo-operation may in some cases be the default option, and therefore un-

necessary.

2-8

LABELS WITH PSEUDO-OPERATIONS
Users often wonder if or when they can assign a label to a pseudo-operation.

These are our recommendations:

1) All EQUATE pseudo-operations must have labels; they do not make any sense

otherwise.

2) DATA and RESERVE pseudo-operations usually have labels. The label identifies the

first memory location used or assigned.

3) Other pseudo-operations should not have labels. Some assemblers allow other

pseudo-operations to have labels, but the meaning of the labels varies. We recom-

mend that you avoid this practice.

ADDRESSES AND THE OPERAND FIELD

Most assemblers allow the programmer a lot of freedom in describing the con-

tents of the Operand Address field. But remember, the assembler has built-in

names for registers and instructions and may have other built-in names.

Some common options for the operand field are:

1) Decimal numbers

Most assemblers assume all numbers to be decimal unless they

are marked otherwise. So

DECIMAL
DATA OR
ADDRESSES

ADD 100

means "add the contents of memory location 100 decimal to the contents of the Ac-

cumulator".

OTHER
NUMBER
SYSTEMS

2) Otheir number systems

Most assemblers will also accept binary, octal, or hexadecimal en-

tries. But you must identify these number systems in some way,

e.g., by preceding or following the number with an identifying

character or letter. Here are some common identifiers:

B for binary

0, Q, or C for octal (we avoid O because of the confusion with zero).

H for hexadecimal (or standard BCD)

D for decimal. D may be omitted, it is the default case.

Assemblers generally require hexadecimal numbers to start with a digit (e.g., 0A36 in-

stead of A36) in order to distinguish between numbers and names or labels. It is good
practice to enter numbers in the base in which their meaning is the clearest— i.e.,

decimal constants in decimal; addresses and BCD numbers in hexadecimal; masking
patterns or bit outputs in binary if they are short, and in hexadecimal if they are long.

3) Symbolic names

Names can appear in the operand field; they will be treated as the data which they

represent. But remember.there is a difference between data and addresses. The se-

quence

FIVE EQU 5

ADD FIVE

will add the contents of memory location 5 (not necessarily the number 5) to the con-
tents of the Accumulator.

2-9

4) The current value of the location counter (usually referred to as * or $).

This is useful mainly in Jump instructions; for example:

JUMP $+6

causes a Jump to the memory location six words beyond the word which contains the
first byte of the JUMP instruction:

Memory

JUMP $ + 6 code stored here

-Jump here

Most microprocessors have many two and three-word instructions. Thus you will have

difficulty determining exactly how far apart two assembly language statements are.

Therefore, using offsets from the Location Counter frequently results in errors which
you can avoid if you use labels.

5) Character codes

Most assemblers allow text to be entered as ASCII strings. Such ASCII
strings may be surrounded either with single or double quotation CHARACTERS
marks; strings may also use a beginning or ending symbol such as

A or C. A few assemblers also permit EBCDIC strings.

We recommend that you use character strings for all text. It improves the clarity and
readability of the program.

6) Combination of 1) through 5) with arithmetic, logical, or special operators.

Almost all assemblers allow simple arithmetic combinations such ARITHMETIC
as START+1. Some assemblers also permit multiplication, divi- AND LOGICAL
sion, logical functions, shifts, etc. These are referred to as expres- EXPRESSIONS
sions. Note that the assembler evaluates expressions at assembly

time. Even though an expression in the operand field may involve multiplication, you

may not be able to use multiplication in the logic of your own program — unless you

write a subroutine for that specific purpose.

Assemblers vary in what expressions they accept and how they interpret them. Com-
plex expressions make a program difficult to read and understand.

We have made some recommendations during this section but will repeat them and

add others here. In general, the user should emphasize clarity and simplicity. There is

no payoff for being an expert in the intricacies of the assemblers or in having the most

complex expression on the block. We suggest the following approach:

1) Use the clearest number system or character code for data.

2) Masks and BCD numbers in decimal, ASCII characters in octal, or ordinary numeri-

cal constants in hexadecimal serve no purpose and therefore should not be used.

3) Remember to distinguish data and addresses.

4) Don't use offsets from the Location Counter.

Keep expressions simple and obvious. Don't rely on obscure features of the assem-

bler.

2-10

CONDITIONAL ASSEMBLY

Some assemblers allow you to include or exclude parts of the source program, de-

pending on conditions existing at assembly time. This is called conditional assem-

bly; it gives the assembler some of the flexibility of a compiler. Most microcomputer

assemblers have limited capabilities for conditional assembly. A usual form is:

IF COND

.CONDITIONAL PROGRAM

ENDIF

If the expression COND is true at assembly time, the instructions between IF and ENDIF

(two pseudo-operations) are included in the program.

Typical uses of conditional assembly are:

1) To include or exclude extra variables.

2) To place diagnostics in test runs.

3) To allow data of various bit lengths.

Unfortunately, conditional assembly tends to clutter programs and make them difficult

to read. Use conditional assembly only if it is necessary.

MACROS

You will often find that particular sequences of instructions oc- DEFINING A
cur many times in a source program. Repeated instruction se- SEQUENCE OF
quences may reflect the needs of your program logic, or they INSTRUCTIONS
may be compensating for deficiencies in your microprocessor's

instruction set You can avoid repeatedly writing out the same instruction sequence by

using a macro.

2-11

Macros allow you to assign a name to an instruction sequence. You then use the
macro name in your source program instead of the repeated instruction sequence.
The assembler will replace the macro name with the appropriate sequence of in-

structions. This may be illustrated as follows:

Source Program Object Program

MACRO-
T~

X 7

MACRO-

X }
X (

T-

MACRO-

x
Vx S

MACRO DEFINED

T

END OF MACRO
DEFINITION

2-12

ADVANTAGES
OF MACROS

Macros are not the same as subroutines. A subroutine occurs once in a program, and

program execution branches to the subroutine. A macro is expanded to an actual in-

struction sequence each time the macro occurs; thus a macro does not cause any

branching.

Macros have the following advantages:

1) Shorter source programs.

2) Better program documentation.

3) Use of debugged instruction sequences— once the macro has been debugged,

you are sure of an error free instruction sequence every time you use the macro.

4) Easier changes. Change the macro definition and the assembler makes the change
for you every time the macro is used.

5) Inclusion of commands, keywords, or other computer instructions in the basic in-

struction set. You use the macro as an extension of your instruction set.

The disadvantages of macros are:

1) Repetition of the same instruction sequences.

2) A single macro may create a lot of instructions.

3) Lack of standardization.

4) Possible effects on registers and flags that may not be clearly stated.

One problem is that variables used in a macro are only known
within it (i.e., they are local rather than global). This can often

create a great deal of confusion without any gain in return. You
should be aware of this problem when using macros.

DISADVANTAGES
OF MACROS

LOCAL OR
GLOBAL
VARIABLES

COMMENTS

All assemblers allow you to place comments in a source program. Comments have
no effect on the object code, but they help you to read, understand, and document
the program. Good commenting is an essential part of writing assembly language
programs; without comments programs are very difficult to understand.

We will discuss commenting along with documentation in a COMMENTING
later chapter, but here are some guidelines: TECHNIQUES

1) Use comments to tell what the program is doing, not what in-

structions do.

Comments should say things like "IS TEMPERATURE ABOVE LIMIT?", "LINE FEED
TO TTY", OR "EXAMINE LOAD SWITCH".

Comments should not say things like "ADD 1 TO ACCUMULATOR". "JUMP TO
START", or "LOOK AT CARRY". You should describe how the program is affecting

the system; internal effects on the CPU are seldom of any interest.

2) Keep comments brief and to the point. Details should be available elsewhere in the

documentation.

3) Comment all key points.

4) Do not comment standard instructions or sequences which change counters and
pointers; pay special attention to instructions that may not have an obvious mean-
ing.

5) Do not use obscure abbreviations.

6) Make the comments neat and readable.

7) Comment all definitions, describing their purposes. Also mark all tables and data
storage areas.

2-13

8) Comment sections of the program as well as individual instructions.

9) Be consistent in your terminology. You can (should) be repetitive; you do not need

to consult a thesaurus.

10) Leave yourself notes at points which you find confusing, e.g., "REMEMBER CAR-
RY WAS SET BY LAST INSTRUCTION". You may drop these in the final documen-
tation.

A well-commented program is easy to work with. You will recover the time spent in

commenting many times over. We will try to show good commenting style in the pro-

gramming examples, although we often over-comment for instructional purposes.

TYPES OF ASSEMBLERS

Although all assemblers perform the same tasks, their implementations vary

greatly. We will not try to describe all the existing types of assemblers; we will

merely define the terms and indicate some of the choices.

A cross-assembler is an assembler that runs on a computer CROSS-
other than the one for which it assembles object programs. ASSEMBLER

The computer on which the cross-assembler runs is typically a

large computer with extensive software support and fast peripherals — such as an IBM
360 or 370, a Univac 1 1 08, or a Burroughs 6700. The computer for which the cross-as-

sembler assembles programs is typically a micro like the Intel 8080 or Motorola 6800.

Most cross-assemblers are written in FORTRAN so that they are portable.

RESIDENT
ASSEMBLER

A self-assembler or resident assembler is an assembler that runs

on the computer for which it assembles programs. The self-assem-

bler will require some memory and peripherals, and it may run

quite slowly.

A macroassembler is an assembler that allows you to define

sequences of instructions as macros.

A microassembler is an assembler used to write the

microprograms which define the instruction set of a computer.

Microprogramming has nothing specifically to do with

microcomputers. Microprogramming is described conceptually

in "An Introduction To Microcomputers: Volume I — Basic Concepts", Chapter 4.

MACRO-
ASSEMBLER

MICRO-
ASSEMBLER

META-
ASSEMBLER

ONE-PASS
ASSEMBLER

A meta-assembler is an assembler which can handle many
different instruction sets. The user must define the particular in-

struction set being used.

A one-pass assembler is an assembler which only goes

through the assembly language program once. Such an assem-

bler must have some way of resolving forward references, e.g.

Jump instructions which use labels that appear later in the source program, i.e., that

have not yet been defined.

A two-pass assembler is an assembler which goes through the

assembly language source program twice. The first time the

assembler simply collects and defines all the symbols; the

second time it replaces the references with the actual definitions. A two-pass as-

sembler has no problems with forward references but may be quite slow if no

backup storage (like a floppy disk) is available; then the assembler must

physically read the program twice from a slow input medium (like a teletypewriter

paper tape reader). Most microprocessor-based assemblers require two passes.

TWO-PASS
ASSEMBLER

2-14

ERRORS

Assemblers normally provide error messages, often consisting of a single coded

letter. Some typical errors are:

1) Undefined name (often a misspelling or an omitted definition).

2) Illegal character (e.g., a 2 in a binary number).

3) Illegal format (wrong delimiter or incorrect operands).

4) Invalid expression (e.g., two operators in a row).

5) Illegal value (usually too large).

6) Missing operand.

7) Double definition (i.e., two different values assigned to one name).

8) Illegal label (e.g., a label on a pseudo-operation that cannot have one).

9) Missing label.

10) Undefined operation code.

In interpreting assembler errors, you must remember that the assembler may get off on

the wrong track if it finds a stray letter, an extra space, or incorrect punctuation. Many
assemblers will then proceed to misinterpret several succeeding statements and pro-

duce meaningless error messages. Always look at the first error very carefully; subse-

quent ones may depend on it Caution and consistent adherence to standard formats

will eliminate many annoying mistakes.

LOADERS

The loader is the program which actually takes the output (object code) from the as-

sembler and places it in memory. Loaders range from the very simple to the very com-

plex. We will describe a few different types.

A bootstrap loader is a program which uses its own first few
instructions to load the rest of itself, or another loader pro-

gram into memory. The bootstrap loader may be in ROM, or you

may have to enter it into the computer memory using front panel switches. The assem-

bler may place a bootstrap loader at the start of the object program which it produces

A relocating loader can load programs anywhere in memory. It

typically loads each program into the memory space immediately

following that used by the previous program. The programs,

however, must themselves be capable of being moved around in this way, i.e., they

must be relocatable. An absolute loader, in contrast, will always place the programs in

the same; area of memory.

BOOTSTRAP
LOADER

RELOCATING
LOADER

A linking loader loads programs and subroutines as separate LINKING
modules; it resolves cross-references— that is, an instruction LOADERS
in one module which refers to a label in another module. Object

programs loaded by a linking loader must be created by an assembler which permits

and marks cross-references.

2-15

Chapter 3
THE 8080A AND 8085 ASSEMBLY

LANGUAGE
INSTRUCTION SETS

We are now ready to start creating assembly language programs. We begin in this

chapter by defining the individual instructions of the 8080A and 8085 assembly

language instruction sets, plus the syntax rules of the Intel assemblers.

Instruction sets for the 8080A and 8085 microprocessors are identical apart from two

additional instructions (RIM and SIM), available only with the 8085. There are also some
differences in instruction execution cycles. Table 3-5 identifies these differences.

We do not discuss any aspects of microcomputer hardware, signals, interfaces, or

CPU architecture in this book. This information is described in detail in An Introduc-

tion To Microcomputers: Volume II — Some Real Products while 8080 Programming

For Logic Design discusses assembly language as an extension of digital logic. In this

book, we look at programming techniques from the assembly language program-

mer's viewpoint, where pins and signals are irrelevant and there are no important

differences between a minicomputer and a microcomputer.

Interrupts Direct Memory Access and Stack architectures for the 8080A and 8085 will

be described in later chapters of this book, in conjunction with assembly language pro-

gramming discussions of the same subjects.

The defin tions of the instruction set given in this chapter consist of a detailed defini-

tion of each assembly language instruction. These definitions are identical to those

found in Chapter 6 of 8080 Programming For Logic Design , except for the two new
8085 instructions (RIM and SIM). The detailed description of individual instructions is

preceded by a general discussion of the 8080A and 8085 instruction set that divides in-

structions into those which are commonly used, infrequently used and rarely used. If

you are an experienced assembly language programmer, this categorization is not par-

ticularly important — and depending on your own programming prejudices, it may not

even be accurate. If you are a novice assembly language programmer, we recommend
that you begin by writing programs using only instructions in the "commonly used"

category. Once you have mastered the concepts of assembly language programming,

you may examine other instructions and use them where appropriate.

3-1

CPU REGISTERS AND STATUS FLAGS
The CPU registers and status flags are identical for the 8080A and 8085 CPUs.
The registers and status flags may be illustrated as follows:

Secondary

Accumulators

r r?
s izi m M |C

A
B C

)

D E \

H L
SP
PC

•Sign

• Zero

1 Auxiliary Carry

Parity

• Carry

Program Status Word (PSW)

Accumulator

Secondary Data Counters

Primary Data Counter

Stack Pointer

Program Counter

The Accumulator is the primary source and destination for one operand and two
operand instructions. For example, all data transfers between the CPU and I/O devices

are performed through the Accumulator. In addition, many more memory reference in-

structions move data between the Accumulator and memory than between any other

register and memory. All arithmetic and Boolean instructions take one of the operands
from the Accumulator and return the result to the Accumulator. An instruction must
therefore load the Accumulator before the 8080 can perform any arithmetic or

Boolean operations.

The B, C, D, E, H and L registers are all secondary registers. Data stored in any of

these six registers may be accessed with equal ease; such data can be moved to any
other register or can be used as the second operand in two operand instructions.

There are, however, some important differences in the functions of Registers B, C, D, E,

H and L.

Registers H and L are the primary Data Pointer for the 8080A and 8085. That is to

say, you will normally use these two registers to hold the 1 6-bit memory address of data

being accessed. Data may be transferred between any registers and the memory loca-

tion addressed by H and L. Using any other method of addressing memory, only the Ac-

cumulator can act as the source or destination of data within the CPU. Therefore the

8080A or 8085 programmer should try to address data memory via Registers H and L

whenever possible.

Within your program logic always reserve Registers H and L to hold a data memory
address.

Registers B, C, D and E provide secondary data storage; frequently the second
operand for two operand instructions is stored in one of these four registers. (The first

operand is stored in the Accumulator, which also is the destination for the result).

There are a limited number of instructions that treat Registers B and C, or D and E

as 16-bit Data Pointers. But these instructions move data between memory and the

Accumulator only.

In your program logic you should normally use Registers B, C. D and E as tempor-
ary storage for data or addresses.

3-2

There are a number of instructions which handle 16 bits of data at a time. These

instructions refer to pairs of CPU registers as follows:

PSW and A
B and C

D and E

H and L

High Low
order order

byte byte

The combination of the Accumulator and Program Status Word, treated as a 16-bit

unit, is used only for Stack operations. Arithmetic operations access B and C or D and E

or H and I. as 16-bit data units.

The Carry Status flag holds Carries out of the most significant bit in any arithmetic

operation. The Carry flag is also included in Shift instructions; it is reset by Boolean in-

structions.

The Parity status flag is set to 1 whenever an arithmetic or Boolean operation pro-

duces a result which contains an even number of 1 bits. It is cleared whenever
such an operation produces a result with an odd number of 1 bits.

The Zero flag is set to 1 when any arithmetic or Boolean operation generates a

result. The Zero status is set to when such an operation generates a non-zero

result.

The Sign status flag acquires the value of the most significant bit of the result

following the execution of any arithmetic or Boolean instruction.

The Auxiliary Carry status flag holds any Carry from bit 3 to 4 resulting from the

execution of an arithmetic instruction. The purpose of this status flag is to simplify

Binary-Coded-Decimal (BCD) operations; this is the standard use of an Auxiliary Carry

status flag as described in An Introduction To Microcomputers: Volume I , Chapter 3.

The 1 6-bit Stack Pointer allows you to implement a stack anywhere in addressa-

ble memory. The size of the stack is limited only by the amount of addressable memory
present. In reality you will rarely use more than 256 bytes of memory for your stack. You
should use the stack for accessing subroutines and processing interrupts. Do not use

the stack to pass parameters to subroutines. This is not very efficient within the limita-

tions of the 8080A instruction set. The 8080A/8085 stack is started at its highest ad-

dress. A Push decrements the Stack Pointer contents; a Pop increments the Stack

Pointer contents.

3-3

8080A AND 8085 MEMORY ADDRESSING
When addressing data memory you may use. implied memory addressing or direct

memory addressing. In implied memory addressing, the H and L registers hold the

address of (or identify) the memory location being accessed. Data may be moved bet-

ween the identified memory location and any one of the seven CPU registers A, B, C. D.

E, H or L This may be illustrated as follows:

Memory

A limited number of instructions use Registers B and C, or D and E as the Data
Pointer. These instructions move data between the Accumulator and the memory loca-

tion addressed by Registers B and C or Registers D and E.

There are also a limited number of instructions which use direct memory address-

ing to transfer data between the Accumulator and memory. These are three byte in-

structions which may be illustrated as follows:

B C
D E

H L

Memory

XX

\m pp

)
qq

Three byte

instruction

Since the Stack is part of the Read/Write memory, we must consider Push and

Pop instructions as Memory Reference instructions. These instructions move two

bytes of data between a register pair and the address in the Stack Pointer, i.e., current

top-of-stack. The 8080A/8085 stack address is decremented with each Push and incre-

mented with each Pop.

3-4

Some texts identify Immediate instructions as Memory Reference instructions. An Im-

mediate instruction is a two- or three-byte instruction in which the second and third

byte hold "ixed data which is loaded into the Accumulator or some other CPU register.

This may be illustrated as follows:

MemoryA
B C
D E
H L

Three-byte

instruction

AH 8080A and 8085 Jump instructions use absolute, direct addressing; that is to say,

all Jump instructions are three bytes long, with the second and third bytes containing

the address of the memory location from which the processor will fetch the next in-

struction to be executed.

Table 3-1

Frequently Used Instructions Of The 8080A And 8085

Irstruction Code Meaning

ADC.ACI ADD WITH CARRY
ADD, ADI ADD
ANA, ANI LOGICAL AND
CALL CALL SUBROUTINE
CMP, CPI COMPARE
DCR DECREMENT
IN INPUT
INR INCREMENT
INX INCREMENT 16 BITS

JC JUMP ON CARRY
JMP JUMP
JNC JUMP ON NOT CARRY
JNZ JUMP ON NOT ZERO
JZ JUMP ON ZERO
LDA LOAD ACCUMULATOR
LXI LOAD 16 BITS

MOV MOVE
MVI MOVE IMMEDIATE
OUT OUTPUT
RAL ROTATE WITH CARRY LEFT
RAR ROTATE WITH CARRY RIGHT
RET RETURN FROM SUBROUTINE
STA STORE ACCUMULATOR
SUB, SUI SUBTRACT

3-5

Table 3-2

Occasionally Used Instructions Of The 8080A And 8085

Instruction Code Meaning

CMA COMPLEMENT ACCUMULATOR
DAA DECIMAL ADJUST
DAD 16-BIT ADD
DCX 16-BIT DECREMENT
Dl DISABLE INTERRUPTS
El ENABLE INTERRUPTS
HLT HALT
JM JUMP ON MINUS
JP JUMP ON POSITIVE

LDAX LOAD ACCUMULATOR INDIRECT

LHLD LOAD H AND L DIRECT

NOP NO OPERATION
ORA, ORI LOGICAL OR
POP REMOVE FROM STACK
PUSH ENTER INTO STACK
RIM (8085 ONLY) RESET INTERRUPT MASK
RLC ROTATE LEFT

RRC ROTATE RIGHT

SHLD STORE H AND L DIRECT

SIM (8085 ONLY) SET INTERRUPT MASK:
STAX STORE ACCUMULATOR INDIRECT

XCHG EXCHANGE D AND E, H AND L

XRA, XRI LOGICAL EXCLUSIVE OR

3-6

Table 3-3

Seldom Used Instructions Of The 8080A And 8085

Instruction Code Meaning

CC CALL ON CARRY

CM CALL ON MINUS

CMC COMPLEMENT CARRY

CNC CALL ON NO CARRY

CNZ CALL ON NOT ZERO

CP CALL ON POSITIVE

CPE CALL ON PARITY EVEN

CPO CALL ON PARITY ODD
CZ CALL ON ZERO

JPE JUMP ON PARITY EVEN

JPO JUMP ON PARITY ODD
PCHL H AND L TO PROGRAM COUNTER

RC RETURN ON CARRY
RM RETURN ON MINUS
RNC RETURN ON NO CARRY
RNZ RETURN ON NOT ZERO

RP RETURN ON POSITIVE

RPE RETURN ON PARITY EVEN

RPO RETURN ON PARITY ODD
RST RESTART
RZ RETURN ON ZERO

SBB, SBI SUBTRACT WITH BORROW
SPHL H AND L TO STACK POINTER

STC SET CARRY
XTHL EXCHANGE TOP OF STACK. H AND L

Instructions falsely frighten microcomputer users who are new to programming.

Taken as an isolated event, operations associated with the execution of a single

instruction are easy enough to follow— and that is the purpose of this chapter.

Why are the instructions of a microcomputer referred to as an instruction "set"?

Because the instructions selected by the designers of any microcomputer are selected

with great care; it must be easy to execute complex operations as a sequence of simple

events— each of which is represented by one instruction from a well-designed instruc-

tion "set".

Remaining consistent with An Introduction To Microcomputers: Volume II , Table
3-4 summarizes the 8080A/8085 microcomputer instruction set, with similar in-

structions grouped together.

Individual instructions are described next in alphabetical order of instruction

mnemonic.

In addition to simply stating what each instruction does, the purpose of the instruction

within normal programming logic is identified.

3-7

ABBREVIATIONS
These are the abbreviations used in this chapter:

A The Accumulator

B The B registera \ he bs register > ,

C The C reaister i
Tnese are sometimes referred to as a register pair

The D register) ,

The E reaister f
These are sometimes referred to as a register pair

}

D The D register

E

H The H register) This register pair provides the implied memory
L The L register) address

CS Carry status

Ac Auxiliary carry status

ZS Zero status

SS Sign status

PS Parity status

I The Instruction register

12 Second object code byte

13 Third object code byte

PC The Program Counter

SP The Stack Pointer

P'SW The Program Status Word, which has bits assigned to status flags as shown
on the next page

H -Appearing at the end of a group of digits (e.g., 21 3AH) specifies hexadecimal

digits

data 8-bit immediate data

dev An I/O device

data16 16-bit immediate data

reg Register A, B, C, D, E, H or L

M , Memory, address implied by HL
label A 16-bit address, specifying an instruction label

rp A register pair: B for BC, D for DE, H for HL, SP for Stack Pointer, PSW for

status flags and Accumulator

port An I/O port, identified by a number between and FF-| 5
addr A 16-bit address, specifying a data memory byte

[] Contents of location identified within brackets

[[]] Memory byte addressed by location identified within brackets
«— Move data in direction of arrow
*—'— Exchange contents of locations on either side of arrow

+ Add
— Subtract

..A AND
V OR
©.¥ XOR

3-8

STATUS
The five status flags are stored in a Program Status Word (PSW) as follows:

7 6 5 4 3 2 1 0«

Kffl9rU9l?ll|c)

'•±±±
. These bits have fixed values

. Carry status (carry out of bit 7)

• Parity status (1 for even, for odd)

- Auxiliary Carry status (carry out of bit 3)

Zero status (1 for zero, for non-zero)

4 Sign status (value of bit 7)

PSW and A are sometimes treated as a register pair.

The effect of instruction execution on status is illustrated as follows:

VP s c z

Tuft -Modified to reflect results of execution

-^ Unconditionally reset to

" Unchanged

STATUS
CHANGES WITH
INSTRUCTION
EXECUTION

Within instruction execution illustrations, an X identifies a

status that is set or reset. A identifies a status that is always

cleared. A blank means the status does not change.

INSTRUCTION MNEMONICS
The fixed part of an assembly language instruction is

shown in UPPER CASE.

The variable part (immediate data, I/O device number, register name, label or ad-

dress) is shown in lower case.

INSTRUCTION OBJECT COOES
Instruction object codes are represented as two hexadecimal digits for instruc-

tions without variations.

Instruction object codes are represented as eight binary digits for instructions

with variations; the binary digit representation of variations is then identifiable.

INSTRUCTION EXECUTION TIMES AND CODES
Table 3-5 lists instructions in alphabetical order, showing object codes and execu-

tion times expressed as machine cycles.

Where tv/o instruction cycles are shown, the first is for "condition not met"
whereas the second is for "condition met".

3-9

a
O

E <

< c Q o

Ji x
CD <
II P

1=. »i a J= ,__,

1 t'-

S I

IS

co
CO

E
•o
T3
co

Q- = 2
DC co

!<=
<3*

CO ,__,

O) <

+
DC

Q
D

. <

ii

CO

q> <2 £-^

o
CO

a
1_CO

fc- m —

« 77 Qiso
w cc .ic75 <

=a < "° O^
co
-1 »Q-.

w
| 2} < £

*S £ U

co X
CD ,_,

=6 ' -o

3 a
CO < i2

5) - r ^£"
I

2

<°^ + "
icn„x
^j Q £^ CD

^J **._, CO

<o
COo
00

o

CO

E
E

W O

00

a
O

l-

z 8
> >o o
2 2

0/1 aouejajau Ajoui8|/\| Ajeiuud

3-10

8

21
5~

<

E
o i<

<<<j=<t<i:<^< i<^i
I 9 I < I <Dl CD I > I to l ~ —!i
<4g<<<

.£2 _ XJ _
C75<

V '

Q
1<

£X

<

J J 1 i

o =
E j

SI
E =

§<

Si1

to *

E"

^ c

=fi
— CO

CO Ol

to E «
<E o

° CO «

S= o -•

T3

g l ^ < i

I .O J3 < -Q
* i Q i_ oo t:

, oo
CZ CO

=i CO 0-„ CO

C0

<
u

00

a
O

(eiejado Ajoui8|/m)

93U9J8^eu Ajouia^M Ajepuooas
9^ejpeuiui|

3-11

00o
00

<o
00o
00

o
CD

E
E

CNCNCMCNCMCMCMCNCN
_i

l 1 1 l 1 l l 1

X 0.0.0-0.0.0.0-0.0-
TJ c (0(0(0(0(0(0(0(0(0
4>

E T3
CD i 1 1 I i i i i 1
Co

®
a.

oc 'to a. £ a. o_ a. a. a. a. a. o.

Q c wgtn co co co co co co co cm

Q
<

o
o ~3~ " "1 ~ " ~ "£-~> +

c CO OC *, 0C OC OC OC OC OC OC '£ OC £ _o "5 CO O CO Q Q Q Q Q Q Q SfllOi
'•J3 -O CD Q o>Q'-QoO — Q o O o O *- O :T O a co
(0 JO

CO

< .£ < || < || < || < || < || < || < 5 < -o—
ea 4-» ISIuIuInInIwIwI ®loi
O 5

c
o

CO

c
o slElslElslslElslslII

o u -3 -3 -3 -3 -3 .3 -3 -3 -3 . -Q
3
CO
c 1—

' CO
*""'

co
*""'

co
l—J

co
""

' CO*
-' CO

l—
' eo

1—' co
1-'co,

, q< o£ o 1 o I o I o J o | o 1 o J o 1 o| o"t
1 ai " Q-^ a.^ a^ a^ a" a.^ a." a.^ a' £Q.
r—* C i—

i

E a-Eo-EQ-Eo-EQ-EQ-EQ-EQ-EQ- E 77 2S|S 3 C03C03C03C03C03C03C03C03C030S
—i —•—J*—-->—>-^i——>—•—>——>——»•——>•—i—S Q-oc

a.

co
M
3
a N
(0 o

<
o

ca
•
•> CO «- CO0OCOCOCO0O0O0OCO—
CO

"5

XI cc ococococccococococc Q 000000000
COw Q 000000000
• < <<<<<<<<<
o

o
c
o _l _j

E
•
c

<O2NZ0.5S2tOOOOCJOOOOOC
s

•
a.

(>joeis pue eieipsuiui|)

l-

diuri| iumeu pue mbo aufinojqns

3-12

o
e
E
%m

o <t
o > E
(t £" > oCM CM CM CM CM CM CM C CM £
c CO t
o + + ~ + + -. + + -. + °- + 8

§

A- -Si O . . ~ rf

CO

»- © «- O «- O Q-

a. II a. H cl II a. II a. II a. II cl ® a. 2
a 2u«u«N«N<2«™(n 52 ® ^ o
Q.

o
4 gj i

' <u A CD + CD * CD * CD * CD » CD
r-,C,—,C,_,C r_,C„C„C 1—,C,-^C
Q. t: o. t; 0. > D. t; Q. '5 Q- ti tL ti O- ti

+

DATA

jate

to

A

+

DATA

irry

immec

-DATA mediate

fr

-DATA-

1

mediate

w

A

DATA

Hate

with

i

r—i 3 I—. 3 r-i 3 I—i 3 r-^ 3 r—i 3-—; 3 r-? 3•—
< (Or—i 0)1—I Mi—I OT I—i Oi r—> 01 r—I 0) r—i 0)o-_a__Q-_o._a._o-_a._a._

co E co E co Eco Eco E co E co E co E „-o„3„E-,E-S" 2" 2 u' S u 9S 2S 2s'2s 2 < c < jz<Z <Z < E
1-1 c""-;" « *"" o " E
1
~ 1 I i £ 1 S 1 q .— ^ _ ^ _ .n .q y

1 cT "ii eT IT =T "IT IT 1
f—,3 r_,3r-.3|—13,—,3r-^3r—,3r-,3
Q-cc Q-(r Q-crQ-a:Q-a: Q-oc Q-fr Q-CE <<<<<co<co < <

(A

3
(0J
CO

Cl X X X X X

CO X X X X X

N XX X XX
u
<t

x x x x •,

o X X X X O
(0
o
*-> CM CM CM CM CM

CO

3o
c < < < < <n H H h- H h-

a> < < < < <
a Q Q Q Q O
O

o
c'
o
E

O N _ UJ Ou z - n z S a. a. 2. 9 Q 5 3 zQCOCQCQCfrOCirQC < < CO CO <
5

»a
>-
H

(>»oe;s pue aieipaiuiur)

uimay pue neo auimojqns aiejadQ aieipawuii

3-13

o
e
E
O
t
Q.

C
o
<0

a
O

[A]

—

[AlVDATA

Exclusive-OR

immediate

with

A

[A]

«-

[A]

V

DATA

OR

immediate

with

A

[A]

-DATA

Compare

immediate

with

A

f *
Q.

OC'-OCOoc'-OCOqcOqc'-OC Soc-o
Q II Q II Q II O II Q II O II Q > Q ig

."t.»:.-*i.te|!t|!t| Oi O
a. * o. + a. * a. * o. * a. * a. * a.

m
3
(0

Q. XXX
(0 XXX
N XXX
O
< o o X

u o o X
(0
o
>
00

CM <N CM CO CO CO CO CO CO CO CO

2
c
a
oa
O

DATA DATA DATA ADDR ADDR ADDR ADDR ADDR ADDR ADDR ADDR

o
'E
o
E
•
c
2

ce oc KX O o
ON ^ Ui OOZNZO-SZEt

oa
>•
l-

aiejado
a;ejpauiui|

uoi^jpuoQ uq duinp

o
CD

E
E

t .»

3-14

ttl

a
O

w i X
a> lu •£

T: lu i—i
~ X o o_ o

g = T
x

;» ft 7 «~ O ~ "
a: 2£> tS

>
* — 2

— t! <
E
2w

< + 2

i—i a>

<
CO I

"* -C ^ ^ "*

DC (o

5
<5

to —

,

5>tr

CD

CO <

<5 CC c i

— CO
'—

' CO i—
i

«•

>. < o> > tr
» _ o

p as

< >.< i < £r" c " .£'-'o t-'o'-J c'-'> t-J >. a:

_,"D__^__^__^_.y_
1 73 1

_
1

+ £

a> CD

~ E
a> q.

i- el

<B *i

O)

CO

"ir c a: S l<

JL IJL IjL
cc -c.tr. a <

CO

03

(Da
O

o 5
5 X

Q O
< <

m m
=> m
CO CO i 5

2 Q

H-

9/voy\|

6ay-6au
aiejadQ Jaisi6au-jaisi6au

aieiado
ja}si6au

3-15

£CO ^o c ^, £
c m £ t
CO fc fc CO

Jr -Q JO O

1 I - £
1 ! 1 !
£ -c ^- -c

< < < <

0_
co

o
_1
X

o
<J>

a> <d a> q)

5 CO O jo o o

LU
Q
o

£ 0C O OC o CC CC 00
II

o

«
0.

1 1 1 1 al a.' cl
CO CO CO

£L
oc

CM

c o - o o 7 +
o -J , —1 —I

(6
I. I I m * a? a
lu lu llT (A UIA 2

a
O

Q Q Q
O (J o

i_i (0 __ w
1*1 o
* o * ^

7T co co m
tt >

r—i *- I—I
Cl

Q. C q. O
CO ° CO ~

*

< oc £ <- 0=
+

i
+

i

to
D

ĈO

75

E

—

H

] 1 J] i
-J -1- Q. CC 0_ "-

X O CC «_ CC £
To-7 S7 g

iSJLUL 1

Q_ i£ " O CO

" + CO + CO

7T -C r—i _ r—i -C

o T T si s & J & g
"- CO ft U. | Ow .? fr -P t x
•—> 0u ^ CL J- LU" " —'

Q. X

(A X
3 N X
«e

0)
< X

o X X' X X X X

(A
a>
+>
>
00

S
T3
C Q_ 0_ 0- Ql 0-,
(0 DC CC CC CC CC
<5
a
O

_o

'E
o I =>

E
a>
c

2
a

<-> o -j 5
_l oc < <
CC DC CC CC

Q v X
< * o
O ? Q

W & £
£ 2 £

s

0)

a> aieJddQ JaisiBay >|0B1S
H

3-16

oa
O

O CO

a 1 8
& 5 §

.£ "
= « S C

.Q C CO

8 ~ «?

O
<

idauenii

CO ca <d

- £— E

a» « w o

g <fl «
= O O
-5 n ^

CO * 8S

II - in
^ ^ 99too
CO » »

CO o

siueis

"o
o

OB

0)

o ^ «° CO

£ £ o
> 3 3

CO CO COO O N CO
CO 4-*

a. co

CO

CO

II II II II II II II

O ON CO a- x o
<

3-17

Table 3-5. A Summary Of Instruction Object Codes
And Execution Cycles

Instruction Object Code Bytes Cycles Instruction Object Code Bytes Cycles

ACI DATA CE yy 2 7 LXI RP.DATA16 OOxxOOOl 3 10

ADC REG 10001xxx 1 4 YWV
ADC M 8E 1 7 MOV REG.REG Oldddsss 1 5

ADD REG 10000xxx 1 4 MOV M.REG 01110sss 1 7

ADD M 86 1 7 MOV REG.M 01ddd110 1 7

ADI DATA C6 yy 2 7 MVI REG,DATA 00ddd110 2 7

ANA REG 10100xxx 1 4 W
ANA M A6 1 7 MVI M.DATA 36 yy 2 10

ANI DATA E6 yy 2 7 NOP 00 4

CALL LABEL CD ppqq 3 17 ORA REG 10110xxx 4

CC LABEL DC ppqq 3 11/17 ORA M B6 7

CM LABEL FC ppqq 3 11/17 ORI DATA F6 yy 7

CMA 2F 1 4 OUT PORT D3 yy 2 10

CMC 3F 1 4 PCHL E9 5

CMP REG 10111xxx 1 4 POP RP 11xx0001 10

CMP M BE 1 7 PUSH RP 11xx0101 11

CNC LABEL D4 ppqq 3 11/17 RAL 17 4

CNZ LABEL C4 ppqq 3 11/17 RAR 1F 4

CP LABEL F4 ppqq 3 11/17 RC D8 5/11

CPE LABEL EC ppqq 3 11/17 RET C9 10

CPI DATA FE yy 2 7 RIM 20 4*

CPO LABEL E4 ppqq 3 11/17 RLC 07 4

CZ LABEL CC ppqq 3 11/17 RM F8 5/11

DAA 27 4 RNC DO 5/11

DAD RP 00xx1001 10 RNZ CO 5/11

DCR REG 00xxx101 5 RP FO 5/11

DCR M 35 10 RPE E8 5/11

DCX RP 00xx1011 5 RPO EO 5/11

Dl F3 4 RRC OF 4

El FB 4 RST N 11xxx111 11

HLT 76 7 RZ C8 5/11

IN PORT DB yy 2 10 SBB REG 1001 1xxx 4

INR REG OOxxxlOO 5 SBB M 9E 7

INR M 34 10 SBI DATA DE yy 2 7

INX RP 00xx0011 5 SHLD ADDR 22 ppqq 3 16

JC LABEL DA ppqq 3 10 SIM 30 4*

JM LABEL FA ppqq 3 10 SPHL F9 5

JMP LABEL C3 ppqq 3 10 STA ADDR 32 ppqq 3 13

JNC LABEL D2 ppqq 3 10 STAX RP 000x0010 7

JNZ LABEL C2 ppqq 3 10 STC 37 4

JP LABEL F2 ppqq 3 10 SUB REG 10010xxx 4

JPE LABEL EA ppqq 3 10 SUB M 96 7

JPO LABEL E2 ppqq 3 10 SUI DATA D6 yy 7

JZ LABEL CA ppqq 3 10 XCHG EB 4

LDA ADDR 3A ppqq 3 13 XRA REG 10101xxx 4

LDAX RP 000x1010 1 7 XRA M AE 7

LHLD ADDR 2A ppqq 3 16 XRI DATA EE yy 2 7

|

XTHL E3 1 18

ppqq represents four hexadecimal digit memory iddress

yy represents two hexadecimal data digits

WW represents four hexadecimal data digits

X represents an optional binary digit

ddd represents optional binary digits identifying a destination register

sss represents optional binary digits identifying a source register

•8085 instructions
I

3-18

ACI — ADD WITH CARRY IMMEDIATE TO ACCUMULATOR

ACI data

yy

Add the contents of the next program memory byte and the Carry status to the Ac-

cumulator.

Suppose xx = 3A-|6. yy = 7C16- C = 0. After the instruction:

ACI 7CH

has executed, the Accumulator will contain B6:

3A = 1110 10
7C = 111110

Carry =

No carry sets C to

1 sets S to 1

10 110 110

t
Five 1 bits, set P to

Non-zero result, set Z to

Carry sets A^ to 1

This is a routine data manipulation instruction.

3-19

ADC— ADD REGISTER OR MEMORY WITH CARRY TO
ACCUMULATOR

This instruction takes two forms. First consider a register's contents added to the Ac-
cumulator:

^ p s c z

psw |X1X|XIxTx1

B,C

D,E

H,L

SP

PC ^

Contents of A,B,C,D,

E,H or L is yy

auc reg

1 0001 XXX

Data

Memory

Program

Memory

mmmm
mmmm + 1

for reg = B

1 for reg = C
1 for reg = D
11 for reg = E

10 for reg = H
10 1 for reg = L

111 for reg = A

Add the contents of register A. B. C. D. E, H or L and the Carry status to the Accumula-
tor.

Suppose xx = E3-|6. register E contains A0-|6, C = 1. After instruction:

ADC E

has executed, the Accumulator will contain 84-) q:

E3 = 1110 11
A0= 10100000

Carry = 1

1 0000 1 00

There is a carry

Set C to

1 sets S todn -Two 1 bits, set P to 1

-Non-zero result, set Z to

-No carry, so Ac is reset to

3-20

The contents of a memory byte may also be added, with Carry, to the Accumulator:

PSW

r
*c P :5 C Z

C + xx + yy]

I
Data

Memorym
i

XIXIXIXIXI
i

yy ppqq
A XX

mmmm + 1

^
D,E

Program

Memory

H,L pp qq'

SP

PC mmmm
8E —r=

—

n 8E mmmm
mmmm + 1

ADC M

10 1 1 10

If xx ;— E3-1Q. W = AO16 and C = 1. then execution of the instruction:

ADC M

generates the same result as execution of the ADC E instruction, which was just de-

scribed.

The ADC instruction is most frequently used in multibyte addition, for the second and

subsequent bytes.

3-21

ADD— ADD REGISTER OR MEMORY TO ACCUMULATOR
This instruction takes two forms. First consider a register's contents added to the Ac-

cumulator:

ac p s c z

psw ixixixixTx!

A
B,C

D,E

H.L

SP

PC ^

I Contents of

/~^*E,H or Lis >

mmmm + 1

Data

Memory

Program

Memory

mmmm
mmmm + 1

AUU reg

1 ooooxxx-

for reg = B

1 for reg = C
10 for reg = D
11 for reg = E

10 for reg = H
10 1 for reg = L

111 for reg = A

Add the contents of register A, B, C, D, E. H or L to the Accumulator.

Suppose xx = E3iq. register E contains A0-|6. C = 1. After the instruction:

ADD E

has executed, the Accumulator will contain 83]Q

E3 = 1110 11

A0= 10100000
1 00000 1

1

4
There is a carry

Set C to

1 sets S to

-Three 1 bits, set P to

Non-zero result, set Z to

-No carry, so Aq is reset to

3-22

The contents of a memory byte may also be added to the Accumulator:

A~ P s r 7 ^ /
xx + yv 1

Data

psw|
f

m
{

Memory

XIXIXIXIXI
4
¥

yy
A XX

-

mmmm + 1

B.C
^_^^^^^~"

D,E

H,L pp qq

SP Program

PC mmmm Memory

1 86 f*T
86 mmmm

mmmm + 1

If xx = E2-|6, yy = AOiq. and C = 1. then execution of the instruction:

ADD M

generates; the same result as execution of the ADD E instruction, which was just de-

scribed.

ADD is the binary addition instruction used in normal, single-byte operations; it is also

the instruction used to add the low-order bytes of two multibyte numbers.

3-23

ADI — ADD IMMEDIATE TO ACCUMULATOR

Add the contents of the next program memory byte to the Accumulator.

Suppose xx = 3A-\q, yy = 7C-\q. C = 0. After the instruction:

ADI 7CH

has executed, the Accumulator will contain B6:

3A
7C

No carry sets C to

00111010
1111100

10 110 110

_J1 sets S to 1

s This is a rootirre data manipulation instruction.

PSW

Ac P S C Z
r *1 xx + yy

V. ^

/* N
mmmm + 2

y Data

XIXIXIXIXI r ' - 1

)

Memory

t
A XX

B,C

D,E

H,L

Program

Memory

SP

PC mmmm
I C6 ^

-

data

yy

C6 mmmm

ADI

C6

W mmmm + 1

mmmm + 2

Five 1 bits, set P to

Non-zero result, set Z to

Carry sets Aq to 1

3-24

ANA— AND REGISTER OR MEMORY WITH ACCUMULATOR
This instruction takes two forms. First consider a register's contents ANDed with the

Accumulator:

*
A<: p is c z

rew FTxTxToTxl

A
B,C

D,E

H,L

SP

PC mmmm T

p\
•Ac is set to 1 by the 8085.

—^ ">k— \ xx«W J

\ fc
Contents of A,B,C,D

/ " E,H or L is yy

Data

Memory

Program

Memory

mmmm
mmmm + 1

ANA reg

1 01 ooxxx

for reg = B

1 for reg = C
10 for reg = D
11 for reg = E

10 for reg = H
10 1 for reg = L

111 for reg = A

AND the Accumulator with the contents of register A. B, C, D, E. H or L Save the result

in the Accumulator.

Suppose xx = E3-|6- register E contains AO-iq- After the instruction:

ANA E

has executed, the Accumulator will contain A0-|6 :

E3 = 1110 11
A0= 10100000

Carry is always set to

1 sets S to 1 -

1 01 00000
a

hTwo 1

Non-zi

bits, set P to 1

Non-zero result, set Z to

3-25

The contents of a memory byte may also be ANDed to the Accumulator:

*Ar- P S C Z
xx • yy 1

Data

Memoryr •

m - 1

YIYIYInlVI
i

VV
A XX

^3S
>

mmmm + 1

)

B,C

D,E

Program

Memory

H,L PP qq

SP

PC mmmm

"1
A6

•Ac is set to 1 by the 8085.
mmmm + 1

ANA M

10 100110

If xx = E3-|6- W = AO16 and C = 1. then execution of the instruction:

ANA M

generates the same result as execution of the ANA E instruction, which was just de-

scribed. ANA is a frequently used logical instruction.

3-26

ANI— AND IMMEDIATE WITH ACCUMULATOR

AND the contents of the next program memory byte to the Accumulator.

Suppose xx = 3A-|6. W = 7^16 After the instruction:

ANI 7CH

has executed, the Accumulator will contain 38-|6-

Carry is always set to

sets S to 0-

3A = 1110 10
7C = 1111100

00111 000

t

*A^ P S C Z
xx • yv

< ^

S >
mmmm + 2

^ >

k
Data

PSW
r *l Memory

xixixioixi
\

ts

XX

B,C

H,L

ProgramSP

PC mmmm Memory

I «k ^
E6

data

yy

VY mmmm + 1

mmmm + 2

ANI

E6

Three 1 bits, set P to

Non-zero result set Z to

Aq is always set to

This is a routine logical instruction; it is often used to turn bits "off". For example, the

instruction:

ANI 7FH

will unconditionally set the high-order Accumulator bit to 0.

3-27

CALL— CALL THE SUBROUTINE IDENTIFIED IN THE OPERAND

PSW

Ac P S C Z

pH

Data

Memory

I 1 1 1 1

mm + 3 xxxx - 2

mm
B,C

^ " * xxxx - 2 1

D.E

Program

Memory

H,L

SP xxxx

PC mmmm
1

\I

h CD mmmm
~~""^^t mmmm + 3 V< J

f

qq mmmm + 1

PP mmmm + 2

)

bel

>qq

CALL

CD

a

3f

Store the address of the instruction following the CALL on the top of the stack; the top

of the stack is a data memory byte addressed by the Stack Pointer. Then subtract 2

from the Stack Pointer in order to address the new top of stack. Move the 1 6-bit address

contained in the second and third CALL instruction object program bytes to the Pro-

gram Counter.

Consider the instruction sequence:

CALL
ANI

SUBR
7CH

SUBR

After the CALL instruction has executed, the address of the ANI instruction is saved at

the top of the stack. The Stack Pointer is decremented by 2. The instruction labeled

SUBR will be executed next.

3-28

CC— CALL THE SUBROUTINE IDENTIFIED IN THE OPERAND,
BUT ONLY IF THE CARRY STATUS EQUALS 1

CC label

DC ppqq

This instruction is identical to the CALL instruction except that the identrfied

subroutine will be called only if the Carry status equals 1 ; otherwise, the instruction se-

quentially following the CC instruction will be executed.

Consider ihe instruction sequence:

CC SUBR
C =0

AIJI 7CH

-SWBR •

After the CC instruction has executed, if the Carry status does not equal 1 the ANI in-

struction will be executed. If the Carry status does equal 1, the address of the ANJ in-

struction is saved at the top of the stack. The Stack Pointer is decremented by 2. The in-

struction labeled SUBR will be executed next.

CM— CALL THE SUBROUTINE IDENTIFIED IN THE OPERAND,
BUT ONLY IF THE SIGN STATUS EQUALS 1

CM label

FC ppqq

This instruction is identical to the CALL instruction except that the identified

subroutine will be called only if the Sign status equals 1 ; otherwise, the instruction se-

quentially following the CM instruction will be executed.

Consider the instruction sequence:

S = 1 CM SUBR
— S =
Asll 7CH

-suefi

After the CM instruction has executed, if the Sign status does not equal 1 the ANI in-

struction will be executed. If the Sign status does equal 1, the address of the ANI in-

struction is saved at the top of the stack. The Stack Pointer is decremented by 2. The in-

struction labeled SUBR will be executed next.

3-29

CMA— COMPLEMENT THE ACCUMULATOR

Ac P S C Z

pswQun
A

B,C

D,E

H.L

SP

PC ^

Data

Memory

Program

Memory

mmmm
mmmm + 1

CMA

2F

Complement the contents of the Accumulator. No other register contents or statuses

are affected.

Suppose the Accumulator contains 3A-|§. After the instruction:

CMA

has executed, the Accumulator will contain Cb-\Q:

3A<\q = 00111010
Complement = 11000 101

This is a routine logical instruction. Do not use it for binary subtraction. There are

special subtract instructions (SUB and SBB).

3-30

CMC— COMPLEMENT THE CARRY STATUS

Ac P £1 C Z

pswQUED
A

B,C

D,E

H,L

SP

PC mmmm
1 3F •*!

db
Data

Memory

Program

Memory

mmmm
mmmm + 1

CMC

3F

Complement the Carry status. No other statuses or register contents are affected.

Suppose tie Carry status contains 1. After the instruction:

CMC

has executed, the Carry status will contain 0.

This instruction is used to force the Carry status to 0, via the instruction sequence:

STC ;SET CARRY STATUS TO 1

CMC COMPLEMENT CARRY STATUS

Note you can set the Carry status to via the instruction:

ANA A

which automatically zeros the Carry status, but does not modify any register's contents

since the Accumulator is ANDed with itself. The:

ORA

instruction serves the same purpose.

3-31

CMP— COMPARE REGISTER OR MEMORY WITH
ACCUMULATOR

This instruction takes two forms.. First consider a register's contents compared with the

Accumulator:

Ac P S C Z

psw ixixixixTxT *

^

Data

Memory

Program

Memory

mmmm
mmmm + 1

CMP reg

3^X
10 111 XXX

for reg = B

1 for reg = C
10 for reg = D
11 for reg = E

10 for reg = H
10 1 for reg = L

111 for reg
i

= A

Subtract the contents of register A, B, C. D, E, H or L from the contents of the Ac-

cumulator, treating both numbers as simple binary data. Discard the result, i.e., leave

the Accumulator alone, but modify status flags to reflect the result of the subtraction:

Suppose xx = E3-|6, register E contains A0-|6- After the instruction:

CMP E

has executed, the Accumulator will still contain E3-|6- but statuses will be modified as

follows:

E3 = 1110 11

Twos comp of A0 = 1 1 00000
1 0000 1

1

1-

Carry sets C to

sets S to 0-J!
w

fc
Three 1 bits, set P to

Non-zero result, set Z to

No carry, so Ac is reset to

Notice that the resulting Carry is complemented.

3-32

The contents of a memory byte may also be compared with the Accumulator:

Ac P S C Z
fc /

1
xx - yy J ^ »

Data

Memory
fswixixlxlxlxl *A

yy ppqq
A XX

mmmm + 1 1

B,C

D,E

Program

Memory

H,L PP qq

SP

PC mmmm
1 BE J*l

* BE mmmm
mmmm + 1

10111110

If xx = E3- 6 and yy = A0-|6- then execution of the instruction:

CMP M

generates the same result as execution of the CMP E instruction, which was just de-

scribed.

Compare instructions frequently precede conditional Call, Return and Jump instruc-

tions. The Compare Immediate (CPI) instruction is more useful than the CMP instruc-

tion.

CNC— CALL THE SUBROUTINE IDENTIFIED BY THE OPERAND,
BUT ONLY IF THE CARRY STATUS EQUALS

CNC label

D4 ppqq

This instruction is identical to the CALL instruction except that the identified

subroutine will be called only if the Carry status equals 0; otherwise, the instruction se-

quentially following the CNC instruction will be executed.

Consider the instruction sequence:

C=0 C!4C SUBR
C = 1

A sll 7CH

-SfcrBfl

After the CNC instruction has executed, if the Carry status does not equal the ANI in-

struction will be executed. If the Carry status does equal 0, the address of the ANI in-

struction is saved at the top of the stack. The Stack Pointer is decremented by 2. The in-

struction labeled SUBR will be executed next.

3-33

CNZ— CALL THE SUBROUTINE IDENTIFIED IN THE OPERAND,
BUT ONLY IF THE ZERO STATUS EQUALS

CNZ

This instruction is identical to the CALL instruction except that the identified

subroutine will be called only if the Zero status equals 0; otherwise, the instruction se-

quentially following the CNZ instruction will be executed.

Consider the instruction sequence:

Z = CNZ

AN

SUBR
Z = 1

7CH

ouDn

After the CNZ instruction has executed, if the Zero status does not equal the ANI in-

struction will be executed. I

f the Zero status does equal 0, the address of the ANI in-

struction is saved at the top of the stack. The Stack Pointer is decremented by 2. The in-

struction labeled SUBR will be executed next.

CP— CALL THE SUBROUTINE IDENTIFIED IN THE OPERAND,
BUT ONLY IF THE SIGN STATUS EQUALS

CP

~F4~

label

ppqq

This instruction is identical to the CALL instruction except that the identified

subroutine will be called only if the Sign status equals 0; otherwise, the instruction se-

quentially following the CP instruction will be executed.

Consider the instruction sequence:

s = o CI'

AN

ouDn —

S = 1

SUBR

7CH

After the CP instruction has executed, if the Sign status does not equal the ANI in-

struction will be executed. If the Sign status does equal 0, the address of the ANI in-

struction is saved at the top of the stack. The Stack Pointer is decremented by 2. The in-

struction labeled SUBR will be executed next.

3-34

CPE— CALL THE SUBROUTINE IDENTIFIED IN THE OPERAND,
BUT ONLY IF THE PARITY STATUS EQUALS 1

CPE label

EC ppqq

This instruction is identical to the CALL instruction except that the identified

subroutine will be called only if the Parity status equals 1 ; otherwise, the instruction se-

quentially following the CPE instruction will be executed.

Consider the instruction sequence:

P = 1 Ci'E

AIJI

SUBR

7CH

SUBR

After the CPE instruction has executed, if the Parity status does not equal 1 the ANI in-

struction will be executed. If the Parity status does equal 1, the address of the ANI in-

struction is saved at the top of the stack. The Stack Pointer is decremented by 2. The in-

struction labeled SUBR will be executed next.

3-35

CPI— COMPARE ACCUMULATOR CONTENTS WITH
IMMEDIATE DATA

mc P s c z

psw jxixixfxTxl

*n

Data

Memory

Program

Memory

mmmm
mmmm + 1

mmmm + 2

CPI

FE

data

yy

Subtract the contents of the second object code byte from the contents of the Ac-
cumulator, treating both numbers as simple, binary data. Discard the result, i.e., leave

the Accumulator alone, but modify the status flags to reflect the result of the subtrac-

tion.

Suppose xx = E3-|6 and the second byte of the CPI instruction object code contains
A0-|6- After the instruction:

CPI AOH

has executed, the Accumulator will still contain E3-| 5 but statuses will be modified as

follows:

E3 = 1110 11
Twos comp. of A0 = 01100000

1

Carry sets C to

sets S to 0-

01 00001 1

It
t

Three 1 bits, set P to

Non-zero result, set Z to

No carry, so Aq is reset to

Notice that the resulting Carry is complemented.

This is the instruction most frequently used to set statuses prior to execution of a condi-

tional Call, Return or Jump instruction.

3-36

CPO— CALL THE SUBROUTINE IDENTIFIED IN THE OPERAND,
BUT ONLY IF THE PARITY STATUS EQUALS

CPO

E4

This instruction is identical to the CALL instruction except that the identified

subroutine will be called only if the Parity status equals 0; otherwise, the instruction se-

quentially following the CPO instruction will be executed.

Consider the instruction sequence:

P = CFO SUBR
P = 1

AMI 7CH

eyeft—
After the CPO instruction has executed, if the Parity status does not-equal the ANI in-

struction will be executed. If the Parity status does equal 0, the address of the ANI in-

struction is saved at the top of the stack. The Stack Pointer is decremented by 2. The in-

struction labeled SUBR will be executed next.

CZ— CALL THE SUBROUTINE IDENTIFIED IN THE OPERAND,
BUT ONLY IF THE ZERO STATUS EQUALS 1

CZ

cc

This instruction is identical to the CALL instruction except that the identified

subroutine will be called only if the Zero status equals 1 ; otherwise, the instruction se-

quentially following the CZ instruction will.be executed.

^Consider the instruction sequence:

1 C2 SUBR
]z = o

AIJJI 7CH

Guon

After the CZ instruction has executed, if the Zero status does not equal 1 the ANI in-

struction will be executed. If the Zero status does equal- 1, the address of the ANI in-

struction is saved at the top of the stack. The Stack Pointer is decremented by 2. The in-

struction labeled SUBR will be executed next.

3-37

DAA— DECIMAL ADJUST ACCUMULATOR

Ar P S C Z

PSW
r

XIXIXIXIXI L
t

A XX

B,C

D,E

H,L

SP

PC mmmm
1 27 -«->

Data

Memory

Program

Memory

mmmm
mmmm + 1

DAA

27

Convert the contents of the Accumulator to its binary coded decimal form. This instruc-

tion should be used only after adding two BCD numbers, i.e., look upon ADD DAA or

ADC DAA or SUB DAA or SBB DAA as compound, decimal arithmetic instructions

which operate on BCD source to generate BCD answers.

Suppose the Accumulator contains 39-|6 and the B register contains 47i 6. After the in-

structions:

ADD B

DAA

have executed, the Accumulator will contain 861 g, not 80-] 6-

The DAA instruction modifies all status flags, but only the Carry status is significant.

Consider other statuses to have been destroyed.

3-38

DAD— ADD A REGISTER PAIR TO H AND L

mmmm
mmmm + 1

DAD rp

OOXX 1 00

1

for rp = B. representing B.C

1 for rp = D. representing D.E

1 for rp = H. representing H,L

1 1 for rp = SP. representing the Stack Pointer

Add the 1 6-bit value from the BC, DE or HL register pair or the Stack Pointer to the HL

register pair.

Suppose H,L contains 034A-\q and B.C contains 214C-|6 After the instruction:

DAD B

has executed, the HL register pair will contain 2496-j q.

034A = 0000001101001010
214C = 10 10 10 110

10 10 10 10 110

There is no carry

so C is reset to

*J
No other statuses are affected

The DAD instruction is one of the most useful in the 8080 instruction set for traditional

programming applications. This instruction provides the equivalent of indexed address-

ing, and the DAD H instruction is equivalent to a 16-bit left shift.

3-39

DCR— DECREMENT REGISTER OR MEMORY CONTENTS

Ac P S C 2

PSW ixjXIXl 1X1

A
)

B.C W e

D.E
(

E

H.L

SP

PC mmmm
1 00xxx101 h^

CH>>
i of A,B,C,D

Data

Memory

Program

Memory

mmmm
mmmm + 1

DCR reg

OOXXXJ 1

for reg = B

1 for reg = C
10 for reg = D
11 for reg = E

10 for reg = H
10 1 for reg = L

1 1 1 for reg = A

Subtract 1 from the contents of the specified register.

Suppose the C register contains 3A-|6 After the instruction:

DCR C

has executed, the C register will contain 39ig:

Carry status not affected

sets S to

00111001

{

• Four 1 bits, set P to 1

-Non-zero, result, set Z to

-No carry, so Aq is reset to

3-40

The contents of a read/write memory byte may also be decremented:

Ac P S C Z

CZDr*r

Data

Mofnory

A

1
B.C

D,E

Mwnory

H.L PP <W

-W

—

7y_ ^ 1 mmmm + 1 1

*•—V^ /

SP

PC mmmm
i 35 T

35 mmmm
mmmm + 1

DCR M

00 110 101

Suppose HI. contains 3714ig Then execution of the instruction:

DCR M
subtracts 1 from the contents of the memory byte with address 3714-ig Status flags

are modified as described for the DCR C instruction.

The DCR instruction is used in iterative instruction loops that use a counter with a value

of 256 or less. This is the typical loop form:

MVI
LOOP

reg.data ;LOAD INITIAL COUNTER VALUE
; FIRST INSTRUCTION OF LOOP

DCR
JNZ

reg

LOOP
; DECREMENT COUNTER
:RETURN IF NOT ZERO

3-41

DCX — DECREMENT REGISTER PAIR

Ac P S C Z

pswQxrn

^
h

Contents of BC, DE

HL or SPis yyyy

Data

Memory

Program

Memory

mmmm
mmmm + 1

DCX rp

OOXX 1011

for rp = B, representing B.C

1 for rp = D, representing D,E

1 for rp = H. representing- H,L

1 1 for rp = SP, representing the Stack Pointer

Subtract 1 from the 16-bit value contained in the specified register pair.

Suppose the Stack Pointer contains 2F7A-|6- After the instruction:

DCX SP

has executed, the Stack Pointer will contain 2F79is.

The DCX instruction does not modify any status flags, and this is a defect in the 8080
instruction set. Whereas the DCR instruction is used in iterative instruction loops that

use a counter with a value of 256 or less, the DCX instruction must be used if the

counter value is more than 256. Since the DCX instruction sets no status flags, other in-

structions must be added simply to test for a zero result. This is a typical loop form:

LXI D,data16

LOOP
;LOAD INITIAL 16-BIT COUNTER VALUE
:FIRST INSTRUCTION OF LOOP

DCX D
MOV A.D
ORA E

JNZ LOOP

DECREMENT COUNTER
TO TEST FOR ZERO, MOVE D TO A
THEN OR A WITH E

RETURN IF NOT ZERO

3-42

Dl— DISABLE INTERRUPTS

Ac P S C Z
Data

Memory"III II

B,C

D,E

H,L

SP Program

PC mmmm _^^f mmmm + 1 1 Memory
1 F3 —**>

F3 mmmm
mmmm + 1

Dl

F3

After this instruction has been executed the INTE signal is output low by the 8080 CPU,

and no interrupt requests will be acknowledged. No registers or status flags are

affected.

Remember that when an interrupt is acknowledged, interrupts are automatically dis-

abled.

El— ENABLE INTERRUPTS

A^ P S C Z

«"l 1 1 1 1 1

Data

Memory

B,C

D,E

Program

Memory

H,L

SP

PC mmmm ^^^1 mmmm + 1 1

1 FB ^V
FB

mmmm + 1

El

FB

When this instruction is executed, interrupts are enabled, but not until one more in-

struction executes.

Most interrupt service routines end with the two instructions:

El

RET
;ENABLE INTERRUPTS
;RETURN TO INTERRUPTED PROGRAM

3-43

If interrupts are processed serially, then for the entire duration of the interrupt service

routine all interrupts are disabled — which means that in a multi-interrupt application

there is a significant possibility for one or more interrupts to be pending when any inter-

rupt service routine completes execution.

If interrupts were acknowledged as soon as the El instructions had executed, then the

Return instruction would not be executed. Under these circumstances returns would

stack up one on top of the other— and unnecessarily consume stack memory space.

This may be illustrated as follows:

Interrupt service routine

By inhibiting interrupts for one more instruction following execution of El, the 8080
CPU insures that the RET instruction gets executed in the sequence:

El

RET
;ENABLE INTERRUPTS
.RETURN FROM INTERRUPT

It is not uncommon for interrupts to be kept disabled while an interrupt service routine

is executing. Interrupts are processed serially:

Interrupt Interrupt

y

Interrupt service routine

*-? V
Interrupt service routine

Interrupt

Interrupt service routine

Interrupt service routine

If interrupts are processed serially, then priority arbitration will apply only during the

acknowledge process.

3-44

HLT— HALT

VPS c z

en
A

B,C

D.E

H.L

SP

PC ^

Data

Memory

Program

Memory

mmmm
mmmm + 1

HLT

~76

When the HLT instruction is executed, program execution ceases. It requires an inter-

rupt or a reset to restart execution. No registers or statuses are affected.

CAUTION: If interrupts are not enabled by an El instruction prior to the HALT in-

struction, the 8080 CPU cannot exit the Halt state except by activa-

tion of the hardware Reset.

3-45

IN— INPUT TO ACCUMULATOR

sw
*C P s c z i

'
Data

Memory

J 1 1 1

1

| I/O Port yy |^-^

D.E

Program

Memory

H.L

SP ^
n + 2 JPC mmmm ^ ^^| mmmr

DB L— "•""^ ^
-~n

DB

IN

YY mmmm + 1

port

yy

mmmm + 2

Load a byte of data into the Accumulator from the I/O port identified by the second IN

instruction object code byte.

Suppose 36-|Q is held in the buffer of I/O Port 1A-|6 After the instruction:

IN 1AH

has executed, the Accumulator will contain 36^ q.

The IN instruction does not affect any statuses.

Use of the IN instruction is very hardware dependent. Valid I/O port addresses are

determined by the way in which I/O logic has been implemented. It is also possible to

design a microcomputer system that accesses external logic using memory reference

instructions with specific memory addresses.

3-46

INR— INCREMENT REGISTER OR MEMORY CONTENTS

Ac P S C Z

pswfxTxTxi 1X|

^

yy + 1

\ ^ Contents of A,B,C,D

/ ~~
E,H or L is yy

INR reg

OOXXX 1 00

Data

Memory

Program

Memory

mmmm
mmmm + 1

for reg = B

1 for reg = C
1 for reg = D
11 for reg = E

10 for reg = H
10 1 for reg = L

111 for reg = A

Add 1 to the contents of the specified register.

Suppose the C register contains 3A|6 After the instruction:

INR C

has executed, the C register will contain 3Biq:

Carry status not affected

sets S to J
00111011

n
\) Five 1 bits, set P to

-Non-zero result, set Z to

-No carry, so Ac is reset to

3-47

The contents of a read/write memory byte may also be incremented:

sw
Ac P S C Z

CEDf^

Data

Memory
xlxlxl Ixl

A YV ppqq

D,E

H,L pp qq

Program

Memory~*f—

^

^1 mmmm + 1 1

SP

PC mmmm
1 34 *1

34 mmmm
mmmm + 1

INR M

00110100

Suppose HL contains 3714-]g- Then execution of the instruction:

INR M

adds 1 to the contents of the memory byte with address 3714-| g. Status flags are

modified as described for the INR C instruction.

The INR instruction is used in iterative instruction loops that use a counter with a value

of 256 or less. This is the typical loop form:

MVI reg.data ;LOAD COMPLEMENT OF INITIAL COUNTER VALUE
LOOP - - ;FIRST INSTRUCTION OF LOOP

INR

JNZ
reg

LOOP
DECREMENT COUNTER
;RETURN IF NOT ZERO

3-48

INX— INCREMENT REGISTER PAIR

mmmm
mmmm + 1

INX JP

00XX001 1

for rp = B. representing B.C

1 for rp = D, representing D,E

1 for rp = H, representing H,L

1 1 for rp = SP. representing the Stack Pointer

Add 1 to the 16-bit value contained in the specified register pair.

Suppose the D and E registers contain 2F7A-|6. After the instruction:

INX D

has executed, the D and E registers will contain 2F7Big.

The INX instruction does not modify any status flags, and this is a defect in the 8080 in-

struction set. Whereas the OCR instruction is used in iterative instruction loops that use

a counter with a value of 256 or less, the INX instruction must be used if the counter

value is more than 256. Since the INX instruction sets no status flags, other instructions

must be added simply to test for a zero result. This is a typical loop form:

LXI D.data 16

LOOP

LOAD COMPLEMENT OF INITIAL 1 6-BIT

COUNTER VALUE
FIRST INSTRUCTION OF LOOP

INX D
MOV A,D
ORA E

JNZ LOOP

INCREMENT COUNTER
TO TEST FOR ZERO, MOVE D TO A,

THEN OR A WITH E

RETURN IF NOT ZERO

3-49

JC— JUMP IF CARRY
JC

DA

This instruction is identical to the JMP instruction except that the jump is only ex-

ecuted if the Carry status equals 1 ; otherwise, the next instruction is executed.

In the following instruction sequence:

C = 1

JC NEXT
C =

ANI 7FH

NEXT »» CMA

After the JC instruction, the CMA instruction is executed if the Carry status equals 1.

The ANI instruction is executed if the Carry status equals 0.

JM— JUMP IF MINUS
JM label

FA ppqq

This instruction is identical to the JMP instruction except that the jump is only ex-

ecuted if the Sign status equals 1 ; otherwise, the next instruction is executed.

In the following instruction sequence:

S = 1

Jrfl NEXT
S =

AIJI 7FH

NEXT »»CMA

After the JM instruction, the CMA instruction is executed if the Sign status equals 1.

The ANI instruction is executed if the Sign status equals 0.

3-50

JMP— JUMP TO THE INSTRUCTION IDENTIFIED IN THE
OPERAND

Ar P S C Z

pswQJJ JJ

A

B,C

D,E

H,L

SP

PC mmmm
1 - C3 h*-> k

Data

Memory

Program

Memory

mmmm
mmmm + 1

mmmm + 2

mmmm + 3

JMP

C3

label

ppqq

Load the contents of the Jump instruction object code second and third bytes into the

Program Counter; this becomes the memory address for the next instruction to be ex-

ecuted. The previous Program Counter contents are lost.

In the following instruction sequence:

JMP
ANI

NEXT
7FH

NEXT CMA

After the JMP instruction, the CMA instruction will be executed. The ANI instruction

will never be executed unless a Jump instruction somewhere else in the instruction se-

quence jumps to this instruction.

JNC— JUMP IF NO CARRY
JNC

D2

This instruction is identical to the JMP instruction except that the jump is only ex-

ecuted if the Carry status equals 0; otherwise, the next instruction is executed.

In the following instruction sequence:

C =0

After the JNC instruction, the CMA instruction is executed if the Carry status equals 0.

The ANI instruction is executed if the Carry status equals 1.

3-51

JNZ— JUMP IF NOT ZERO
JNZ

C2

This instruction is identical to the JMP instruction except that the jump is only ex-

ecuted if the Zero status equals 0; otherwise, the next instruction is executed.

In the following instruction sequence:

1 =
JMZ

Z = 1

NEXT

ANI

CMA

NEXT

7FH

After the JNZ instruction, the' CMA instruction is executed if the Zero status equals 0.

The ANI instruction is executed if the Zero status equals 1.

JP— JUMP IF PLUS
JP

This instruction is identical to the JMP instruction except that the jump is only ex-

ecuted if the Sign status equals 0; otherwise, the next instruction is executed.

In the following instruction sequence:

S =
JF

S = 1

NEXT

ANI

CMA

NEXT

7FH

After the JP instruction, the CMA instruction is executed if the Sign status equals 0.

The ANI instruction is executed if the Sign status equals 1.

3-52

JPE— JUMP IF PARITY EVEN
JPE

EA

This instrjction is identical to the JMP instruction except that the jump is only ex-

ecuted if the Parity status equals 1 ; otherwise, the next instruction is executed.

In the following instruction sequence:

P = 1

JP

P=0

NEXT

AMI

CMA

NEXT

7FH

After the JPE instruction, the CMA instruction is executed if the Parity status equals 1.

The ANI instruction is executed if the Parity status equals 0.

JPO— JUMP IF PARITY ODD
JPO

E2

This instruction is identical to the JMP instruction except that the jump is only ex-

ecuted if the Parity status equals 0; otherwise, the next instruction is executed.

In the following instruction sequence:

P =
JPD—>P = 1

NEXT

AMI

•CMA

NEXT

7FH

After the JPO instruction, the CMA instruction is executed if the Parity status equals 0.

The ANI instruction is executed if the Parity status equals 1.

3-53

JZ— JUMP IF ZERO
JZ

This instruction is identical to the JMP instruction except that the jump is only ex-

ecuted if the Zero status equals 1 ; otherwise, the next instruction is executed.

In the following instruction sequence:

Z = 1

J2

Z =

ND(T

ANI

•CMA

NEXT

7FH

After the JZ instruction, the CMA instruction is executed if the Zero status equals 1.

The ANI instruction is executed if the Zero status equals 0.

3-54

LDA— LOAD ACCUMULATOR FROM MEMORY USING
DIRECT ADDRESSING

sw
Ac P S C Z

Data

Memory

XI 1 1 1

W **-> yy ppqq

B.C

D,E

Program

Memory

H,L

SP

PC mmmm ^^^^1 mini rim -r J J

3A n 3A mmmm
qq mmmm + 1

LDA

3A

PP mmmm' + 2
* mmmm + 3

a

P

dd

}pqc

Load into the Accumulator the contents of the memory byte addressed directly by the

second and third bytes of the LDA instruction object code-

Suppose memory byte 084A-|6 contains 3A-|g. After the instruction:

LAB€L EQU 084AH
'

LDA LABEL

has executed, the Accumulator will eontain 3A-|6.

Remember that EQU is an Assembler Directive and not s an -instruction; it tells the As-

sembler to use the 16-bit value 084A-16 wherever LABEL appears.

The instruction:

LDA LABEL

is equivalent to the two instructions:

LXI

MOV
H.LABEL
AM

When you are loading a single data- value from memory, the LDA instruction is prefer-

red: it uses one instruction and three object program bytes to do what the LXI MOV
combination doesin two instructions and four object program bytes. Also, trie LXI MOV
combination uses the H and L registers; the LDA instruction does aot.

3-55

LDAX— LOAD ACCUMULATOR FROM MEMORY LOCATION
ADDRESSED BY REGISTER PAIR

Ac P S C Z

PSW
| | | | M

Data

Memory

A w J
) BC or DE

J

contain ppqq

+f ">*
.
^ I mmmm + 1 1

yy ppqq

B.C

D,E

H,L

Program

Memory

SP

PC mmmm
1- 000*1010 ^

000x1010 mmmm
mmmm + 1

LDAX rp

000X 10 10

if rp is B, representing B.C

1 if rp is D, representing D.E

Load into the Accumulator the contents of the memory byte addressed by the BC or DE
register pair.

Suppose the B register contains 08 1§, the C register contains 4Ais and memory byte

084Ai6 contains 3A-|6. After the instruction:

LDAX B

has executed, the Accumulator will contain 3A-\q.

Note that there is no LDAX H instruction since this is identical to a MOV A.M instruc-

tion.

The LDAX and LXI instructions will normally be used together, since the LXI instruction

loads a 16-bit address into the BC or DE registers as follows:

LXI B.084AH
LDAX B

Notice that the LDAX instruction will only load data into the Accumulator, whereas the
MOV instruction will load data into any register.

3-56

LHLD~ LOAD H AND L REGISTERS DIRECT

sw
AcP S c z

Data

Memorym IJ
XX

B,C

s—>>mmmm + 31

D,E m ir

H.L w f
xx

f

SP Program

PC rommm ^ Memory
1 2A

•*l 2A

f
«W

!

PP

ppqq

ppqq + 1

mmmm
mmmm + 1

mmmm + 2

mmmm + 3

The second and third object code bytes provide the memory address of a data byte, the

contents of which will be loaded into the L register. The contents of the next sequential

data byte is loaded into the H register.

Suppose memory byte 084A-|6 contains 3A-|6 anQ" memory byte 084B-|6 contains

2C-|6- After the instruction:

LABEL EQU 084AH

LHLD LABEL

has executed, the H register will contain 2C-|6 and the L register will contain 3A}6-

Remember that EQU is an assembler directive and not an instruction; it tells the Assem-

bler to use the 16-bit value 084Aie wherever LABEL appears.

The LHLD instruction is a direct addressing version of the LXI H.DATA instruction. For

example, the instruction:

LXI H.2C3AH

will also load 2C-|6 into the H register and 3A-|6 into the L register.

For 16-bit data that never changes, use LXI H.DATA instead of LHLD ADDR.

Remember, if ADDR directly addresses a byte of read/write memory, you can change

the value that will be loaded into the H and L registers by an LHLD instruction. To do

this, simply write the new value into ADDR and ADDR + 1.

3-57

LXI— LOAD A 16-BIT VALUE, IMMEDIATE, INTO A
REGISTER PAIR

Ac P S C Z

psw Mllll
Select BC, DE, HL

\ or SP. Load ppqq

1 into selected

V^>— destination. ^

L^—

^

— ^ 1 mmmm + 31

Data

Memory

B,C

D.E

Program

Memory

H,L

SP

PC mmmm
t OOxxOOOt L—

—1
- 00xx0001

^
mmmm

i

qq mmmm + 1

1 pp mmmm + 2

mmmm + 3

LXI, rp,data16

00XX000 1 ppqq

if rp = B, selecting B and C registers

1 if rp = D, selecting D and E registers

10 if rp = H, selecting K and L registers

11 if rp = SP. selecting the Stack Pointer

Load into the selected register pair the contents of the second and third object code
bytes.

After the instruction:

LXI SP.217AH

has executed, the Stack Pointer will contain 217A-|6-

LXI is the instruction most frequently used to load addresses into a register pair.

3-58

MOV— MOVE DATA

This inst ruction takes two forms. Consider first the contents of one register being

moved to another register.

^ p s c z

pswnuj]
A

B,C

D,E

H,L

SP

PC

I ^
h

Register A,B,C.D,E,H or L.

Data

Memory

Register A,B, CD.E.H or L

,
1

*S "N^\ mmmm + 1 1
Program

Memory

Oldddsss

mmmm + 1

MOV

d or s is Register B
1 d or s is Register C

10 d or s is Register D
11 d or s is Register E

10 d or s is Register H
10 1 d or s is Register L

111 d or s is the Accumulator

Move the contents of any register to any register. For example:

MOV A.B

moves the contents of the B register to the Accumulator.

MOV L.D

moves the contents of the D register to the L register.

MOV C.C

does nothing, since the C register has been specified as both the source and the

destination.

3-59

A memory byte may also be the data source:

ac p s c z

PSW

A

B,C

D,E

H,L

SP

PC

a

^

Destination is

Register A,B,C,

"

K
Register A
D,E,H or L_

MOV d.M

01ddd110

Data

Memory

Program

Memory

mmmm
mmmm + 1

Or a memory byte may be the data destination:

Afj P S C Z

psw 1 1 1 11
__ Source is Register A,

"\ f^B,C,D,E.H or L

r

-^.

Data

Memory

A r^ XX PPqq

B,C

D,E

PP aq

-w—>*— 1 mmmm + 1 1*•—\^ s
Program

Memory

SP

PC mmmm
01110sss 1*1

01 1 10sss mmmm
mmmm + 1

MOV M,s

01 110 sss

in either case, ddd or sss is interpreted as for a register-to-register move.

Thus the instruction:

MOV M.A

moves the Accumulator contents to the read/write memory by,te addressed by the H
and L registers. The instruction:

MOV LM

moves the contents of the memory byte addressed by the H and L registers into the L

register.

The Move instruction in its various forms is the most frequently used of the 8080 in-

structions.

3-60

MVI— LOAD DATA IMMEDIATE INTO REGISTER OR MEMORY

PSW

AC P S C Z

J
Destination is

\ __ Register A,B,C,

Data

Memory

IE 1 II

A
B.C

D.E /^ D,E,H or L ^

rS*
—

"N— m 1 mmmm + 21
Program

Memory

H,L

SP

PC mmmm

.

OOdddUO L—

_

n
OOdddltO

VV mmmm + 1

mmmm + 2

MVI readata

1>£)l
OOddd 1 1 yy

000 for reg = B

1 for reg = C
10 for reg = D
11 for reg = E

10 for reg = H
10 1 for reg = L

111 for reg = A

Move the contents of the second object code byte to one of the registers.

When the instruction:

MVI A.2AH

has executed. 2/\-\q is loaded into the Accumulator. The instruction:

MVI H.03H

loads 03-] g into the H register.

Load Data Immediate Into Register instructions are very frequently used in 8080 pro-

grams.

Notice that the LXI instruction is equivalent to two MVI instructions; for example: .

LXI H.032AH

is equivalent to:

MVI H.03H
MVI L.2AH

3-61

Data may also be loaded immediately into a byte of read/write memory

Ac P S C Z

n
A

B,C

D,E

H,L PP qq

SP

PC mmmm
1 36 h^

MVI M.data

Jl2g^ _
00 110 110 yy

Data

Memory

Program

Memory

mmmm
mmmm + 1

mmmm + 2

Suppose the H register contains 03ig and the L register contains 2A-\q; then when the

instruction:

MVI M.2CH

has executed, 2C-|6 will be loaded into memory byte 032A-|6

The Load Immediate Into Memory instruction (MVI M.data) is used much less than the

Load Immediate Into Register instruction (MVI reg.data).

3-62

NOP— NO OPERATION

Ac P S C Z

pswI I I I I I

^

Data

Memory

Program

Memory

mmmm
mmmm + 1

NOP

00

Nothing happens when this instruction is executed; it is present for three reasons:

1) A program error that fetches an object code from non-existent memory will fetch

00. It is a good idea to insure that the commonest program error will do nothing.

2) The NOP instruction allows you to give a label to an object program byte:

HERE NOP

3) To fine-tune delay times. Each NOP instruction adds four clock cycles to a delay.

NOP is not a very useful or frequently used instruction.

3-63

ORA— OR REGISTER OR MEMORY WITH ACCUMULATOR

PSW

Ac P S C Z —+*f ^\ Data

OIXIXIOIXI L

\ Contents of A,B,C,

/ D.E.H or L is yy

Memory

T
A XX

B.C

D.E

H,L

SP
___^^^^^ ^^^ Program

m ~~
\ mmmm + 1 1 Mamnrv

PC mmmm
1 10110xxx

^1
*«—V^I '

10110xxx mmmm
mmmm + 1

UKA reg

10 1 1 OX XX.

for reg = B

1 for reg = C
1 for reg = D
11 for reg = E

10 for reg = H
10 1 for reg = L

111 for reg = A

Logically OR the contents of the Accumulator with the contents of any register. Store
the result in the Accumulator.

Suppose xx = E3-) 5, register E contains A8-|6 After the instruction:

ORA E

has executed, the Accumulator will contain EB-|6

E3 = 1110 11
A8 = 10 10 10

Carry is always set to

1 sets S to 1

1110 10 11

J t Six 1 bits, set P to 1

Non-zero result, set Z to

3-64

The contents of a memory byte may also be ORed with the Accumulator:

xx OR yv Y*

1
Data

Memory

PSW|,«|A|.M»1^I

-^ , ... v- .. H
i

yy ppqq
XXA

B,C

D.E

Program

Memory

H,L PP qq

mmmm + 1 1
SP

PC mmmm
1 B6 *1

B6

mmmm + 1

ORA M

10110110

If xx = E3
1
6 and yy = A8-|6. tl">en execution of the instruction:

ORA M

generates the same result as execution of the ORA E instruction, which was just de-

scribed.

ORA is not used as frequently as the OR immediate (ORI) instruction.

Note that ORing the Accumulator with itself (ORA A) allows you to clear the Carry

status; this instruction is also used to set statuses following INX and DCX instructions.

3-65

ORI — OR IMMEDIATE WITH ACCUMULATOR

Ac P S C Z

psw ioixixioTxI

A
B,C

D,E

H,L

SP

PC

xx OR yy

mmmm

^

Data

Memory

Program

Memory

mmmm
mmmm + 1

mmmm + 2

ORI data

yy

OR the Accumulator with the contents of the second instruction object code byte.

Suppose xx = 3A-|6- After the instruction:

ORI 7CH

has executed, the Accumulator will contain 7E-| 5:

3A = 1110 10
7C = 111110

1111110

Carry is always set to

sets S to

T t Six 1

>
' Non-

bits, set P to 1

Non-zero result, set Z to

This is a routine logical instruction; it is often used to turn bits "on". For example, the

instruction:

ORI 80H

will unconditionally set the high order Accumulator bit to 1.

3-e

OUT— OUTPUT FROM ACCUMULATOR

Ac P S C Z
Data

Memory
psw|F"I '

''" '" '
| I/O Port yv K<->

^—^J mmmm + 21

B.C

D,E

Program

Memory

H,L

SP

PC mmmm
1 D3 1*1

D3

OUT

D3

yy mmmm + 1

port

yy

mmmm + 2

Output the contents of the Accumulator to the I/O port identified by the second OUT in-

struction object code byte.

Suppose 36-|5 is held in the Accumulator. After the instruction:

OUT 1AH

has executed. 36ig will be in the buffer of I/O Port 1 Ai6-

The OUT instruction does not affect any statuses.

Use of the OUT instruction is very hardware dependent. Valid I/O port addresses are

determined by the way in which I/O logic has been implemented. It is also possible to

design a microcomputer system that accesses external logic using memory reference

instructions with specific memory addresses.

OUT instructions are frequently used in special ways to control microcomputer logic ex-

ternal to the CPU.

3-67

PCHL— JUMP TO ADDRESS SPECIFIED BY HL

Ac P S C Z

A
B,C

D,E

H.L pp qq
SP

PC mmmm
1 E9 L—.

'
z>

Data

Memory

Program

Memory

mmmm
mmmm + 1

The contents of the H and L registers are moved to the Program Counter; therefore an
implied addressing jump is performed.

The instruction sequence:

LXI H.ADDR
PCHL

has exactly the same net effect as the single instruction:

JMP ADDR

Both specify that the instruction with label ADDR is to be executed next.

The PCHL instruction is useful when you want to increment a return address for a

subroutine that has multiple returns.

Consider the following call to subroutine SUB:

CALL
JMP

SUB
ERR

CALL SUBROUTINE
ERROR RETURN
GOOD RETURN

Using RET to return from SUB would return execution to JMP ERR; therefore, if SUB ex-

ecutes without detecting error conditions, return as follows:

POP H ;POP RETURN ADDRESS TO HL
INX H ;ADD 3 TO RETURN ADDRESS
INX H
INX H
PCHL ;RETURN

3-68

POP— READ FROM THE TOP OF THE STACK

Ac P 5 C Z

™v|_Ll±U

mmmm
mmmm + 1

POP rp

1 1 XXOOO 1

if rp is B, selecting B and C registers

1 if rp is D, selecting D and E registers

10 if rp is H. selecting H and L registers

11 if rp is PSW, selecting the Accumulator

and the status flags as a 16-bit unit

Pop the two top stack bytes into the designated register pair.

Suppose qq =03-16. and PP = 2A-|g. Execution of the instruction:

POP H

Ioads03i6 into the L register and 2A-]g into the H register-Execution of the instruction:

POP PSW

loads 03-) e into the status flags and 2Ai6 into the Accumulator. Thus the C status will

be set to 1; other .statuses will be cleared.

The POP instruction is most frequently used to restore register and status contents
which have been, saved on the stack, for example, while servicing an interrupt.

3-69

PUSH —WRITE TO THE TOP OF THE STACK

Ac P S C Z

™l I I I I I

Select A, PSW or

»BC or DE or HL. fc j

Contain ppqq
'

Data

Memory

Program

Memory

ssss - 2

ssss - 1

ssss

mmmm
mmmm + 1

PUSH rp

1 1 XjKO 1 1

if rp is B, selecting B and C registers

1 if rp is D, selecting D and E registers

10 if rp is H, selecting H and L registers

11 if rp is PSW, selecting the Accumulator

and the status flags as a 16-bit unit

Push the contents of the designated register pair onto the top of the stack.

Suppose the H register contains 03-|6 and the L register contains 2At6 Execution of

the instruction:

PUSH H

loads 03-|6 and then -2A-\q into the top of the stack. Execution of the instruction:

PUSH PSW

loads' the Accumulator and then the status flags into the top of the stack.

The PUSH instruction is most frequently used to save register and status contents, for

example, before servicing an interrupt.

3-70

RAL— ROTATE ACCUMULATOR LEFT THROUGH CARRY

Ac P S

tPswrrT

I 17 ^

Data

Memory

Program

Memory

mmmm
mmmm + 1

RAL

17

Rotate Accumulator contents left one bit through Carry status.

Suppose the Accumulator contains 7A-|6 and the Carry status is set to 1. After the

RAL

instruction has executed, the Accumulator will contain F5-|6 and the Carry status will

be reset tc 0:

Accumulator
11110 10

Accumulator C
'11110 101

The RAL instruction is frequently used to perform multibyte left shifts, as described in

An Introduction To Microcomputers. Volume I. The Carry status is cleared before per-

forming the first left shift; subsequently the Carry status propagates the high-order bit

of one byte into the low-order bit of the next byte. Here is an instruction sequence that

shifts the contents of four memory bytes left, one bit:

LOAD ADDRESS OF LOW ORDER DATA BYTE
INITIALLY CLEAR CARRY
USE REGISTER B AS A COUNTER

LOOP MOV AM ;LOAD DATA BYTE INTO ACCUMULATOR
ROTATE LEFT
RESTORE RESULT
INCREMENT ADDRESS IN HL
DECREMENT COUNTER
RETURN FOR NEXT BYTE IF THERE IS ONE

LXI H.DATA
ANA A
MVI B.3

MOV A.M
RAL
MOV M.A
INX H
OCR B

JNZ LOOP

Notice the careful thought that has been given to the statuses that

are or are not set. RAL affects the Carry status only. INX and DCR
affect the Zero. Sign and Parity statuses but not the Carry, which
is therefore preserved from one execution of RAL to the next.

STATUS
CONDITIONS

3-71

RAR— ROTATE ACCUMULATOR RIGHT THROUGH CARRY

Ac P S 1 Z

^1 I »l|l I

*
|

1 4.1 I \±\V

^

Data

Memory

Program

Memory

mmmm
mmmm + 1

RAR

1F

Rotate Accumulator contents right one bit through Carry status.

Suppose the Accumulator contains 7A-|5 and the Carry status is set to 1. After the:

RAR

instruction has executed, the Accumulator will contain BD-|6 and the Carry status will

be reset to 0:

Accumulator
1111010

Accumulator C
'10 111101

The RAR instruction is frequently used to perform multibyte right shifts, as described in

An Introduction To Microcomputers, Volume I. The Carry status is cleared before per-

forming the first right shift; subsequently the Carry status propagates the low-order bit

of one byte into the high-order bitof the next byte. Here is an instruction sequence that

shifts the contents of four memory bytes right, one bit:

LOAD ADDRESS OF LOW ORDER DATA BYTE
INITIALLY CLEAR CARRY
USE REGISTER B AS A COUNTER
LOAD DATA BYTE INTO ACCUMULATOR
ROTATE RIGHT

^.RESTORE RESULT
INCREMENT ADDRESS IN HL
DECREMENT COUNTER
RETURN FOR NEXT BYTE IF THERE IS ONE

See the RAL description for a discussion of statuses.

LXI H.DATA
ANA A
MVI B.3

LOOP MOV A.M
RAR
MOV M.A
INX H
DCR B

JNZ LOOP

3-72

RC— RETURN IF THE CARRY STATUS EQUALS 1

RC

D8

This instruction is identical to the RET instruction except that the return is not executed

unless the Carry status equals 1 when the RC instruction is executed.

Consider the instruction sequence:

6rtLL SUBR
ANI 7CH-*

SUBR

RC>

C = 1

; FIRST SUBROUTINE INSTRUCTION

C =

OF A C

After the RC instruction has executed, if the Carry status equals 1, execution returns to

the ANI instruction which follows the CALL. If the Carry status equals 0. the ORA in-

struction, being the next sequential instruction, is executed.

RET— RETURN FROM SUBROUTINE

Ac P S C Z

B.C

H.L

Data

Memory

i qq xxxx

.I pp xxxx + 1

xxxx + 2

Program

Memory

f C9 mmmm
mmmm + 1

RET

C9

Move the contents of the top two stack bytes to the Program Counter; these two bytes

provide the address of the next instruction to be executed. Previous Program Counter
contents are lost. Increment the Stack Pointer by 2 to address the new top of stack.

Every subroutine must contain at least one Return (or conditional Return) instruction;

this is the last instruction executed within the subroutine and causes execution to

return to the calling program.

For an illustrated description of the RET instruction's execution, see Chapter 5.

3-73

RIM— READ INTERRUPT MASK

SW
*C P S C Z 1 '

Data

MemoryX 1 U [Interrupt Mask |

A
B,C

—^ 1 mmmm + 1 1^_^mmmm^

D,E

Program

Memory

H.L

SP

PC mmmm
20 "1

20 mmmm
mmmm + 1

RIM

20

Load the contents of the restart interrupt mask and the serial input line into the Ac-

cumulator. The data loaded into the Accumulator is interpreted as follows:

7 6 5 4 3 2 10
I I.I.I I I I

I Interrupt Mask for RST5.5

Interrupt Mask for RST6.5

Interrupt Mask for RST7.5

- Interrupt Enable Flag

- Interrupt Pending Flag for RST5.5

Interrupt Pending Rag for RST6.5

- Interrupt Pending Flag for RST7.5

'Serial Input Data

Bits 0, 1 and 2 are used to mask interrupts RST5.5. RST6.5 and RST7.5. If the bit corres-

ponding to a particular RST is a 1 . the RST is disabled. For example, if a RIM instruction

results in 1 A-|6 being loaded in the Accumulator, this is what happens:

000 11010

t
RST5.5 is enabled

RST6.5 is disabled

RST7.5 is enabled

RSTs 5.5, 6.5 and 7.5 work in a similar fashion to RSTs 0-7. When the 8085 detects one

of these RSTs, it vectors as follows:

Vectors

RST5.5

RST6.5

RST7.5

to Location

002(^6
0034

1

6

003C-I6

3-74

The other information in the interrupt mask is interpreted as follows:

Interrupt Enable Flag — If this flag is a 1 , the interrupt system is enabled. If this flag is a

0, the interrupt system is disabled.

Interrupt Pending Flags— If this flag is a 1. an interrupt is being requested on the

specified RST line. If this flag is a 0. no interrupt is being requested by the

specified RST line.

Serial Input Data — This bit reflects the status of the SID line.

RLC— ROTATE ACCUMULATOR LEFT

Ac P S C Z

wTTi i|i i

51 I I
Hi

I

^

Data

Memory

Program

Memory

mmmm
mmmm + 1

RLC

'oT

Rotate Accumulator contents left one bit.

Suppose "he Accumulator contains 7A-|6 and the Carry status is set to 1. After the:

RLC

instruction has executed, the Accumulator will contain F4-| g ar|d the Carry status wil

be reset to 0:

Accumulator C
fc

Accumulator C
<« 1 1 1 1 1 11 1110 100

RLC should be used as a logical instruction.

3-75

RM— RETURN IF THE SIGN STATUS EQUALS 1

RM

F8

This instruction is identical to the RET instruction, except that the return is not ex-

ecuted unless the Sign status equals 1 when the RM instruction is executed.

Consider the instructionisequence

-eALL
ANI

SUBR
7CH-«

GUDn

Rft

;FIRST SUBROUTINE INSTRUCTION

S =

OltA C
W

After the RM instruction has executed, if the Sign status equals 1, execution returns to

the ANI instruction which follows the CALL If the Sign status equals 0, the ORA in-

struction, being the next sequential instruction, is executed.

RNC— RETURN IF THE CARRY STATUS EQUALS

RNC

'do'

This instruction is identical to the RET instruction, except that the return is not ex-

ecuted unless the Carry status equals when the RNC instruction is executed.

Consider the instruction sequence:

-6ALL
ANI

SUBR
7CH-"

GUDn

Rr>e

c = o

;FIRST SUBROUTINE INSTRUCTION

C = 1

OF A C
H

After the RNC instruction has executed, if the Carry status equals 0. execution returns

to the ANI instruction which follows the CALL. If the Carry status equals 1, the ORA in-

struction, being the next sequential instruction, is executed.

3-76

RNZ— RETURN IF THE ZERO STATUS EQUALS

RNZ

CO

This instruction is identical to the RET instruction, except that the return is not ex-

ecuted unless the Zero status equals when the RNZ instruction is executed.

Consider the instruction sequence:

ALL

ANI

SUBR
7CHM

GUDn

Z =

;FIRST SUBROUTINE INSTRUCTION-

RN2—
Z = 1

ORA C

f
After the RNZ instruction has executed, if the Zero status equals 0, execution returns to

the ANI instruction which follows the. CALL. If -the Zero status equals 1, the ORA in-

struction, being the next sequential instruction, is executed.

RP— RETURN IF THE SIGN STATUS EQUALS

RP

FO

This instruction is identical to the RET instruction, except that the return is not ex-

ecuted unless the Sign status equals when the RP instruction is executed.

Consider the instruction sequence;

-ehi_L

ANI

SUBR
7CH-*

ouon

S=0

;FIRST SUBROUTINE INSTRUCTION

RF—
S =

ORA

After the RP instruction has executed, if the Sign status equals 0, execution returns to

the ANI instruction which follows the CALL. If the Sign status equals 1, the ORA in-

struction, being the next sequential instruction, is executed.

3-77

RPE— RETURN IF THE PARITY STATUS EQUALS 1

RPE

E8

This instruction is identical to the RET instruction, except that the return is not ex-

ecuted unless the Parity status equals 1 when the RPE instruction is executed.

Consider the instruction sequence;

gall
ANI

SUBR
7CFM

' GUDn

P = 1

RFE
P=0

Of A

;FIRST SUBROUTINE INSTRUCTION

After the RPE instruction has executed, if the Parity status equals 1. execution returns

to the ANI instruction which follows the CALL. If the Parity status equals 0, the ORA in-

struction, being the next sequential instruction, is executed.

RPO— RETURN IF THE PARITY STATUS EQUALS

RPO

E0

This instruction is identical to the RET instruction, except that the return is not ex-

ecuted unless the Parity status equals when the RPO instruction is executed.

Consider the instruction .sequence:

-GALL
ANI

SUBR
7CH««

GUDn

P =
RF9
P= 1

01 !A

.FIRST SUBROUTINE INSTRUCTION

After the RPO instruction has executed, if the Parity status equals 0. execution returns

to the ANI instruction which follows the CALL. If the Parity status equals 1 , the ORA in-

struction, being the next sequential instruction, is executed.

3-78

RRC— ROTATE ACCUMULATOR RIGHT

Ac P 13 C Z

pswITTTp-l

<^EB III l? d

^

Data

Memory

Program

Memory

mmmm
mmmm + 1

RRC

OF

Rotate Accumulator contents right one bit.

Suppose the Accumulator contains 7A-|g and the Carry status is set to 1. After the:

RRC

instruction has executed, the Accumulator will contain 3D-|g and the Carry status will

be reset to 0:

Accumulator
11110 10

„ Accumulator
00111101

RRC should be used as a logical instruction.

3-79

RST— RESTART

Ac P S C Z

rewM I I I I

mmmm
mmmm + 1

RST

1 1 XXX 1 1 1

Call the subroutine origined at the low memory address specified by n.

When the instruction:

RST 3

is executed, the subroutine origined at memory location 001 8] 6 is called. The previous

Program Counter contents are pushed to the top of the stack.

Usually the RST instruction is used in conjunction with interrupt processing, as de-

scribed in Chapter 5.

If your application does not use all RST instruction codes to SUBROUTINE
service interrupts, do not overlook the possibility of calling CALL USING
subroutines using RST instructions. Origin frequently used RST
subroutines at appropriate RST addresses, and these subroutines

can be called with a singles-byte RST instruction instead of a three-byte CALL instruc-

tion.

3-8G

RZ— RETURN IF THE ZERO STATUS EQUALS 1

RZ

This instruction is identical to the RET instruction, except that the return is not ex-

ecuted unless the Zero status equals 1 when the RZ instruction is executed.

Consider the instruction sequence:

6ALL SUBR
ANI 7CHH

'SUBR

Z = 1

;FIRST SUBROUTINE INSTRUCTION

Z

OIIA

After the RZ instruction has executed, if the Zero status equals 1, execution returns to

the ANI instruction which follows the CALL If the Zero status equals 0. the ORA in-

struction, deing the next sequential instruction, is executed.

3-81

SBB— SUBTRACT REGISTER OR MEMORY FROM
ACCUMULATOR WITH BORROW

This instruction takes two forms. First consider a register's contents subtracted from the

Accumulator:

ac p s c z

psw ixixixiTTxl

^

Data

Memory

Program

Memory

mmmrn
mmmm + 1

SBB reg

100 1 1 XXX

for reg = B

1 for reg = C
10 for reg = D
11 for reg = E

10 for reg = H
10 1 for reg = L

111 for reg = A

Subtract the contents of the specified register and the Carry status from the Accumula-

tor, treating register contents as simple binary data.

Suppose xx = E3-]6. register E contains &0-\q. C = 1. After the instruction:

SBB E

has executed, the Accumulator will contain 42-| q:

E3 = 1110 11

Twos comp ofAO = 01100000
Twos comp of 1 = 11111111

Carry is set to

sets S to

Notice that the resulting Carry is complemented.

1 0000 1

•-ft
Two 1 bits, set P to 1

Non-zero result, set Z to

Carry sets Ac to 1

3-82

The contents of a memory byte may also be subtracted, with borrow, from the Ac-

cumulator:

Ac p s c z

psw ixixixTxTxl

^

Data

Memory

VV

Program

Memory

mmmm
mmmm + 1

SBB M

10011 110

If xx = E3i6. YY = AO16 and C = 1. then execution of the instruction:

SBB M

generates the same result as execution of the SBB E instruction, which was just de-

scribed.

The SBB instruction is used in multibyte subtraction after the low-order byte has been

processed using the SUB instruction.

3-83

SBI— SUBTRACT IMMEDIATE DATA FROM
ACCUMULATOR WITH BORROW

Ac P S C Z

pswixixixixTxl

mmmm
mmmm + 1

mmmm + 2

SBI data

yy

Subtract the contents of the second instruction code byte and the Carry status from the

Accumulator.

Suppose xx = 3A-]6 anc' tne Carry status equals 1. After the instruction:

SBI 7CH

has executed, the Accumulator will contain BD-|6 :

3A = 1110 10
Twos comp of7C = 10000100

Twos comp of Carry = 11111111
1011110 1

1-

Carry is set to

1 sets S to 1 -

K)

•Six 1 bits, set P to 1

Non-zero result, set Z to

-Carry sets Aq to 1

Notice that the resulting Carry is complemented.

This instruction is not used as frequently as SUI.

3-84

SHLD— STORE H AND L REGISTERS DIRECT

PSW

*c p s c z

—^>

Data

MemoryXnil
ppqq

A
yy ppqq + 1

B,C y ^ *•

—

^^ T mmmm + 3 J

D,E y ^
Program

Memory

H,L yy XX

SP

PC mmmm
" n

22

SHLD

22

f

qq mmmm + 1

ii

add

ppqc

PP mmmm + 2

mmmm + 3

r

1

The second and third object'code bytes provide'the memory-address of a data byte into

which the L registercontents are written. The H register contents are written into the

next sequential data byte.

Suppose xx = 2Cig and yy = 3A-)6. After the instruction:

LABEL EQU 084AH

SHLD LABEL

has-executed, memory byte 084A-|6 will contain 2C-| 6 Memory byte 084B-|6 wilt con-

tain 3A-|g.

Remember that EQU is an assembler directive and not an instruction; it tells the Assem-

bler to use the 16-bit value 084Aie whenever LABEL appears.

3-*5

SIM— SET INTERRUPT MASK

Ac P S C Z Data

PSW| I I | | | | Interrupt Mask |

A
B.C

~^m^^\ mmmm + 1 J

D.E

H.L

SP
Proa

PC mmmm
Memory

1 30 |^
30 mmmm

mmmm + 1

SIM

30

Output the contents of the Accumulator to the restart interrupt mask and the serial out-

put line (SOD).

The contents of the Accumulator are interpreted in the following manner.

7654 3 2 1 0-< Bit No.

n 1 1 i i mi
iiiiiiii ^ -Interrupt Mask for RST5.5

.Interrupt Mask for RST6.5

-Interrupt Mask for RST7.5

-Mask Set Enable

-Reset RST7.5

-Undefined

-Serial Output Enable

-Serial Output Data

The interrupt mask function is only performed if the Mask Set Enable bit is 1 . For exam-
ple, if OF-] e is held in the Accumulator and the SIM instruction is performed. 1 will be
sent to the interrupt mask for all three RSTs. If. however, 07-) 6 was held in the Ac-
cumulator, the interrupt masks would not be affected.

If the interrupt mask for a particular RST is a 1 . the RST is disabled. If the interrupt mask
for a particular RST is a 0. the RST is enabled.

The reset RST7.5 bit is used to clear an internal request flip-flop for RST7.5 if the bit is

1.

The serial output data is only performed if the Serial Output Enable bit is 1. For exam-
ple, if 03-|6 is held in the Accumulator and the SIM instruction is performed, the SOD
latch will not be affected. If. however, 47-|6 is held in the Accumulator, a will be
loaded into the SOD latch if a SIM instruction is performed.

3-86

SPHL— LOAD THE STACK POINTER FROM THE H AND L

REGISTERS

*C P S C Z

^^_^_f mmmm + 1 • 1

Data

Memory

1 1 1

A
B,C

D.E

Program

Memory

H.L PP qq

SP ppqq

PC mmmm
1 F9 "*1

F9

mmmm + 1

SPHL

F9

Move the contents of the H and L registers to the Stack Pointer.

Suppose pp = 08-J6 and QQ = 3F 16 After tne instruction:

SPHL

has executed, the Stack Pointer will contain 083F-|6

The SPHL instruction can be used to access two stacks— with an idle address

preserved in the H and L registers. Stacks are frequently used in this fashion to access

text strings or any such data that must be accessed byte-serially.

The important point to bear in mind is that stack logic can be used instead of im-

plied memory addressing with auto-increment.

3-87

STA— STORE ACCUMULATOR IN MEMORY USING DIRECT
ADDRESSING

PSW

Ac P S C Z Data

1 1
1) -

PPqqA

B,C

yy

—*S* \— ^ 1 mmmm + 3 J

D.E

H,L

SP
Program

MemoryPC mmmm
1 32 |^ , N^ ^S

1
32

qq mmmm + 1

i! pp mmmm + 2

mmmm + 3

STA ' a

3A ^
ddr

pqq

Store the Accumulator contents in the memory byte addressed directly by the second
and third bytes of the STA instruction object code.

Suppose the Accumulator contains 3A-|6- After the instruction:

LABEL EQU 084AH

STA LABEL

has executed, memory byte 084A-|6 will contain 3A"|g

Remember that EQU is an assembler directive and not an instruction; it tells the Assem-
bler to use the 16-bit value 084Ai6 wherever LABEL appears.

The instruction:

STA LABEL

is equivalent to the.two instructions:

LXI

MOV
HJ.ABEL
M.A

When you are storing a single data-value in memory, the STA instruction is preferred; it

uses one instruction and three object program bytes to do what the LXI MOV combina-
tion does in two -instructions and four object program bytes. Also, the -LXI MOV com-
bination uses the H and L registers; the STA instruction does not.

3-88

STAX — STORE ACCUMULATOR IN THE MEMORY LOCATION
ADDRESSED BY A REGISTER PAIR

Ac P S C Z

A vv

B,C
) ^

D,E \ *
H,L

SP — >
PC mmmm „ *(

1 000x0010 j^K

BC or DE

contain ppqq

j"

Data

Memory

Program

Memory

mmmm
mmmm + 1

STAX rp

000 X00 1

if rp is B, representing B,C

1 if rp is D, representing D.E

Store the Accumulator contents in the memory byte addressed by the BC or DE register

pair.

Suppose the B register contains 08
-|
q. the C register contains 4A-| 6 and the Accumula-

tor contains 3A-|6. After the instruction:

STAX B

has executed, memory byte 084A-|6 will contain 3A-|g-

Note that there is no STAX H instruction, since this is identical to a MOV M.A instruc-

tion.

Normally the STAX and LXI instructions will be used together, since the LXI instruction

loads a 16-bit address into the BC or DE registers, as follows:

LXI B.084AH
STAX B

Notice that the STAX instruction will only store data from the Accumulator, whereas

the MOV instruction will store data from any register.

3-89

STC— SET CARRY STATUS

B.C

D,E

H,L

SP

PC

AC P S C Z

^ ^ 1 mmmm + 1 1

Data

MemoryULJjyj

Program

Memory
mmmm

37

*1
37 mmmm

mmmm + 1

STC

17
When the STC instruction is executed the Carry status is set to 1, regardless of its pre-
vious value. No other statuses or register contents are affected.

3-90

SUB— SUBTRACT REGISTER OR MEMORY FROM
ACCUMULATOR

This instruction takes two forms. First consider a register's contents subtracted from the

Accumulator:

Ac P S C Z

rewfxTxTxTxTxl

A
B,C

D,E

H,L

SP

PC

I ^

Data

Memory

Program

Memory

mmmm
mmmm + 1

SUB reg

1 00

1

oxxx

for reg = B

1 for reg = C

10 for reg = D
11 for reg = E

10 for reg = H

10 1 for reg = L

111 for reg = A

Subtract the contents of the specified register from the Accumulator, treating register

contents as simple binary data.

Suppose xx =E3-|6 and register E contains A0-|g- After the instruction:

SUB E

has execjted, the Accumulator will contain 43-|6 :

E3

Twos comp of A0
1 1 1 000 1

1

01 1 00000
1 0000 1 1

\
"

Carry is set to

sets S toO '

-Three 1 bits, set P to

-Non-zero result, set Z to

-No carry, so Aq is set to

Notice that the resulting Carry is complemented.

3-91

The contents of a memory byte may also be subtracted from the Accumulator:

Ac p s c z

psw ixixixixTxI

T

Data

Memory

Program

Memory

mmmm
mmmm + 1

SUB M

JUL
10010110

If xx = E3-|6 and yy = A0-|6. then execution of the instruction:

SUB M
generates the same result as execution of the SUB E instruction, which was just de-
scribed.

The SUB instruction is used to perform single-byte subtractions, or for the low-order
byte in multibyte subtractions.

3-92

SUI— SUBTRACT IMMEDIATE DATA FROM ACCUMULATOR

mmmm
mmmm + 1

mmmm +'2

SUI data

D6 yy

Subtract the contents of the second instruction code byte from the Accumulator.

Suppose :<x = 3A-|6' After the instruction:

SBI 7CH

has executed, the Accumulator will contain BEig:

3A = 1110 10
Twos comp of 7C = 1 0000 1 00

10 111110

No carry, so Carry is set to 1 <^

—

[f* T

1 sets S to 1 '
'

'3
Notice that the resulting Carry is complemented.

This instruction is the preferred Subtract Immediate.

Six 1 bits, set P to 1

Non-zero result, set Z to

No carry, so Ac is set to

3-93

XCHG — EXCHANGE DE AND HL REGISTERS' CONTENTS

Ac P S C Z

pswcmu
A

B,C

D,E PP qq ^S^T^N
H,L XX yy m '
SP

PC mmmm
1

_..,„
E
? h^i

Data

Memory

Program

Memory

mmmm
mmmm + 1

XCHG

EB

The D and E registers' contents are swapped with the H and L registers' contents.

Suppose pp =03"|6- PP = 2A-|g, xx = 41 -|g and yy = FC-| 6 After the instruction:

XCHG

has executed, H will contain 03-| g, L will contain 2A-|g, D will contain 41 -|g and E will

contain FC-|g.

The two instructions:

XCHG
MOV A.M

are equivalent to:

LDAX D

But if you want to load data addressed by the D and E registers into the B register.

XCHG
MOV B.M

has no single instruction equivalent.

3-94

XRA— EXCLUSIVE-OR REGISTER OR MEMORY WITH
ACCUMULATOR

This instruction takes two forms. First consider a register's contents Exclusive-ORed

with the Accumulator:

AcPiSCZ
psw f(flxTxioixi

^

Data

Memory

Program

Memory

mmmm
mmmm + 1

XRA reg

1010 1x4^

for reg = B

1 for reg = C

10 for reg = D
11 for reg = E

10 for reg = H

10 1 for reg = L

111 for reg = A

Exclusive-OR the contents of the specified register with the Accumulator, treating

register contents as simple binary data.

Suppose xx =E3-|6 and register E contains A0-|6- After the instruction:

XRA E

has executed, the Accumulator will contain 43-|g:

E3 = 1110 11

A0 = 10100000

Carry is set to

sets S to

1 0000 1 1

J hThree 1 bits, set P to

Non-zero result, set Z to

3-95

The contents of a memory byte may also be Exclusive-ORed with the Accumulator:

Ac P S C Z / ^-r - rr\

PSW iQIXIXIoTxT

XRA M

mmmm + 1

10 10 1 110

If xx = E3-|6 and-yy = A0-|6- then execution of the instruction:

XRA M

generates the same result as execution of the XRA E instruction, which was just de-

scribed.

The Exclusive-OR instruction is used to test for changes in bit status.

3-96

XR|— EXCLUSIVE-OR IMMEDIATE DATA WITH
ACCUMULATOR

Ac p a c z

psw foTxTxToTxl

A
B.C

D.E

H.L

SP

PC

H0YV

^

Data

Memory

Program

Memory

mmmm
mmmm + 1

mmmm + 2

XRI data

EE yy

Exclusive-OR the contents of the second instruction code byte with the Accumulator.

Suppose xx = 3A-]6- After the instruction:

XRI 7CH

has executed, the Accumulator will contain 46i6^

3A
7C

00111010
01111100
01 000 1 1

Carry is set to

sets S to:J fc
Three 1 bits, set P to 1

Non-zero result, set Z to

This is a routine logical instruction; it is often used to complement bits. For example,

the instruction:

XRI 03H

will unconditionally complement the two low-order bits of the Accumulator.

3-97

XTHL— EXCHANGE TOP OF STACK WITH HL

PSW

AC P s c z
Data

Memory

IE 1 1

1

^> IT

ss
B,C

+ 1 J

xxxx + 2
D,E J ir

Program

Memory

H,L PP qq

SP xxxx

PC mmmm ^^mHmmmM mmmm
1 E3< ^._

"1
E3

mmmm + 1

Exchange the contents of the L register with the top stack byte. Exchange the contents

of the H register with the byte below the stack top.

Suppose pp = 21 is, qq = FA-jg rr = 3A-|6. ss = E2-|g After the instruction:

XTHL

has executed, H will contain E2-|g, L will contain 3A-\q and the top two stack bytes will

contain FA-]g and 21 -|g. respectively.

The two instructions:

XTHL
XTHL

executed in sequence are equivalent to no operation.

The XTHL instruction is used to access and manipulate data at the top of the stack, as

illustrated in the multiple subroutine discussion in Chapter 5.

3-98

INTEL 8080A AND 8085 ASSEMBLER CONVENTIONS

The standard 8080A assembler is available from 8080 manufacturers and on the

major time-sharing networks; it is also part of most development systems. Cross

assembler versions are available for most large computers and many minicom-

puters.

ASSEMBLER FIELD STRUCTURE
The assembly language instructions have the standard field structure (see Figure

2-1 in Chapter 2). The required delimiters are:

1) A colon after a label, except for the pseudo-operations EQU, SET, and

MACRO, which require a space.

2) A space after the operation code.

3) A comma between operands in the operand field, (remember this one!)

4) A semicolon before a comment.

Typical 8080 assembly language instructions are:

START: LDA 1000 ;GET LENGTH
LXI H.2300

HLT

LABELS
The Assembler allows five characters in labels; the first character must be a let-

ter, @, or ?. The other characters can be letters, numbers, @, or ?. We will only

use letters and numbers.

PSEUDO-OPERATIONS
The Assembler has the following pseudo-operations:

DB DEFINE BYTE
DS DEFINE STORAGE
DW DEFINE WORD
END
EQU EQUATE
ORG ORIGIN

SET

DB and DW are the DATA pseudo-operations used for placing data in ROM. DB is used

for 8-bit data, DW for 16-bit data. The only unusual feature to remember is that DW
stores the eight least significant bits of data in the first word and eight most significant

bits in the second word. This is the standard 8080A/8085 procedure for storing ad-

dresses in memory, but is contrary to normal practice; you must be aware of the order

when storing 16-bit data.

3-99

Examples:

ADDR: DW 3165H

results in (ADDR) = 65, and (ADDR + 1) = 31 (hexadecimal).

TCONV: DB 32

This pseudo-operation places the number 32 in the next byte of memory and assigns it

the name TCONV.

ERROR: DB 'ERROR'

This pseudo-operation places the ASCII characters E, R, R. and R in the next five bytes

of memory and assigns the name ERROR to the address of the first byte.

OPERS: DW FADD, FSUB. FMUL. FDIV

This pseudo-operation places the addresses FADD, FSUB, FMUL, and FDIV in the next

eight bytes of memory and assigns the name OPERS to the address of the first byte.

DS is the RESERVE pseudo-operation used for assigning locations in RAM; it allocates

8-bit words (or bytes).

EQU is the EQUATE, or DEFINE pseudo-operation used to define names.

SET is similar to EQU, except that SET allows the name to be

re-defined later. SET is unusual and confusing; it should be

avoided unless it is required to patch programs together.

ORG is the standard ORIGIN pseudo-operation. ORG ap-

pearing at the beginning of a program may be omitted.

8080A/8085 programs usually have several origins; they

are used as follows:

,

1) To specify the RESET address (usually zero).

2) To specify Interrupt entry points (usually to 3C-|6)-

3) To specify the starting address of the main program.

4) To specify the starting addresses of subroutines.

5) To define RAM storage.

6) To define a RAM Stack.

EQU
PSEUDO-
OPERATION

ORG
PSEUDO-
OPERATION

Example:

RESET EQU
ORG RESET

This sequence places the RESET instruction sequence in memory beginning at address

0.

INT1 EQU
ORG

38H
INT1

The instruction sequence which follows is stored in memory beginning at location

3816-

END simply marks the end of the assembly language program.

3-100

LABELS WITH PSEUDO-OPERATIONS
The rules and recommendations for labels with 8080A/808S pseudo-operations

are as follows:

1) EQU. SET and MACRO require labels, -since the function of these pseudo-operations

is to define the meaning of the label.

2) DB, DW and OS usuaJly have labels (note that these labels are not followed by col-

ons).

ORG, IF, ENDIF, ENDM, and END should not have labels since the meaning of the

label is unclear.

ADDRESSES
The Intel 8080A/8085 assemblers allow entries in the address

field in any of the following forms:

1

)

Decimal (a final D is optional)

Example: 1247 or 1247D.

2) Hexadecimal (must start with a digit and end with an H).

Example: 124CH.

3) Octal (must end with or Q but Q is far less confusing).

Example: 1247Q or 12470.

4) Binary (must end with B).

Example: 10010010001 11 B.

5) ASCII (enclosed in single quotation marks).

Example: 'HERE'.

6) As>; an offset from the Program Counter($).

Example: $+237H.

All arithmetic and logical operations within an address field

assume all- arguments are 16-bit data; they produce 16-bit

results. These operations are allowed as part of expressions in

the address field:

(16-bit addition)

(16-bit subtraction)

(multiplication, generating a 16-bit result).

(integer quotient).

(integer remainder).

Standard Boolean operators

(logical shift right),

(logical shift left).

The shifts have the form:

SHR
SHL

OP1.0P2
OP1.0P2

NUMBERS AND
CHARACTERS
IN ADDRESS
FIELD

ASSEMBLER
ARITHMETIC
AND LOGICAL
OPERATIONS

where OP1 is the number to be shifted and OP2 is the number of shifts.

3-101

In address expressions with more than one of the operators ORDER OF
listed above, the order of evaluation is defined below. Opera- ASSEMBLER
tors having the same precedence are evaluated left to right; OPERATIONS
expressions in parentheses are evaluated first. The order of

precedence is:

Highest: 1) *, /, MOD, SHL, SHR
2) +, -

3) NOT
4) AND

Lowest: 5) OR, XOR

We recommend that you avoid expressions within address fields wherever possi-

ble. If you must compute an address, use the following guidelines:

1) Use parentheses to make expressions c\earer. Do not depend on the order of opera-

tions.

2) Comment any unclear expressions.

3) Be sure that the evaluation of the expressions never produces a result which is too

large for 16 bits.

CONDITIONAL ASSEMBLY
The 8080A/8085 assembler has a simple conditional assembly capability based

on the pseudo-operations IF and ENDIF. IF is followed by an expression, for example:

BASE-1000H orOPERI

If the expression is not zero, the assembler includes all the instructions up to the ENDIF

pseudo-operation in the program; if the expression is zero, the assembler ignores all in-

structions between IF and ENDIF.

We will not use conditional assemblies, or refer to this capability again; it is sometimes

handy for adding or eliminating debugging instructions, but that is all.

3-102

MACROS
The standard 8080A/8085 assembler has a macro capability which assigns names
to instruction sequences. Use the pseudo-operation MACRO to begin the definition
and ENDM to end it. The macro may have parameters and may include any assembly
language instructions except the definitions of other macros.

The macro capability is often a convenient programming shorthand, but we will not use
it.

Note that instruction sequences defined by macros are generally quite short; they
should not exceed ten or fifteen instructions. Longer sequences should be made into

subroutines to conserve memory space.

Every MACRO pseudo-operation must have a label: the label is the name with which
you identify the macro. For a discussion of this subject, see Chapter 2.

BNPF FORMAT
The 8080A/8085 assembler produces paper tapes in a format known as BNPF.
Binary data is represented by the ASCII codes for the letters B. N, P and F. as follows:

B - beginning of 8-bit word
N - binary

P - binary 1

F - ending of 8-bit word

For example, the binary code 01101101 becomes:

BNPPNPPNPF

Thus ten bytes of paper tape are used to encode a single data byte. This format is used
to create masks for ROMs and to program PROMs.

3-103

EXAMPLE
FORMAT

Chapter 4
SIMPLE PROGRAMS

The only way to learn assembly language programming is to write assembly

language programs. That is what we will do for the next six chapters, which con-

tain examples of typical microprocessor tasks. Problems at the end of each

chapter contain variations on the examples given in the text of the chapter. You
should try to execute examples on an 8080A or 8085-based microcomputer to in-

sure that you understand the material covered in the chapter.

In this chapter we begin with some very simple programs.

GENERAL FORMAT OF EXAMPLES
Each program example contains the following parts:

1) A title which describes the problem.

2) A statement of purpose which describes the specific task

which the program performs, plus the memory locations which it uses.

3) A sample problem showing input data and results.

4) A flowchart if the program logic is complex.

5) The source program, or assembly language listing of the program.

6) The object program, or hexadecimal machine language listing of the program.

7) Explanatory notes which discuss the instructions and methods used in the pro-

gram.

The problems at the end of the chapter are similar to the examples; problems

should be programmed on an 8080A or 8085-based microcomputer system using

the examples as guidelines.

The source programs in the examples have been constructed as follows:

1 } Standard Intel 8085 and 8080A assembler notation is used, as

summarized in Chapter 3.

2) Data and address codes are selected for clarity rather than

consistency. We use hexadecimal numbers for memory ad-

dresses, instruction codes, and BCD data, decimal for numeric constants, binary for

logical masks, and ASCII for characters.

3) Frequently used instructions and programming techniques are emphasized.

4) Examples illustrate tasks which microprocessors actually perform in communica-
tions, instrumentation, computer, business equipment, industrial, and military ap-

plications.

5) Detailed comments are included.

6) Simple and clear structures are emphasized, but programs are as efficient as possi-

ble within this guideline. The notes often describe more efficient procedures.

7) Programs use consistent memory allocations. Each program starts in memory loca-

tion (the RESET location), -and ends with the endless loop instruction:

HERE: JMP HERE

4-1

GUIDELINES
FOR
EXAMPLES

PROGRAMMING
GUIDELINES

This endless loop instruction avoids difficulties associated with the 8080A HLT in-

struction, (i.e.. systems which do not have interrupts may find it very difficult to

clear HLT). You may replace this instruction with a RESTART or JUMP instruction

which transfers control back to the monitor in some 8080-based microcomputers.

Consult the user's manual for your microcomputer to determine the required

memory allocations and terminating instruction.

GUIDELINES FOR PROBLEMS
When tackling the problems at the end of each chapter try

to work within the following guidelines:

1) Comment each program so that others can understand it.

The comments can be brief and ungrammatical; they should explain the purpose of

a section or instruction in the program. Comments should not describe the opera-

tion of instructions; that description is available in manuals. You do not have to

comment each statement or explain the obvious. You may follow the format of the

examples but provide less detail.

2) Emphasize clarity, simplicity, and good structure in programs. While programs

should be reasonably efficient, do not worry about saving a single word of program

memory or a few microseconds.

3) Make programs reasonably general. Do not confuse parameters (such as the num-

ber of elements in an array) with fixed constants (such as tt or ASCII C).

4) Never assume fixed initial values for parameters, i.e., use an instruction to load an

initial value into a parameter. Do not place an initial value in the parameter as part

of the object program.

5) Use assembler notation as shown in the examples and defined in Chapter 3.

6) Use hexadecimal notation for addresses. Use the clearest possible form for data.

7) If your microcomputer allows it, start all programs in memory location and use

memory locations starting with 40-|6 for data and temporary storage. Otherwise,

establish equivalent addresses for your microcomputer and use them consistently.

Again, consult the user's manual.

8) Use meaningful names for labels and variables, e.g.. SUM or CHECK rather than X,

Y. or Z.

9) Execute each program on your microcomputer. There,is no other way of ensuring

that your program is correct. We have provided sample data with each problem. Be

sure that the program works for special cases.

We now summarize some useful information that you should keep in mind when
writing programs.

Almost all processing instructions (e.g. ADD, SUBTRACT,

AND, SHIFT, OR) use the Accumulator. In most cases you will

load data into the Accumulator with either LDA or MOV A, M.

You will store the result (from the Accumulator) in memory with either STA or MOV M,

A.

USING THE
ACCUMULATOR

The preferred method of accessing memory is using implied ad- USING
dressing via Registers H and L, that is, using register code M. This REGISTER

code causes the 8080A or 8085 to perform a memory access using M
the address stored in Registers H and L. You can use LXI (Load

Register Pair Immediate) or LHLD (Load H and L Direct) to place a starting value in

Registers H and L. You can use INX (Increment Register Pair) or DCX (Decrement

Register Pair) to increment or decrement (by 1) the address in Registers H and L.

The 8-bit arithmetic and logical operations all use the data in the Accumulator as one of

their operands and place their result in the Accumulator.

4-2

SPECIAL
INSTRUCTIONS

Some of the 8-bit arithmetic and logical operations have

special uses, for example:

SUB A (or XRA A) clears the Accumulator.

ADD A shifts the Accumulator left logically. This instruction also multiplies the con-

tents of the Accumulator by 2.

ANA A (or ORA A) clears the Carry flag while preserving the contents of the Accumula-
tor.

A logical AND can mask off parts of a word. The required mask has T bits in the posi-

tions which you want to reserve and '0' bits in the positions which you want to clear.

EXAMPLES
Ones Complement
Purpose: Logically complement the contents of memory location 40-] q and place the

result in memory location 41 15.

Sample Problem:

GET DATA
COMPLEMENT DATA
STORE RESULT

(40) = 6A
Result = (41) = 95

ce Program:

LDA 40H
CMA
STA 41H
JMP HERE

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 LDA 40H 3A
01 40
02 00
03 CMA 2F

04 STA 41

H

32

05 41

06 00
07 HERE: JMP HERE C3
08 07
09 00

LDA, STA, and JMP all require 16-bit addresses; the eight least significant address bits

are in the word immediately following the instruction code and the eight most signifi-

cant bits in the next word (this order is unique to the 8080 and contrary to normal com-
puter practice).

CMA is a one-word instruction which inverts each bit in the Accumulator. We often use
CMA to transfer data to or from a peripheral device that uses negative logic (e.g., a dis-

play which is turned on by a zero, off by a one).

The address for the "endless loop" instruction (JMP HERE) is the address of the first

word in that instruction. You will have to reset or stop the microcomputer in order to

get it out of the loop.

4-3

8-Bit Addition

Purpose: Add the contents of memory locations 40 and 41 and place the result in

memory location 42.

Sample Problem:

(40) = 38

(41) = 2B

Result = (42) = 63

Source Program:

LXI H.40H
MOV A.M ;GET FIRST OPERAND
INX H
ADD M ;ADD SECOND OPERAND
INX H
MOV M.A ;STORE RESULT

HERE: JMP HERE

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 LXI H.40H 21

01 40

02 00

03 MOV A.M 7E

04 INX H 23

05 ADD M 86

06 INX H 23

07 MOV M.A 77

08 HERE: JMP HERE C3
09 09
0A 00

LXI H.40H loads the contents of the following two words of program memory into

register pair H (Registers H and L). The first word goes into Register L. the second into

Register H.

The register code 'M' means that data is obtained from or sent to the memory location

addressed by Registers H and L. Thus MOV A.M moves data from the addressed loca-

tion to the Accumulator; MOV M.A moves data from the Accumulator to the addressed

location; ADD M adds the contents of the addressed location to the contents of the Ac-

cumulator. Remember that H and L contain a 16-bit address but that memory location

contains 8 bits of data.

INX performs a 1 6-bit increment in one instruction cycle. The CPU doesn't use the 8-bit

arithmetic unit for the increment; it uses the incrementer that it normally uses to incre-

ment the 16-bit Program Counter.

MOV A.M and MOV M.A are preferable to LDA and STA whenever you use the same
memory location repeatedly or use adjacent locations, because MOV requires less pro-

gram memory and time than LDA and STA. Note, however, that you must load

Registers H and L before you can use Register M.

4-4

Shift Left One Bit

Purpose: Shift the contents of memory location 40 left one bit and place the result in

memory location 41. Clear the empty bit position.

Sample Problem:

(40) = 6F

Result = (41) == DE

Source Program:

LDA 40H
ADD A
STA 41H

HERE: JMP HERE

GET DATA
SHIFT DATA LEFT LOGICALLY
STORE RESULT

Object Program:

Memory Address Instruction- Memory Contents

(Hex) (Mnemonic) (Hex)

00 LDA 40H 3A
01 40

02 00

03 ADDA 87

04 STA 41

H

32

05 41

06 00

07 HERE: JMP HERE C3
08 07

09 00

ADD A simply adds the contents of the Accumulator to itself. The result is, of course,

twice the original data, which is the same result that a logical left shift would produce.

The least significant bit of the result is zero since 0+0 = 1 + 1=0:1 + 1 also produces a

Carry to the next bit.

4-5

Mask Out Least Significant Four Bits

Purpose: Place the least significant four bits of the contents of memory location 40 in

memory location 41. Clear the most significant four bits of memory location

41.

Sample Problem:

(40) = B8

Result = (40) = 08

Source Program:

LDA 40H ;GET DATA
ANI 00001 111B ;MASK OUT LEAST SIGNIFICANT BITS

STA 41H ;STORE RESULT
HERE: JMP HERE

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 LDA 40H 3A
01 40
02 00
03 ANI 00001 1 1 IB E6

04 OF

05 STA 41

H

32
06 41

07 00
08 HERE: JMP HERE C3
09 08
0A 00

ANI logically ANDs the contents of the Accumulator with the contents of the word of

program memory immediately following the instruction. AND may be used to clear bits

that are not in use. The four least significant bits could be an input from a switch or an

output to a numeric display.

4-6

Clear A Memory Location

Purpose:: Clear memory location 40.

Source Program:

SUB A
STA 40H

HERE: JMP HERE
;CLEAR LOCATION 40

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 SUB A 97

01 STA 40H 32

02 40
03 00

04 HERE: JMP HERE C3
05 04

06 00

SUB A subtracts the number in the Accumulator from itself. The result is to clear the

Accumulator. This instruction. XRA A, or MVI A,0 can all clear the Accumulator. MVI
A,0 takes more time and memory but doesn't affect the status flags.

Word Disassembly

Purpose: Divide the contents of memory location 40 into two 4-bit sections and store

them in memory locations 41 and 42. Place the four most significant bits of

memory location 40 in the four least significant bit positions of memory loca-

tion 41 ; place the four least significant bits of memory location 40 in-the four

least significant bit positions of memory location 42. Clear the four most sig-

nificant bit positions of memory locations 41 and 42.

Sample Problem:

(40) = 3F

Result = (41) = 03
(42) = OF

Source F'rogram:

LXI H.40H

MOV A.M ;GET DATA
MOV B.A

RRC
RRC ;SHIFT DATA RIGHT 4 TIME

RRC
RRC
ANI 00001 1 1 1B ;MASK OFF MSBs
INX H
MOV M.A . ;STORE MSBs
MOV A.B ;RESTORE ORIGINAL DATA
ANI 00001 1 1 1B ;MASK OFF LSBs

INX H
MOV M.A ;STORE LSBs

HERE: JMP HERE

4-7

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 LXI H.40H 21

01 40

02 00

03 MOV A.M 7E

04 MOV B.A 47

05 RRC OF

06 RRC OF

07 RRC OF

08 RRC OF

09 ANI 00001 1 1 1

B

E6

0A OF

OB INX H 23

OC MOV M.A 77

OD MOV A.B 78

OE ANI 00001 111B E6

OF OF

10 INX H 23

11 MOV M.A 77

12 HERE: JMP HERE C3

13 12

14 00

Instructions using Register M occupy only one word of program memory. However, the

Address register (H and L) must be loaded before M can be used. Thus implied memory

addressing saves time and memory, as compared to direct memory addressing, only

when the program repeatedly uses the same address or consecutive addresses.

RRC shifts the Accumulator right one bit circularly with the least significant bit going to

the most significant bit position and to the Carry. Shifting the Accumulator right four

times requires four RRCs.

Many 8080A/8085 instructions affect a pair of 8-bit registers. The pairs are H (H and L),

D (D and E), B (B and C), and SP (the Stack Pointer). Registers B, D and H are the most

significant 8 bits of the pairs; Registers C, E. and L are the least significant 8 bits. The

common instructions that use register pairs are LXI (Load Register Pair Immediate), DCX
(1 6-Bit Decrement). INX (Increment A Register Pair), and DAD (Add A Register Pair To H

and L).

4-8

Find Larger Of Two Numbers
Purpose: Place the larger of the contents of memory locations 40 and 41 in memory

location 42. Assume that the contents of memory locations 40 and 41 are

unsigned binary numbers.

Sample Problems:

3F

A8

;GET FIRST OPERAND

;IS SECOND OPERAND LARGER?

;YES. GET SECOND OPERAND INSTEAD

;STORE LARGER OPERAND

a. (40) = 3F

(41) = 2B

Result = (42) =

b. (40) = 75
(41) = A8

Result = (42) =

Source Program:

LXI H.40H

MOV A.M
INX H
CMP M
JNC DONE
MOV A.M

DONE: INX H
MOV M,A

HERE: JMP HERE

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 LXI H.40H 21

01 40

02 00

03 MOV A.M 7E

04 INX H 23

05 CMP M BE

06 JNC DONE D2
07 OA
08 00

09 MOV A,M 7E

0A DONE: INX H 23

OB MOV M,A 77

OC HERE: JMP HERE C3
OD OC

OE 00

CMP M sets the flags as if the contents of the memory locatation addressed by H and L

had been subtracted from the contents of the Accumulator. However, the contents of

the Accumulator are left unchanged for later comparisons or other processing.

If A is the contents of the Accumulator and X is the second operand for a CMP or CPI in-

struction, then flags are set as follows:

1) Zero =1 if A =X
Zero =0 if A #X
Carry = 1 if A < X
Carry = if A > X
(A. X unsigned binary numbers)

2)

4-9

CMP sets the Carry to 1 if a Borrow would be necessary to actually perform the subtrac-

tion, i.e., if the number being subtracted from the contents of the Accumulator is

greater than those contents. Thus the sequence CMP, JNC causes a Jump if the con-

tents of the Accumulator are greater than or equal to the other number.

JNC DONE causes a Jump to memory location DONE if the Carry flag = 0. Otherwise (if

Carry = 1), the computer continues with the next sequential memory location after the

JNC instruction.

DONE and HERE are just names which you assign to locations in program memory so

that they are easier to remember. Remember that these names are labels and must be

followed by a colon on the line where they are defined. In this program, DONE is memo-
ry location 000A and HERE is memory location OOOC. The 8080A/8085 assemblers

allow five characters in labels— the first must be a letter while the others may be let-

ters or numbers (some special characters are allowed but we will not use them).

16-Bit Addition

Purpose: Add the 16-bit number in memory locations 40 and 41 to the 16-bit number
in memory locations 42 and 43. The most significant eight bits of the two
numbers to be added are in memory locations 41 and 43. Store the result in

memory locations 44 and 45 with the most significant byte in memory loca-

tion 45.

Sample Problem:

(40) = 2A
(41) = 67

(42) = F8

(43) = 14

Result = 672A+14F8 = 7C22
(44) = 22

(45) = 7C

Source Program:

LHLD
XCHG
LHLD
DAD
SHLD

HERE: JMP

Object Program:

40H

42H
D
44H
HERE

;GET FIRST 16-BIT NUMBER

GET SECOND 16-BIT NUMBER
16-BIT ADDITION
STORE 16-BIT RESULT

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 LHLD 40H 2A
01 40
02 00
03 XCHG EB
04 LHLD 42H 2A
05 42

06 00
07 DAD D 19

08 SHLD 44H 22

09 44

OA 00

OB HERE: JMP HERE C3
OC OB
OD 00

4-10

LHLD loads Registers H and L from two memory locations, the one specified in the in-

struction and the next consecutive one.The contents of the first addressed location

goes to Register L. The contents of the next location goes to Register H. Thus LHLD 40

means (L) = (40), (H) = (41). The actual transfer proceeds one byte at a time and takes

16 clock cycles. The advantage of the 16-bit Load instructions over two 8-bit Load in-

structions is that the CPU only has to fetch one instruction from memory. Note the

difference between LXI, which loads a fixed 1 6-bit value from ROM into a register pair,

and LHLD, which loads the contents of two RAM locations into H and L.

XCHG exchanges the contents of Registers D and E with H and L. No numbers are

changed or destroyed.' XCHG can replace a whole series of MOV instructions.

DAD adds the 16-bit number in Registers D and E to the 16-bit number in Registers H
and L. The result is placed in Registers H and L. DAD actually adds one byte at a time; it

executes in ten clock cycles.

SHLD stores the contents of Registers H and L in two memory locations, the one

specified in the instruction and the next consecutive one. The contents of L goes in the

specified location and the contents of H goes in the next location. Thus SHLD 44 means
(44) = (L), (45) = (H). As with LHLD, the actual transfer proceeds one byte at a time; it

executes in 16 clock cycles.

Although the 8080 is an 8-bit processor, it has instructions which handle 16-bit num-
bers. These instructions are primarily intended for handling addresses, but you can also

use them for 16-bit data. The most common ones and their uses are:

1) DAD — 16-Bit Add
Used to access tables and to add 16-bit data units.

2) DCX — 16-Bit Decrement

Used to subtract 1 from the contents of an Address register.

3) INX — 16-Bit Increment

Used to add 1 to the contents of an Address register.

4) LHLD — 1 6-Bit Load Direct

Used to place variable addresses in the main Address register (H and L).

5) LXI — 16-Bit Load Immediate

Used to initialize an Address register with a fixed value, i.e., the starting address of

an array or table.

6) SHLD — 1 6-Bit Store Direct

Used to store addresses in memory from the main Address register (H and L).

4-11

Table Of Squares

Purpose: Calculate the square of the contents of memory location 40, using a table,

and place the result in memory location 41. Assume memory location 40
contains a number between and 7 inclusive, i.e., < (40) < 7.

The table occupies memory locations 60 to 67

Memory Address Entry

(Hex) (Hex) (Decimal)

60 00 (02)

61 01 1 (12)

62 04 4 (22)

63 09 9 (32)

64 10 16 (42)

65 19 25 (52)

66 24 36 (62)

67 31 49 (72)

Sample Problems:

a. (40) = 03
Result = (41) = 09

b. (40) = 06
Result = (41) = 24

Source Program:

LDA 40H
MOV L.A

MVI H.O

LXI D.60H
DAD D
MOV AM
STA 41H

HERE: JMP HERE

Object Program:

;GET DATA
;MAKE DATA INTO 16-BIT INDEX

;GET STARTING ADDRESS OF TABLE OF SQUARES
;INDEX TABLE WITH DATA
;GET SQUARE OF DATA

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 LDA 40H 3A
01 40
02 00
03 MOV L.A 6F

04 MVI H.O 26
05 00
06 LXI D.60H 11

07 60
08 00
09 DAD D 19

0A MOV A.M 7E

0B STA 41H 32

OC 41

0D 00

0E HERE: JMP HERE C3
OF OE

10 00

4-12

Note that you must also enter the table of squares into memory (the assembler pseudo-

operation DB will handle this). The table of squares represents constant data, not

parameters that may change; that is why you can initialize the table of squares using

the DB pseudo-operation, rather than by executing instructions to load values into the

table.

MOV LA moves the data in the Accumulator to Register LThe data is the eight least

significant bits of the index.

MVI H.O clears Register H so that it does not interfere with the 16-bit addition of start-

ing address and index. Never assume that a register contains zero at the start of a pro-

gram.

LXI D.60H loads the starting address of the table into Registers D ancr~E. We use D and E

for the starting address since the DAD instruction does not change D and.E. Thus the

starting address of the table will still be in D and E in the event that we want another

element from the table.

DAD D adds the starting address and the index; the result in H and L is thus the address

of the correct entry. MOV A.M then moves that entry to the Accumulator.

Arithmetic which a microprocessor cannot do directly in a few instructions is often best

performed with lookup tables. Lookup tables simply contain all the possible answers to

the problem; they are organized so that the answer to a* particular problem can be

found easily. The arithmetic problem now becomes an accessing problem — how do

we get the correct answer from the table? We must know two things— the position of

the answer in the table (called the index) and the base or starting address of the table.

The address of the answer is then just the base address plus the index.

The base address, of course, is a fixed number for a particular table. How can we deter-

mine the index? In simple cases, where a single piece of data is involved, we can organ-

ize the table so that the data is the index. In the table of squares, the Oth entry in the ta-

ble contains zero squared, the first entry 1 squared, etc. In more complex cases where

the spread of input values is very large or there are several data items involved (e.g.,

roots of a quadratic or number of permutations), we must use more complicated

methods to determine indexes.

The basic tradeoff in using a table is time vs. memory Tables are faster, since no com-
putations are required, and simpler, since no mathematical methods must be devised

and tested. However, tables can occupy a targe amount of memory if the range of the

input data is large. We can often reduce the size of a table by limiting the accuracy of

the results, scaling the input data, or organizing- the table cleverly. Tables are often

used to compute transcendental and trigonometric functions, linearize inputs, convert

codes, and perform other mathematical tasks.

4-13

16-Bit Ones Complement
Purpose: Place the ones complement of the 16-bit number in memory locations 40

and 41 into memory locations 42 and 43. The most significant bytes are in

locations 41 and 43.

Sample Problem:

(40) =
(41) =

Result =

67

E2

(42) = 98

(43) = 1

D

The ones complement inverts each bit of the original number; the sum of the original

number and its ones complement will always be all 1 bits.

Source Program:

;GET DATA
COMPLEMENT 8 LSBs

COMPLEMENT 8 MSBs

;STORE ONES COMPLEMENT

LHLD 40H
MOV A.L

CMA
MOV . LA
MOV A.H

CMA
MOV H,A

SHLD 42H
HERE: JMP HERE

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 LHLD 40H 2A
01 40
02 00
03 MOV A.L 7D
04 CMA 2F

05 MOV LA 6F

06 MOV A.H 7C
07 CMA 2F

08 MOV H.A 67

09 SHLD 42H 22
0A 42
0B 00
OC HERE:- JMP HERE C3
0D OC
0E 00

4-14

PROBLEMS

1) Tv/os Complement
Purpose: Place the twos complement of the contents of memory location 40 into

memory location 41. The twos complement is the ones complement plus,

one.

Sample Problem:

(40) = 3E

Result = (41) = D2

The sum of the original number and its twos complement is zero (try the sample case).

2) 8-Bit Subtraction

Purpose: Subtract the contents of memory location 41 from the contents of memory
location 40. Place the result in memory location 42.

Sample Problem:

(40) = 77

(41) = 39

Result = (42) = 3E

3) Shift Left Two Bits

Purpose: Shift the contents of memory location 40 left two bits and place the result in

memory location 41. Clear the two least significant bit positions.

Sample Problem:

(40) = 5D

Result = (41) = 74

4) Mask Out Most Significant Four Bits

Purpose: Place the four most significant bits of the contents of memory location 40

into memory location 41 . Clear the four least significant bits of memory loca-

tion 41.

Sample Problem:

(40) = C4

Result = (41) = C0
'

5) Set A Memory Location To All Ones

Purpose: Memory location 40 is set to all ones (FF hex).

6) Word Assembly
Purpose:^ Combine the four least significant bits of memory locations 40 and 41 into a

word and store them in memory location 42. Place the four least significant

bits of memory location 40 in the four most significant bit positions of memo-'

ry location 42; place the four least significant bits of memory location 41 in

the four least significant bit positions of memory location 42.

Sample Problem:

(40) •= 6

A

(41) = B3

Result =(42) =-A3

4-15

7) Find Smaller Of Two Numbers
Purpose: Place the smaller of the contents of memory locations 40 and 41 in memory

location 42. Assume that 40 and 41 contain unsigned binary numbers.

Sample Problems:

(40)

(41)

Result

(40)

(41)

Result

3F

2B

2B(42)

75

A8

(42) = 75

8) 24-Bit Addition

Purpose: Add the 24-bit number in memory locations 40, 41, and 42 to the 24-bit

number in memory locations 43, 44, and 45. The most significant eight bits

are in memory locations 42 and 45, the least significant eight bits in memory
locations 40 and 43. Store the result in memory locations 46, 47, and 48 with

the most significant bits in 48 and the least significant bits in 46.

Sample Problem:

(40) = 2A
(41) = 67

(42) = 35

(43) = F8

(44) = A4
(45) = 51

Result = (46) = 22
(47) = 0C
(48) = 87

i.e., 35672A
+ 51A4F8

870C22

9) Sum Of Squares

Purpose: Calculate the squares of the contents of memory locations 40 and 41 and
add them together. Place the result in memory location 42. Assume that

memory locations 40 and 41 both contain a number between and 7 in-

-.. elusive, i.e., < <40) < 7 and < (41) < 7. Use the table of squares from
-.. the example entitled 'Table Of Squares".

Sample- Problem:

(40) = 03

<4D = 06

Result = <42) = 2D

i.e.. 32+62 = 9+36 (decimal)

= 45 = 2D (hex)

4-16

10) 16-Bit Twos Complement
Purpose:: Place the twos complement of the 16-bit number in memory locations 40

and 41 (most significant bits in 41) in memory locations 42 and 43 (most sig-

nificant bits in 43).

Sample Problem:

(40) = 00
(41) = 58

Result = (42) = 00
(43) = A8

4-17

Chapter 5
SIMPLE PROGRAM LOOPS

The program loop is. the basic structure which forces the CPU to repeat a sequence of

instructions. Loops have four sections:

1) The initialization section which establishes the starting values of counters, Address

Registers (pointers), and other variables.

2) The processing section where the actual data manipulation occurs. This is the sec-

tion which does the work.

3) The loop control section which updates counters and pointers for the next iteration.

4) The concluding section which analyzes and stores the results.

Note that the computer performs Sections 1 and 4 only once, while it may perform Sec-

tions 2 and 3 many times. Thus, the execution time of the loop will be mainly depen-

dent on :he execution time of Sections 2 and 3. You will want Sections 2 and 3 to ex-

ecute as quickly as possible; do not worry about the execution time of Sections 1 and 4.

A typica program loop can be flowcharted as shown in Figure 5-1, or the positions of

the processing and loop control sections may be reversed as shown in Figure 5-2. The

processing section in Figure 5-1 is always executed at least once, while the processing

section in Figure 5-2 may not be executed at all. Figure 5-1 seems more natural, but

Figure 5-2 is often more efficient and avoids the problem of what to do when there is no

data (a bugaboo for computers and the frequent cause of silly situations like the com-

puter dunning someone for a bill of $0.00).

5-1

f Start J

Initialization section

I
Processing section

Loop control section

Concluding section

C^ZD
Figure 5-1. Flowchart Of A Program Loop

5-2

r Start
J

t

Initialization section

»1
I

Loop control section

^^^Has^^w^
^r task been ^^
^^^completed^^^

^LNo

Yes

\

Processing section Concluding section--

C End J

Figure 5-2. A Program Loop Which Allows Zero Iterations

The loop structure can process entire blocks of data. To accomplish this, the program

must increment an Address register (usually register pair H) after each iteration so that

the Address register points to the next element in the data block. The next iteration will

then perform the same operations on the data in the next memory location. The com-
puter can handle blocks of any length with the same set of instructions. Register M is

the key to processing blocks of data with the 8080, since it allows you to vary the actual

memory address by changing the contents of register pair H.

5-3

EXAMPLES

Sum Of Data

Purpose Calculate the sum of a series of numbers. The length 8-BIT

of the series is in memory location 41 and the series SUMMATION
itself begins in memory location 42. Store the sum
in memory location 40. Assume the sum to be an 8-bit number so you can ig-

nore carries.

Sample Problem:

(41) = 03

(42) = 28

(43) = 55

(44) = 26

Result = (42) + (43) + (44) = (40)

28 + 55 + 26 = A3
There are 3 entries in the sum since (41) = 03

Flowchart:

C start)

i
Sum =

Pointer = 42

Count = (41)

Sum = Sum +

(Pointer)

Pointer = Pointer + 1

Count = Count - 1

5-4

Source Program:

LXI H.41H

MOV B.M ;COUNT = LE

SUB A ;SUM =0
SUMD: INX H

ADD M ;SUM = SUM
DCR B

JNZ SUMD
STA 40H ;STORE SUM

HERE: JMP HERE

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 LXI H.41H 21

01 41

02 00
03 MOV B.M 46
04 SUB A 97

05 SUMD: INX H 23

06 ADD M 86
07 DCR B 05

08 JNZ SUMD C2
09 05
0A 00
OB STA 40H 32

OC 40

OD 00
OE HERE: JMP HERE C3
OF OE
10 00

The first three instructions form the initialization section of the program. They set the

pointer, counter, and sum to their starting values. Note that MOV can transfer data bet-

ween memory and any of the General Purpose registers, while LDA and STA can only

transfer data between memory and the Accumulator.

The processing section of the program is the single instruction ADD M which adds the

contents of the memory location being addressed by Registers H and L to the contents

of the Accumulator, and stores the result in the Accumulator. This instruction does the

real work of the program.

The loop control section of the program consists of the instructions INX H and DCR B.

INX H updates the pointer so that the next iteration adds the next number to the sum.

DCR B decrements the counter which keeps track of how many iterations are left.

The instruction JNZ SUMD causes a Jump to location SUMD if the Zero flag is zero. If

the Zero flag is one, the CPU executes the next instruction in sequence (i.e., STA 40H).

Since DCR B was the last instruction before JNZ to affect the Zero flag, JNZ SUMD
causes a Jump to SUMD if DCR B did not produce a zero result, i.e.,

(PC) = SUMD if (B)*0
(PC) = (PC) + 3 if (B) =0

(PC is incremented by 3 because of the three-word JNZ instruction.) A single instruc-

tion which combined the Decrement and the Jump would be a useful addition to the

8080 instruction set

5-5

Most computer loops count down rather than up so that the Zero flag can be used as an
exit condition. Remember that the Zero flag is 1 if the result was zero and if the result

was not zero. Try rewriting the program so that it counts up rather than down; which
method is more efficient?

The order of instructions is often very important. For example, DCR B must come right

before JNZ SUMD, since otherwise the Zero result set by DCR B could be changed by
another instruction. In addition, INX H must come before ADD M or else the first num-
ber added to the sum will be (41) instead of (42).

5^6

16-Bit Sum Of Data

Purpose: Calculate the sum of a series of numbers. The length of the series is in

memory location 42. and the series itself begins in memory location 43. Store

the sum in memory locations 40 and 41 (eight most significant bits in 41).

Sample Problem:

(42) = 03
(43) = C8
(44) = FA
(45) = 96

Result = C8 + FA + 96 = 0258 (hex)

(40) = 58
(41) = 02

Flowchart:

r Start J

Suml =
Sumu =

Pointer = 43

Count = (42)

I
Suml =Suml +

(Pointer)

Sumu = Sumu + 1

Pointer = Pointer + 1

Count = Count - 1

c)

5-7

Source Program:

LXI H.42H
MOV B.M
SUB A
MOV C.A

DSUMD: INX H
ADD M
JNC CHCNT
INR C

CHCNT: DCR B

JNZ DSUMD
LXI H.40H
MOV M.A
INX H
MOV M.C

HERE: JMP HERE

;COUNT = LENGTH OF SERIES

;LSBsOFSUM =
;MSBs OF SUM =

;SUM = SUM + DATA

;ADD CARRY TO MSBs OF SUM

;STORE LSBs OF SUM

;STORE MSBs OF SUM

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 LXI H.42H 21

01 42

02 00

03 MOV B.M 46

04 SUB A 97

05 MOV C.A 4F

06 DSUMD: INX H 23

07 ADD M 86

08 JNC CHCNT D2
09 OC

0A 00

OB INR C OC
OC CHCNT: DCR B 05

OD JNZ CHCNT C2
OE OC
OF 00
10 LXI H.40H 21

11 40

12 00

13 MOV M.A 77

14 INX H 23

15 MOV M.C 71

16 HERE: JMP HERE C3
17 16

18 00

The structure of this program is the same as the structure of the last one. The most sig-

nificant bits of the sum now must be initialized and stored. The processing section con-

sists of three instructions (ADD M. JNC CHCNT, INR C). including a conditional Jump.

JNC CHCNT causes a Jump to memory location CHCNT if the Carry = 0. Thus, if there

is no Carry from the 8-bit addition, the program jumps around the statement that incre-

ments the most significant bits of the sum.

INR C adds 1 to the contents of Register C. INR is an 8-bit increment: INX is a 1 6-bit in-

crement.

5-8

Number Of Negative Elements

Purpose: Determine the number of negative elements (most significant bit 1) in a

block of data. The length of the block is in memory location 41 and the block

itself starts in memory location 42. Store the number of negative elements in

memory location 40.

Sample Problem:

(41) = 06
(42) = 68

(43) = F2

(44) = 87
(45) = 30
(46) = 59

(47) = 2A

Result = (40

Flowchart

=02 since 43 and 44 contain numbers with a MSB of 1.

c 1
^r

Nneg =

Pointer = 42

Count = (41)

Nneg = Nneg + 1

Pointer = Pointer + 1

Count = Count - 1

c

(40) = Nneg

5-9

Source Program:

LXI H.41H
MOV B.M
MVI A.01111111B

MVI CO
SRNEG: INX H

CMP M
J NIC CHCNT
INR C

CHCNT: DCR B

JNZ SRNEG
MOV A.C
STA 40H

HERE: JMP HERE

COUNT = NUMBER OF ELEMENTS
LARGEST POSITIVE NUMBER FOR
COMPARISON
NUMBER OF NEGATIVES =0

IS MSB OF DATA 1 ?

NO IF NO BORROW NEEDED
YES. ADD 1 TO NUMBER OF NEGATIVES

;STORE NUMBER OF NEGATIVES

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 LXI H.41H 21

01 41

02 00
03 MOV B.M 46
04 MVI A.01111111B 3E
05 7F
06 MVI CO OE
07 00
08 SRNEG: INX H 23
09 CMP M BE
OA JNC CHCNT D2
OB OE
OC 00
OD INR C OC
OE CHCNT: DCR B 05
OF JNZ SRNEG C2
10 08
11 00
12 MOV AC 79
13 STA 40H 32
14 40
15 00
16 HERE: JMP HERE C3
17 16

18 00

Negative numbers all have a most significant bit of 1. Thus negative numbers are ac-

tually larger than positive numbers when twos complement notation is used.

CMP M sets the flags as if the contents of the memory location addressed by Registers

H and L had been subtracted from the contents of the Accumulator. Neither the Ac-

cumulator nor the memory location is changed. Thus the value in the Accumulator

stays the same for the next iteration.

5-10

CMP M sets flags as follows:

Zero = 1 Jf (A) = (M)

= if (A)-* (M)

Carry =1 if (A) < (M)

= if (A) > (M), i.e., the subtraction does not require a Borrow.

Since A contains 7F (hex) in the program, the flags will be:

Zero = 1 if (M) = 7F
= if (M) # 71=

Carry = 1 if (M) > 7F
= if (M) < 7F

So if (M) has an MSB of 1 , the Carry will be 1 ; if (M) has an MSB of 0, the Carry will be 0.

The CMP instruction is necessary in order to set the flags. Placing the data in the Ac-

cumulator (MOV A, M) doesn't affect the flags; we would have to follow it with ORA A
or ANA A, which affect the flags but don't change the value in the Accumulator. CMP is

convenient because it affects the flags without changing any registers and can thus be

used to d rectly examine the contents of a memory location. The CMP instruction also

affects the Sign flag. If you replace the JNC CHCNT instruction with a JM CHCNT in-

struction, can you restructure the initialization section of the source program so that it

will perform the specified task?

Find Maximum
Purpose: Find the largest element in a block of data. The length of the block is in

memory location 41 and the block itself begins in memory location 42. Store

the maximum in memory location 40. Assume that the numbers in the block

are all 8-bit unsigned binary numbers.

Sample Problem:

(41) = 05
(42) = 67

(43) = 79

(44) = 15

(45) = E3

(46) = 72

Result =" (40) = E3 since this is the largest of the five unsigned

numbers.

5-11

Flowchart:

f Start J

Count = (41)

Pointer = 42

Max =

Pointer = Pointer + 1

Max = (Pointer)

Count = Count - 1

(40) = Max

(
End

)

Source Program:

NEXTE:

DECNT:

HERE:

LXI H.41H
MOV B.M
SUB A
INX H
CMP M
JNC: DECNT
MOV • A.M
DCR • B ,

JNZ NEXTE
STA 40H
JMP HERE:

; POINT TO COUNT
;COUNT = NUMBER OF ELEMENTS
;MAXIMUM - MINIMUM POSSIBLE VALUE (ZERO)

;IS NEXT ELEMENT > MAXIMUM?

;YES, REPLACE MAXIMUM

;SAVE MAXIMUM

5-12

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 LXI H.40H 21

01 40
02 00
03 MOV B.M 46
04 SUB A 97
05 NEXTE: INX H 23
06 CMP M BE
07 JNC DECNT D2
08 OB
09 00
0A MOV A.M 7E
OB DECNT: DCR B 05
OC JNZ NEXTE C2
OD 05
OE 00
OF STA 40H 32
10 40
11 00
12 HERE: JMP HERE C3
13 12

14 00

The first three bytes of this program form the initialization section. The SUB A clears the

Accumulator.

This program takes advantage of the fact that zero is the smallest 8-bit unsigned binary

number. When you set the register that will contain the maximum value, in this case

the Accumulator, to the minimum possible value before you enter the loop, then the

program will set the Accumulator to a larger value unless all the elements in the list are

zeros.

The program works properly if there is only one element but not if there are none at all.

Why? How could you solve this problem?

The instruction CMP M sets the Carry flag as follows:

Carry = 1 if ELEMENT > MAX
= if ELEMENT < MAX

If Carry = 0. the program proceeds to DECNT and does not change the maximum. If

Carry = 1, the program replaces the old maximum with the current element.

The program does not work if the numbers are signed because negative numbers will

appear to be larger than positive numbers. The problem is somewhat tricky because of

overflow; you can solve it by remembering that overflow can only occur in subtraction

when the numbers have the opposite sign. Why? If the numbers do have the opposite
sign, the positive number is clearly larger. The solution would be simpler if the 8080
had an Overflow bit.

5-13

Justify A Binary Fraction

Purpose: Shift the contents of memory location 40 left until the most significant bit of

the number is 1. Store the result in memory location 41 and the- number of

left shifts required in memory location 42. If the contents of memory location

40 are zero, -clear both -41..and 42.

Note that the process is just like cenverting a number to a scientific -notation, e.g.,

0.0057 = 5.7X 10-3.

Sample Problems:

a. (40) = 22

Result = (41) =88
(42) = 02

b. (40) = 01

Result = (41) =80
(42) = 07

c. (40) = CB
Result = (41) = CB

(42) = 00

d. (40) = 00
Result = (41) = 00

(42) = 00

Flowchart:

(
Start

)

Nshft

Numb = (40)

Shift Numb Jeft 1 bit

Nshft = Nshft + 1

I
(41) = Numb
(42) = Nshft

c D

5-14

Source Program:

SUB A
MOV B.A

LXI H.40H

ADD M
JZ DONE

CHKMS: JM DONE
INR B

ADD A
JMP CHKMS

DONE: INX H
MOV M.A
INX H
MOV M,B

HERE: JMP HERE

;NUMBER OF SHIFTS =

GET DATA
THROUGH IF DATA
IS NEXT BIT 1 ?

NO, ADD 1 TO NUMBER OF SHIFTS
SHIFT LEFT 1 BIT

;SAVE JUSTIFIED DATA

:SAVE NUMBER OF SHIFTS

Object Program:

Memory Address Instruction Memory Contents
(Hex) (Mnemonic) (Hex)

00 SUB A 97
01 MOV B.A 47
02 LXI H.40H 21

03 40
04 00
05 ADD M 86
06 JZ DONE CA
07 11

08 00
09 CHKMS: JM DONE FA
OA 11

OB 00
OC INR B 04
OD ADD A 87
OE JMP CHKMS C3
OF 09
10 00
11 DONE: INX H 23
12 MOV M.A 77
13 INX H 23
14 MOV M.B 70
15 HERE: JMP HERE C3
16 16
17 00

JM DONE causes a Jump to location DONE if the Sign bit is 1 . This condition may mean
that the last result was a negative number or may just mean that its most significant bit

was 1 — the computer only supplies the results; the programmer must provide the in-

terpretation.

ADD A adds the number in the Accumulator to itself. The program uses this instruction

rather than RAL or RLC, because ADD A affects the Sign bit while RAL and RLC do not.

5-15

PROBLEMS

1) Checksum Of Data

Purpose: Calculate the checksum of a series of numbers. The length of the series is in

memory location 41 and the series itself begins in memory location 42. Store

the checksum in memory location 40. The checksum is formed by EX-

CLUSIVE-ORing all the numbers in the series into the Accumulator.

Note that such checksums are often used in paper tape and cassette systems to ensure

that the data has been read correctly. The calculated checksum is compared to the one

stored with the data — if the two checksums do not agree, the system will usually

either indicate an error to the operator or automatically read the data again.

Sample Problem:

(41) = 03
(42) = 28

(43) = 55

(44) = 26

Result = (42) © (43) © (44)

= 28 © 55 © 26
= 00101 000
© 10 10 1 1

111110 1

© 00100110
10 110 11

= 5B

2) Sum Of 16-Bit Data

Purpose: Calculate the sum of a series of 16-bit numbers. The length of the series is in

memory location 42 and the series itself begins in memory location 43. Store

the sum in memory locations 40 and 41 (eight most significant bits in 41).

Each 1 6-bit number occupies two memory locations with the eight most sig-

nificant bits in the second one. Assume that the sum can be contained in 16

bits (i.e., no Carries).

Sample Problem:

(42) = 03
(43) = F1

(44) = 28

(45) = 1A
(46) = 30
(47) = 89
(48) = 4B

Result = 28F1 + 301 A + 4B89 = A494
(40) = 94

(41) = A4

5-16

3) Number Of Zero, Positive, And Negative Numbers
Purpose: Determine the number of zero, positive (most significant bit zero but entire

number not zero), and negative elements (most significant bit 1) in a block.

The length of the block is in memory location 43 and the block itself starts in

memory location 44. Place the number of negative elements in memory loca-

tion 40, the number of zero elements in memory location 41 , and the number
of positive elements in memory location 42.

Sample Problem:

(43) = 06
(44) = 68
(45) = F2

(46) = 87
(47) = 00
(48) =59
(49) = 2A

Result = 2 negative, 3 positive, and 1 zero so

(40) = 02
(41) = 01

(42) = 03

4) Find Minimum
Purpose: Find the smallest element in a block of data. The length of the block is in

memory location 41 and the block itself begins in memory location 42. Store

the minimum in memory location 40. Assume the numbers in the block are

8-bit unsigned binary numbers.

Sample Problem:

(41) = 05
(42) = 67
(43) = 79

(44) = 15

(45) = E3

(46) = 72

Result = (40) = 1 5 since this is the smallest of the five unsigned numbers.

5) Count 1 Bits

Purpose: Place the number of 1 bits in the contents of memory location 40 into memo-
ry location 41.

Sample Problem :

(40) = 3B = 1 1 1 1 1

Result = (41) = 05

5-17

Chapter 6
CHARACTER-CODED DATA

Microprocessors often handle character-coded data. Not only do keyboards,

teletypewriters, communications devices, displays, and computer terminals expect or

provide character-coded data — many instruments and control systems do also. The
most commonly used code is ASCII. Baudot and EBCDIC, are less-rfrequently used. We
will assume alJ of our character-coded data to be 7-bit ASCII with the most significant

bit zero (see Table 6-1).

HANDLING
DATA IN

ASCII

Some principles to remember in handling ASCII-coded data are:

1) The codes for the numbers and letters form ordered subse-

quences. The decimal numbers are hex 30 through 39, the up-

per-case letters hex 41 through 5A. Thus you can do
alphabetical ordering by sorting the data in increasing numerical order.

2) The computer draws no distinction between printing and nonprinting characters.

This distinction is only made by the I/O device.

3) An ASCII device will interpret and send all data as ASCII. To print a 7 on an ASCII

printer, the microprocessor must send hex 37; hex 07 is the 'bell' character.

Similarly, the microprocessor will receive the character 9 from an ASCII keyboard

as hex 39; hex 09 is the 'tab' character.

4) Some ASCII devices do not use the full character set. For example, control charac-

ters and lower-case letters may be ignored or printed as '?'.

5) Some widely used ASCII characters are:

OA - line feed (LF)

OD - carriage return (CR)

20 - space

3F-?
7F - rubout or delete character

6-1

Table 6-1. 7-Bit ASCII Character Code Chart

Hex ASCII Hex ASCII Hex ASCII

00 NUL 2B + 56 V
01 SOH 2C 57 W
02 STX 2D —

58 X

03 ETX 2E 59 Y

04 EOT 2F / 5A Z

05 ENQ 30 5B [

06 ACK 31 1 5C \

07 BEL 32 2 5D]

08 BS 33 3 5E a(n
09 HT 34 4 5F — (-)

0A LF 35 5 60

OB VT 36 6 61 a

OC FF 37 7 62 b

OD CR 38 8 63 c

OE SO 39 9 64 d

OF SI 3A 65 e

10 DLE 3B 66 f

11 DC1 (X-ON) 3C < 67 9

12 DC2 (TAPE) 3D =
68 h

13 DC3 (X-OFF) 3E > 69 i

14 DC4frAPE-) 3F ? 6A i

15 NAK 40 ® 6B k

16 SYN 41 A 6C I

17 ETB 42 B 6D m
18 CAN 43 C 6E n

19 EM 44 D 6F o

1A SUB 45 E 70 P

1B ESC 46 F 71 q

1C FS 47 G 72 r

1D GS 48 H 73 s

1E RS 49 1 74 t

IF US 4A J 75 u

20 SP 4B K 76 V

21 ! 4C L 77 w
22 4D M 78 X

23 # 4E N 79 y

24 $ 4F 7A z

25 % 50 P 7B
!

26 & 51 Q 7C 1

27
• 52 R 7D

|
(ALT MODE)

28 (53 S 7E ~
29) 54 T 7F DEL(RUB

OUT)

2A * 55 U

6-2

EXAMPLES
Length Of A String Of Characters

Purpose: Determine the length of a string of ASCII characters (7 bits with the most sig-

nificant bit 0). The string starts in memory location 41 ; the end of the string

is marked by a carriage return character CCR'. hex OD). Place the length of

the string (excluding the carriage return) in memory location 40.

Sample Problems:

00 since the first character is a carriage return.

a. (40) = OD
Result = (40) = (

b. (41) = 52 R

(42) = 41 A
(43) = 54 T
(44) = 48 H
(45) = 45 E

(46) = 52 R

(47) = OD 'CR

Flowc

Result

:hairt:

= (40) = (06

T Start J

Pointer = 4

1

Length =

Length = Length + 1

Pointer = Pointer + 1

(40) = Length

c 3

Source Program:

LXI H.41H
MVI B.O

MVI A.ODH
CHKCR: CMP M

JZ DONE
INR B
INX H
JMP CHKCR

DONE: MOV A.B

STA 40H
HERE: JMP HERE

;POINTER = START OF STRING
;LENGTH =

;IS CHARACTER 'CR?
;YES, END OF STRING
:NO. ADD 1 TO LENGTH

;EXAMINE NEXT CHARACTER

:SAVE STRING LENGTH

6-3

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic (Hex)

00 LXI H.41H 21

01 41

02 00

03 MVI B.O 06

04 00

05 MVI A.ODH 3E

06 OD
07 CHKCR: CMP M BE

08 JZ DONE CA
09 10

0A 00

OB INR B 04

OC INX H 23

OD JMP CHKCR C3
OE 07

OF 00

10 DONE: MOV A.B 78

11 STA 40H 32

12. 40

13 00

14 HERE: JMP HERE C3
15 14

16 00

The carriage return CCR'. OD) is just another ASCII character as far as the computer is

concerned. The fact that the I/O device treats 'CR' as a control character rather than as

a printing character does not affect the computer.

The Compare instruction- sets the flags but leaves the carriage return character in the

Accumulator for later comparisons. The Zero flag is set as follows:

Zero = 1 if the character in the string is a carriage return

Zero = if it is not a carriage return

The instruction INR B adds 1 to the string length counter in Register B. MVI B.O initial-

izes this counter to zero before the loop. Remember to initialize variables before using

them in a loop.

This loop does not terminate because a counter decrements to zero. The computer will

simply continue examining characters until it finds a carriage return. You may have to

place a maximum count in a loop like this to avoid problems with erroneous strings

which do not contain a carriage return. What would happen if the string did not contain

a carriage return?

6-4

Note that by rearranging the logic and changing the initial conditions, you can elimi-

nate several bytes of object code and decrease the execution time of the loop. If we ad-

just the f owe hart so that the program increments the counter and pointer before it

looks for the carriage return, only one Jump instruction is necessary instead of two. The
new flowchart and program are:

Flowchart:

f Start J

~fcr
Pointer

Length

H
Length = Length + 1

Pointer = Pointer + 1

(40) = Length

,

c End
)

Source Program:

LXI H.40H ;

MVI B.OFFH ;

MVI A.ODH
CHCKR: INX H

INR B ;

CMP M ;

JNZ CHKCR ;

MOV A.B

STA 40H ;

HERE: JMP HERE

POINTER = BYTE BEFORE STRING
LENGTH = -1

ADD 1 TO LENGTH
IS CHARACTER 'CR7
NO, KEEP COUNTING

YES, SAVE STRING LENGTH

6-5

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 LXI H.40H 21

01 40
02 00
03 MVI B.OFFH 06
04 FF

05 MVI A.ODH 3E
06 OD
07 NEXT: INX H 23

08 INR B 04
09 CMP M BE
0A JNZ CHKCR C2
OB 07
OC 00
OD MOV A.B 78

OE STA 40H 32

OF 40
10 00
11 HERE: JMP HERE C3
12 11

13 00

6-6

Find First Non-Blank Character

Purpose: Search a string of ASCII characters (7 bits with most significant bit 0) for a

non-blank character. The string starts in memory location 42. Place the ad-

dress of the first non-blank character in memory locations 40 and 41 (most

significant bits in 41). A blank character is hex 20 in ASCII.

Sample Problems:

a. (42) = 37 (ASCII 7)

Result (40) = 42

(41) =00
since memory location 42 contains a non-blank character

b. (42) = 20 SP
(43) = 20 SP
(44) = 20 SP

(45) = 46 F

Result = (40) = 45
(41) =00

Flowchart:

f Start J

Pointer = Pointer + 1 (40 and 41) = Pointer

c 3

Source Program:

LXI H.42H
MVI A.20H

CHBLK: CMP M
JNZ DONE
INX H
JMP CHBLK

DONE: SHLD 40H
HERE: JMP HERE

POINT TO START OF STRING
GET 'SP' FOR COMPARISON
IS CHARACTER A BLANK?
NO. THROUGH

;YES. EXAMINE NEXT CHARACTER
;SAVE ADDRESS OF FIRST NON-BLANK CHARACTER

6-7

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 LXI H.42H 21

01 42

02 00

03 MVI A.20H 3E

04 20

05 CHBLK: CMP M BE

06 JNZ DONE C2
07 OD
08 00

09 INX H 23

0A JMP CHBLK C3
OB 05

OC j
00

OD DONE: SHLD 40H 22

OE 40

OF 00

10 HERE: JMP HERE C3

11 10

12 00

Looking for spaces in strings is a common task. Spaces frequently serve to separate

fields, and often are eliminated from strings when they are used simply to increase

readability or to fit particular formats. It is obviously wasteful to store and transmit

beginning, ending, or extra spaces, particularly if you are paying for the communica-

tions capability and memory required.

The instruction SHLD is convenient for storing addresses in the 8080 format (least sig-

nificant bits first). SHLD 40H stores the contents of Register L in memory location 40

and the contents of Register H in memory location 41.

6-8

Again, if we alter the initial conditions so that the loop control section precedes the pro-

cessing section, we can" reduce the number of bytes in the program and decrease the

loop's execution time. The rearranged flowchart is:

Flowchart:

c J

Pointer = Pointer + 1

(40 and 41) = Pointer

c_ End
)

Source Program:

NXTCH:

HERE:

LXI H.41H"
MVI A.20H
INX H
CMP M
JZ • .NXTCH
SHLD 40H

"POINT -TO BYTE BEFORE STRING
;GET 'SP' FOR COMPARISON

IS CHARACTER A BLANK?
YES, KEEP EXAMINING CHARACTERS
NO, SAVE ADDRESS OF FIRST NON-BLANK
CHARACTER

JMP HERE

6-9

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 LXI H.41H 21

01 41

02 00
03 MVI A.20H 3E
04 20

05 NXTCH: INX H 23
06 CMP M BE
07 JZ NXTCH CD
08 05
09 00
0A SHLD 40H 22

OB 40
OC 00
OD HERE: JMP HERE C3
OE OE
OF 00

6-10

Replace Leading Zeros With Blanks

Purpose: Edit a string of ASCII decimal characters so as to replace all leading zeros

with blanks. The string starts in memory location 41 ; assume that it consists

entirely of ASCII-coded decimal digits. The length of the string is in memory

location 40.

Sample Problems:

a. (40) = 02

(41) = 36 = ASCII 6

Result = No change since the leading digit is not zero

b. (40) = 08
(41) = 30 = ASCII

(42) = 30 = ASCII

(43) = 38 = ASCII 8

Result = (41) = 20 = ASCII SP

(42) = 20 = ASCII SP

The two leading ASCII zeros have been replaced by ASCII blanks.

Flowchart:

(
Start

)

Count =

Pointer =

(40)

41

(Pointer) =
ASCII SP = 20H

Pointer == Pointer + 1

Count == Count - 1

6-11

Source Program:

LXI H.40H
MOV B.M
MVI A/0'

CHKZ: INX H
CMP M
JNZ DONE
MVI M.20H
DCR B

JNZ CHKZ
DONE: JMP DONE

;COUNT = STRING LENGTH
;GET ASCII FOR COMPARISON

IS LEADING DIGIT 0?

NO. THROUGH
REPLACE LEADING ZERO WITH BLANK
HAVE ALL DIGITS BEEN EXAMINED?
NO, GO- EXAMINE NEXT DIGIT

Single quotation marks around characters indicate ASCII.

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 LXI H.40H 21

01 40
02 00

03 MOV B,M 46

04 MVI A.'0' 3E

05 30

06 CHKZ: INX H 23

07 CMP M BE

08 JNZ DONE C2
09 11

0A 00

0B MVI M.20H 36

OC 20

OD DCR B 05

OE JNZ CHKZ C2
OF 06
10 00

11 DONE: JMP DONE C3
12 11

13 00

You will frequently want to edit decimal strings before they are printed or displayed to

improve their appearance. Common editing tasks include eliminating leading zeros,

justifying numbers. 'adding signs or other identifying markers, and rounding. Clearly,

printed numbers like 0006 or $27.34382 can be confusing and annoying.

Here the loop has two exits — one if a processor finds~a non-zero digit and the other if it

has examined the entire string.

The instruction MVI M.20H places 20H in the memory location addressed by Registers

H and L. You could also initialize Register C to 20H (i.e., MVI C20H) and use MOV M,C

to replace the leading zero with a blank. Note the tradeoffs involved in this example.

MOV M,C executes faster than MVI M.20H and thus would decrease the inner loop's

execution time. The overhead required, however, is an MVI C20H in the initialization

portion of the routine. If this example were to be used in a cash register application,

which sequence would you choose and why?

6-12

All digits in the string are assumed to be in ASCII, i.e., the digits are hex 30 through 39

rather than the ordinary decimal to 9. The conversion between decimal and ASCII is

simply a matter of adding hex 30 to a decimal digit.

You may have to be careful to leave one zero in the event that all the digits are zero.

How would you do this?

Note that each ASCII digit requires eight bits as compared to four for BCD. Therefore,

ASCII is an expensive format in which to store or transmit numerical data.

Add Even Parity To ASCII Characters

Purpose: Add even parity to a string of 7-bit ASCII characters. The length of the string

is in memory location 40 and the string itself begins in memory location 41.

Place even parity in the most significant bit of each character by setting the

most significant bit to 1 if that makes the total number of 1 bits in the word

an even number.

Sample Problem:

(40) = 06

(41) = 31

(42) = 32

(43) = 33

(44) = 34

(45) = 35

(46) = 36

Result = (41) = B1

(42) = B3
(43) = 33

(44) = B4

(45) = 35

(46) = 36

6-13

Flowchart:

f Start J

Pointer = 41

Count = (40)

(Pointer) = (Pointer)

OR 10000000B

(Set parity bit)

Pointer -

Count =

Pointer + 1

Count - 1

Source Program:

LXI H.40H
MOV B.M
MVI C.10000000B

SETPR: INX H
MOV A.M
ORA C
JPO CHCNT
MOV M.A

CHCNT: DCR B

JNZ SETPR
HERE: JMP HERE

GET STRING LENGTH
GET PARITY BIT OF 1

GET A CHARACTER
SET PARITY BIT-TO 1

IS PARITY NOW EVEN?
YES. SAVE CHARACTER WITH EVEN PARITY

6-14

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 LXI H.40H 21

01 40

02 00

03 MOV B.M 46

04 MVI C.10000000B OE

05 80

06 SETPR: INX H 23

07 MOV A.M 7E

08 ORA C B1

09 JPO CHCNT E2

0A OD
OB 00

OC MOV M.A 77

OD CHCNT: DCR B 05

OE JNZ SETPR C2
OF 06

10 00
11 HERE: JMP HERE C3
12 11

13 00

Parity is often added to ASCII characters before they are transmitted on noisy com-

munication lines, providing a simple error checking facility. Parity will detect all single

bit errors but does not allow error correction, i.e., you know that an error occurred when
the received parity is wrong, but you cannot tell which bit was changed.

MVI C, 1 0000000B saves a parity bit of 1 in Register C. (Note the use of the binary mask;

the purpose of the mask is clearer when it is specified in this manner rather than as 80H
or 128 decimal).

The instruction ORA C sets the parity (most significant) bit to 1 while retaining all the

other bits as they were.

The following procedure is used to determine if the parity of the byte in memory is odd

or even. We OR a parity bit into the byte loaded from memory; and then test to see if

the parity is odd. If the parity is odd, then the byte already in memory has even parity,

and we jump down to decrement the count of remaining bytes. If the parity is even,

then we know that the byte in memory has odd parity, and therefore we store the byte

in the Accumulator into that memory location.

The conditional jumps JPO (Jump On Parity Odd) and JPE (Jump On Parity Even) are

seldom used except in parity generation and checking.

Do not confuse the Parity bit included in each character and the 8080's Parity bit,

which is set to 1 if the last arithmetic or Boolean result had even parity.

6-15

Pattern Match
Purpose: Compare two strings of ASCII characters to see if they are the same. The

length of the strings is in memory location 41; one string starts in memory
location 42 and the other in memory location 62. If the two strings match,
clear memory location 40; otherwise, set memory location 40 to FF hex (all

ones).

Sample Problems

a. (41) = 03

(42) = 43 C
(43) = 41 A
(44) = 54 T

(62) = 43 C
(63) = 41 A
(64) = 54 T

Result .= (40) = since the two strings are the same.

b. (41) = 03

(42) = 52 R

(43) = 41 A
(44) = 54 T

(62) = 43 C
(63) = 41 A
(64) = 54 T

Result = (40) = FF (hex) since the first characters in the strings differ.

Note that the matching process ends as soon as the CPU finds a difference — the rest

of the strings need not be examined.

6-16

Flowchart:

f Start J

Pointer 1 = 42
Pointer 2 = 62

Count = (41)

Mark = FF (hex)

Pointer 1 =
Pointer 1 + 1

Pointer 2 =
Pointer 2 + 1

Count = Count - 1

(40)= Mark

c 1

Source Program:

LXI

MOV
INX

LXI

MVI
CHCAR: LDAX

CMP
JNZ
INX

INX

DCR
JNZ
MVI

DONE: MOV
STA

HERE: JMP

H.41H

B,M
H

D.62H
C.OFFH

D
M
DONE
D
H
B

CHCAR
CO
A.C

40H
HERE

COUNT = LENGTH OF STRINGS
POINTER 1 = START OF STRING 1

POINTER 2 = START OF STRING 2

MARK = FF (HEX)

GET CHARACTER FROM STRING 2

IS THERE A MATCH?
NO. DONE -

HAVE ALL CHARACTERS BEEN CHECKED?
NO. CHECK NEXT PAIR

YES, COMPLETE MATCH. MARK =

;SAVE MARK

6-17

Object Program:

Memory Address Instruction Memory Contents
(Hex) (Mnemonic) (Hex)

00 LXI H.41H 21

01 41

02 00
03 MOV B.M 46
04 INX H 23
05 LXI D.62H 11

06 62
07 00
08 MVI C.OFFH OE
09 FF

0A CHCAR: LDAX D 1A
OB CMP M BE
OC JNZ DONE C2
OD 17

OE 00
OF INX D 13

10 INX H 23
11 DCR B 05
12 JNZ CHCAR C2
13 OA
14 00
15 MVI CO OE

16 00
17 DONE: MOV A.C 79

18 STA 40H 32
19 40
1A 00

1B HERE: JMP HERE C3
1C 1B

1D 00

Matching strings of ASCII characters is an essential part of looking for commands,
recognizing names, identifying variables or operation codes in assemblers and com-

pilers, finding files, and many other tasks.

The program uses two pointers, one in Registers H and L and the other in Registers D
and E. The only instructions which use the address in D and E are LDAX (Load Ac-

cumulator Indirect) and STAX (Store Accumulator Indirect); arithmetic and logical

operations with memory and transfers to other registers from memory (e.g., ADD M,

AND M, MOV B,M, etc.) can only be performed using the address in Registers H and L.

The order of operations is very important because of the small number of instructions

that use the address in Registers D and E. You must move a character from the string

pointed to by D and E to the Accumulator and compare it to a character in the string

pointed to by H and L. This order of operations is necessary because the 8080 has no in-

struction which allows a comparison to a character in a string pointed to by D and E.

For example, if you replaced LDAX D with MOV A,M, what weuld the next instruction

be? This asymmetry is peculiar to the 8080 and can cause programming nightmares.

Note that each iteration updates both pointers.

6-18

This program could take advantage of the fact that a register is known to be zero after a

particular conditional jump is executed. When the JNZ CHCAR instruction is executed,

if the branch is not performed then we know that Register B contains zero Therefore,

we can move Register B to Register C, the Flag register, to indicate that a match has

been found.

PROBLEMS
1) Length Of A Teletypewriter Message
Purpose: Determine the length of an ASCII message. All characters are 7-bit ASCII

with MSB 0. The string of characters in which the message is embedded
starts in memory location 41. The message itself starts with an ASCII STX

character (hex 02) and ends with ETX (hex 03). Place the length of the

message (the number of characters between the STX and the ETX but in-

cluding neither) in memory location 40.

Sample Problem:

(41) = 49
(42) = 02 STX
(43) = 47 G
(44) = 4F O
(45) = 03 ETX

Result = (40) = 02 since there are two characters between the STX
in location 42 and the ETX in location 45.

2) Find Last Non-Blank Character

Purpose: Search a string of ASCII characters for the last non-blank character. The

string starts in memory location 42 and ends with a carriage return character

(hex 0D). Place the address of the last non-blank character in memory loca-

tions 40 and 41 (most significant bits in 41).

Sample Problems:

a. (42) = 37 (ASCII 7)

(43) = 0D 'CR'

Result = (40) =42
(41) =00
since the last (and only) non-blank character is in memory loca-

tion 42.

(42) = 41 A
(43) = 20 'SP'

(44) = 48 H
(45) = 41 A
(46) = 54 T
(47) = 20 'SP'

(48) = 20 'SP'

(49) = OD 'CR'

Result = (40) = 46
(41) = 00

6-19

3) Truncate Decimal String To Integer Form
Purpose: Edit a string of ASCII decimal characters so as to-replace all digits to the right

of the decimal point with ASCII blanks (hex 20). The string starts in memory
location 41 and is assumed to consist entirely of ASCII-coded decimal digits

and a possible decimal point (hex 2E). The length of the string is in memory
location 40. If no decimal point appears in thestring, assume -that all digits

are whole numbers with the decimal point (implicit) at the far right. .

Sample Problems:

(40) = . 04
(41) = 37 7

(42) = 2E .

(43) = 38 8

(44) = 31 1

Result = (41) = 37

(42) = 2E

7

(43) = 20 'SP'

(44) = 20 'SP'

(40) = 03

(41) = 36 6

(42) = 37 7

(43) = 31 1

Result = Unchange<1 as t

4) Check Even Parity In ASCII Characters

Purpose: Check even parity in a string of ASCII characters. The length of the string is

in memory location 41 and the string itself begins irr memory location 42. If

the parity of all the characters in -the string is correct, clear memory location

40; otherwise, set the contents of memory location 41 to FF hex (all ones).

Sample Problems:

00 since all the characters have even parity.

(41) == 03

(42) == B1

(43) == B2

(44) == 33

Result == (40)

(41) == 03

(42) == B1

(43) == B6

(44) == 33

Result == (40) FF (hex) since the character in memory location .42

does not have even parity.

6-20

5) String Comparison

Purpose: Compare two strings of ASCII characters to see which is larger (i.e., which

follows the other in 'alphabetical' ordering). The length of the strings is in

memory location 41 ; one string starts in memory location 42 and the other in

memory location 62 If the string starting in memory location 42 is larger

than or equal to the other string, clear memory location 40; otherwise, set

memory location 40 to FF hex (all ones).

Sample Problems

a. (41) = 03

(42) = 43 C

(43) = 41 A
(44) = 54 T

(62) = 42 B

(63) = 41 A
(64) = 54 T

Result = (40) = 00 since CAT is 'larger' than BAT

b. (41) = 03

(42) = 44 D
(43) = 4F

(44) = 47 G

(62) = 44 D
(63) = 4F

(64) = 47 G
Result = (40) = 00 since the two strings are equal.

c. (41) = 03

(42) = 43 C

(43) = 41 A
(44) = 54 T

(62) = 43 C
(63) = 55 U
(64) = 54 T

Result = (40) = FF (hex) since CUT is 'larger' than CAT

6-21

Chapter 7
CODE CONVERSION

Code conversion is a continual problem for microprocessors. Peripherals provide data in

ASCII, BCD, or various special codes. The computer may be required to convert this

data to binary or decimal in order to process it. Output devices require data in ASCII,

BCD, 7-segment, or other codes. Therefore, the computer must convert the results to a

suitable form after the processing is completed. Some code conversions are simple to

perform in hardware; for example, standard integrated circuits exist for converting BCD
to 7-segment. Universal Asynchronous Receiver/Transmitters (UARTs) convert between
ASCII data and teletypewriter formats. However, the program may still be required to

perform much of the conversion work.

EXAMPLES
Hex To ASCII

Purpose: Convert the contents of memory location 40 to an ASCII character. Memory
location 40 contains a single hexadecimal digit (the four most significant bits

are zero). Store the ASCII character in memory location 41.

Sample Problems:

a. (40) = 0C
Result = (41) =43 'C

b. (40) = 06
Result = (41) = 36 '6'

7-1

Flowchart:

f Start J

Data = (40)

Result = Data

+ ASCII A
- ASCII 9 - 1

Result =Data

+ ASCII

(41) = Result

c 3

Source Program:

LDA 40H ;GET DATA
CPI 10 ;IS DATA 10 OR MORE?
JNC ASCZ
ADI 'A'-'9'-1 ;YES. ADD OFFSET FOR LETTERS

ASCZ: ADI '0' ;ADD OFFSET FOR ASCII

STA 41H ;STORE ASCII RESULT
HERE: JMP HERE

7-2

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 LDA 40H 3A
01 40
02 00
03 CPI 10 FE

04 OA
05 JNC ASCZ D2
06 OA
07 00
08 ADI 'A'-'9'-1 C6
09 "07

0A ASCZ: ADI '0' C6
OB 30
OC STA 41

H

32
OD 41

OE 00
OF HERE: JMP HERE C3
10 OF
11 00

In this program, the basic idea is' to add ASCII to all the hexadecimal digits. This addi-

tion converts the decimal digits correctly; however, there, is a break between ASCII 9

(39 hex) and ASCII A (41 hex) which must be taken into account. This break must be
added tolhevnondecimal digits, i.e. A, B, C, D, E, F. This is accomplished by the ADI in-

struction which adds the offset 'A'-'9'-1 to the contents of the Accumulator. Can you
explain why the offset is 'A'-'9'-1 ?

Note that the addition factors are placed in the assembly language program in ASCII
form (single quotes surround ASCII characters). The offset for the letters is left as an
arithmetic expression. The effort is to make the purpose of the factors as clear as possi-

ble in the assembly language listing. The extra assembly time is a very small price to

pay for a large increase in clarity.

This routine could be used in a variety of programs; ;for example, monitor programs
must convert hexadecimal digits to ASCII in order to display the contents of memory
locations in hexadecimal on an ASCII printer or CRT display.

Another (quicker) conversion method that requires no conditional jumps at all is the
following program described by Allison in COMPUTER magazine. (See Allison, D.R., "A
Design Philosophy for Microcomputer Architectures", Computer, February 1977, pp.
35—41. This is an excellent article which we- recommend highly.)

;GET HEX DIGIT
1

-DECIMAL ADD 90 BCD

; DECIMAL ADD 40 BCD + CARRY

HERE:

LDA 4GH
ADI 90H
DAA
ACI 40H
DAA
STA 41H
JMP HERE

;STORE ASCII DIGIT

Try this program on some digits. Can you explain why it works?

7-3

Decimal To 7-Segment

Purpose: Convert the contents of memory location 40 to a 7-segment code in memory
location 41. If memory location 40 does not contain a single decimal digit.

clear memory location 41.

The following table can be used to convert decimal numbers to 7-segment code. The 7-

segment code is organized with the most significant bit always zero followed by the

code (1 =on, 0=off) for segments g, f. e. d, c. b. a (see Figure 7-1).

Digit Code

3F

1 06
2 5B
3 4F

4 66

5 6D
6 7D
7 07

8 7F

9 6F

Note that the table uses 7D for 6 rather than the alternative (top bar off) 7C to avoid

confusion with lower case b, and 6F for 9. rather than 67 (bottom bar off), for no partic-

ular reason.

a

f b

9

e c

d

Figure 7-1. 7-Segment Arrangement

Sample Problems:

a. (40) = 03

Result = (41)=4F

b. (40) = 28

Result = (41) =00

7-4

Flowchart:

f Start
)

Data = (40)

Result =

(Sseg + Data)

(41) = Result

c

Source Program:

MVI B.O GET ERROR CODE TO BLANK DISPLAY
LDA 40H GET DATA
CPI 10 IS DATA > 9?
JNC DONE YES, DONE
LXI H.SSEG BASE ADDRESS OF 7-SEGMENT TABLE

MAKE DATA INTO A 16-BIT INDEX
MOV C.A
DAD B FIND ELEMENT BY INDEXING
MOV B.M GET 7-SEGMENT CODE

DONE- MOV . AB
STA 41H SAVE 7-SEGMENT CODE OR ZERO ;

FOR ERROR :

HERE: JMP HERE
SSEG: DB 3FH,06H.5Bri4FH.66H

DB 6DH.7DH.07H.7FH.6FH

7-5

Object Program:

Memory
Address

(Hex)

Instruction

(Mnemonic)

Memory
Contents

(Hex)

00 MVI B.O 06
01 00
02 LDA 40H 3A
03 40
04 00
05 CPI 10 FE

06 OA
07 JNC DONE D2
08 10

09 00
0A LXI H.SSEG 21

OB 17

OC 00

OD MOV C.A 4F

OE DAD B 09
OF MOV B.M 46
10 DONE: MOV A,B 78

11 STA 41

H

32

12 41

13 00
14 HERE: JMP HERE C3
15 14

16 00
17 SSEG DB 3FH.06H,5BH.4FH,66H 3F

18 06
19 5B

1A 4F

1B 66

1C DB 6DH,7DH.07H,7FH.6FH 6D
1D 7D
1E 07

1F 7F

20 6F

The program calculates the memory address of the desired code by adding the index

(i.e., th&xligit to tre displayed) to the base address of thaseven-segment table. This pro-

cedure is known as. a table look-up.

The assembly language pseudo^operation DB (DEFINE BYTE) is used to place constant

data in program memory. Such data may include tables, headings, error messages,

priming messages, format characters, thresholds, etc. The label attached to a DB
pseudo-operation is assigned the value of the address into which the assembler places

the first byte of data. The assembler simply places data for the table in memory. One DB
pseudo-operation results in the filling Of one or more memory locations.

Tables are often used to perform code conversion when the functional relationship is

not as simple as that given under the HEX to ASCII example. Such tables usually just

contain all the results organized according to the input data, i;e., the first entry is the

code corresponding to the number zero.

Seven-segment code is commonly used in displaying digits and a few letters and other

characters. Calculator-type seven-segment displays are inexpensive, easy to combine,

and use little power; however, the seven-segment coded digits may be difficult to read.

7-6

ASCII To Decimal

Purpose: Convert the contents of memory location 40 from
Her.imal rlinit and stnrc the result in mpmnrv lor.ati

Convert the contents of memory location 40 from an ASCII character to a

decimal digit and store the result in memory location 41.. If the contents of

memory location 40 is not the ASCII representation of a decimal digit, set the

contents of memory location 41 to FF (hex).

Sample Problems:

a. (40) = 37 (ASCII 7)

Result = (41) =07

(40) = 55

Result = (41) = FF

Flowchart:

c J

Data = (40)

Result =

Data - ASCII
Result = FF (Hex)

(41)= Result

c 3
Source Program:

MVI B.0FFH

LDA 40H
SUI *0'

JC DONE
CPI 1Q

JNC DONE
MOV B.A

DONE: MOV A.B

STA 41H
HERE: JMP HERE

GET ERROR MARKER (FF HEX)

GET DATA
SUBTRACT ASCII

NOT DIGIT IF < ASCII

IS RESULT > 10?

NOT DIGIT IF > 10

;STORE DECIMAL RESULT OR ERROR MARKER

7-7

Object Program:

Memory Address Instruction Memory Contents
(Hex) (Mnemonic) (Hex)

00 MVI B.OFFH 06
01 FF
02 LDA 40H 3A
03 40
04 00
05 SUI -0' D6
06 30
07 JC DONE DA
08 10
09 00
0A CPI 10 FE
OB 10
OC JNC DONE D2
OD 10
OE 00
OF MOV B.A 47
10 DONE: MOV A.B 78
11 STA 41

H

32
12 41
13 00
14 HERE: JMP HERE C3
15 14
16 00

This program determines if the data is between ASCII and ASCII 9 inclusive. If so. the

data is the ASCII representation of a decimal digit since the drgits form a sequence.
Subtracting hex 30 (ASCII 0) produces the decimal equivalent.

Note that one comparison is done with an actual subtraction (SUI '0') since that

subtraction is necessary to convert ASCII to decimal. The second comparison is done
with an implied subtraction (CPI 10) since the final decimal result is now in the Ac-
cumulator and we do not want to change it.

This kind of program is useful in a variety of situations, for example. ASCII to decimal
conversion is necessary when decimal numbers are being entered from an ASCII device
like a teletypewriter or CRT terminal.

BCD To Binary

Purpose: Convert two BCD digits in memory locations 40 and 41 to a binary number in

memory location 42. The most significant BCD digit is the one in memory
location 40.

Sample Problems:

a. (40)

(41) =

Result = (42) = 1D (hex) = 29 (decimal)

b. (40)

(41)

Result = (42) =47 (hex) =71 (decimal)

02
09

07
01

7-8

Source Program:

LXI H.40H
MOV A.M
ADD A
MOV B.A

ADD A
ADD A
ADD B

INX H
ADD M
INX H
MOV M.A

HERE: JMP HERE

GET MOST SIGNIFICANT DIGIT (MSD)

MSDx2
SAVE MSD x 2

MSD x4
MSDx8
MSDx 10

POINT TO LEAST SIGNIFICANT DIGIT

ADD TO FORM BINARY EQUIVALENT

STORE BINARY EQUIVALENT

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 LXI H.40H 21

01 40
02 00
03 MOV A.M 7E

04 ADD A 87
05 MOV B.A 47
06 ADD A 87
07 ADD A 87
08 ADD B 80
09 INX H 23
OA ADD M 86
OB INX H 23
OC MOV M.A 77
OD HERE: JMP HERE C3
OE OD
OF 00

This program multiplies the BCD digit in memory location 40 by ten using repeated ad-

ditions. Note that ADD A multiplies the contents of the Accumulator by 2. This allows

you to multiply the Accumulator by small decimal numbers in a few instructions. How
would you multiply the Accumulator by 16? by 12? by 7?

BCD entries are converted to binary in order to save on storage and calculations.

Decimal numbers require additional memory space and more complex calculations.

However, the conversion may offset some of the advantages of binary arithmetic.

BCD numbers require about 20% more memory than do binary numbers, e.g.. 1000 re-

quires 3 BCD digits (12 bits) and 10 bits in binary (since 2 10 = 1024 = 1000).

ASCII String To Binary Number
Purpose: Convert a string of 8 ASCII characters into a binary number and store the

result in memory location 41. If any of the characters are not either ASCII

zero or ASCII one, set memory location 40 to FF (hex); otherwise, clear

memory location 40. The string of characters is in memory locations 42
through 49 with the most significant bit in memory location 42.

7-9

Sample Problems:

(42) = 30 CO')

(43) = 31 (T)

(44) = 31 (T)

(45) = 30 CO')

(46) = 30 CO')

(47) = 30 CO')

(48) = 30 CO')

(49) = 31 (T)

Result = (40) = 00

(41) = 61 (i.e.. 01100001

Same as a. except:

(45) = 34 ('4')

Result = (40) = FF

Flowchart:

f Start
J

Pointer = 42

Count = 8

Binum =
Mark = FF(Hex)

Binum = Binum
+ (Pointer) - ASCII

Pointer = Pointer + 1

Count = Count - 1

(40)= Mark

(41) = Binum

c :>

7-10

Source Program:

LXI H.42H ;

SUB A ;

MVI B.8

MVI C.OFFH ;

BICON: ADD A ;

MOV D.A

MOV A.M ;

suf '0'
;

CPI 2 ;

JNC DONE ;

ADD D ;

INX H
DCR B

JNZ BICON
MVI CO

DONE: LXI H.40H
MOV A.M
INX H
MQV M,Ca.

HERE: JMP HERE

POINT TO START OF STRING
BINARY NUMBER =0
COUNT = 8

MARKER = ERROR INDICATOR
SHIFT BINARY NUMBER LEFT

GET CHARACTER FROM STRING
CONVERT TO BINARY
IS RESULT LESS THAN 2?

NO, ERROR IN BINARY NUMBER
ADD BIT TO BINARY NUMBER

ALL CHARACTERS CONVERTED?

YES, MARKER=ZERO. BINARY NUMBER
CORRECT
SAVE BINARY NUMBER

MARK IF CORRECT OR NOT

7-11

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 LXI H.42H 21

01 42
02 00
03 SUB A 97
04 MVI B.8 06
05 08
06 MVI C.OFFH OE
07 FF

08 BICON: ADD A 87
09 MOV D.A 57
0A MOV A.M 7E

OB SUI '0' D6
OC 30
OD CPI 2 FE

OE 02
OF JNC DONE D2
10 1A
11 00
12 ADD D 82
13 INX H 23
14 DCR B 05
15 JNZ BICON C2
16 08
17 00

18 MVI CO OE

19 00

1A DONE: LXI H.40H 21

1B 40

1C 00
1D MOV A.M 77

1E INX H 23

1F MOV M.C 71

20 HERE: JMP HERE C3
21 20

22 00

The instruction ADD A is a logical left shift, i.e.. it moves the previously determined bits

left one place and clears the least significant bit.

Since (B) = when all the ASCII digits have been converted, we could replace MVI CO
with MOV C,B (why?). The saving is one byte of code and a little execution time.

Another alternative would be INR C (why?).

The conversion from ASCII simply involves subtracting ASCII (hex 30).

The instruction CPI 2 sets

Carry = 1 if (A) < 2. i.e., (A) = or 1

Carry = if (A) > 2

The instruction ADD D adds the rest of the number being constructed into the Ac-

cumulator. Since the Accumulator contains a zero or a one and D containsa zero in the

least significant bit, this instruction updates the number being constructed.

7-12

ASCII-to-binary conversion is necessary when numbers are entered in binary form from

an ASCII device, as in an assembler which allows entries in binary.

PROBLEMS
1) ASCII To Hex
Purpose: Convert the contents of memory location 40 to a hexadecimal digit and store

the result in memory location 41. Assume that memory location 40 contains

the ASCII representation of a hexadecimal digit (7 bits with MSB 0).

Sample Problems:

a. (40)
'= 43 'C

Result = (41)=0C

b. (40) = 36 '6'

Result = (41) = 06

2) 7-Segment To Decimal

Purpose: Convert the contents of memory location 40 from a 7-segment code to a

decimal number in memory location 41. If memory location 40 does not con-

tain a valid 7-segment code, set memory location 41 to FF (hex). Use the 7-

segment table given under the Decimal To 7-Segment example and try to

match codes.

Sample Problems:

a. (40) = 4F

Result = (41) = 03

b. (40) = 28
Result = (41) = FF

3) Decimal To ASCII

Purpose: Convert the contents of memory location 40 from a decimal digit to an ASCII

character and store the result in memory location 41. If the number in memo-
ry location 40 is not a decimal digit, set the contents of memory location 41

to an ASCII blank character (20 hex).

Sample Problem:

a. (40) = 07

Result = (41) = 37 ('7')

b. (40) = 55

Result = (41) = 20 CSP')

4) Binary to BCD
Purpose: Convert a binary number in memory location 40 to two BCD digits in memo-

ry locations 41 and 42 (most significant digit in 41). The number in memory
location 40 is unsigned and less than 100.

Sample Problems:

a. (40) = 1D (29 decimal)

Result = (41) = 02
(42) = 09

b. (40) = 47 (71 decimal)

Result = (41) = 07
(42) = 01

7-13

5) Binary Number To ASCII String

Purpose: Convert the contents of memory location 41 to a string of ASCII ^characters

representing the individual bits. The string occupies memory locations 42
through 49 with the most significant bit in memory location 42.

Sample Problem:

(41) = 61 (i.e.. 01100001)
Result = (42) = 30 CO')

(43) = 31 (T)

(44) = 31(T)
(45) = 30 CO')

(46) = 30 CO')

(47) =30 CO')

(48) = 30 CO')

(49) = 31 (T)

7-14

Chapter 8
ARITHMETIC PROBLEMS

Most arithmetic in microprocessor applications consists of multiple-word binary or

decimal manipulations. A decimal correction (Decimal Adjust) or some other means for

performing decimal arithmetic is frequently the only arithmetic instruction beyond

basic addition and subtraction. You must implement other arithmetic operations in

software.

Multiple-precision binary arithmetic requires simple repetitions of the basic single-word

instructions. The Carry bit transfers information between words. Add With Carry and

Subtract With Borrow use the information from the previous arithmetic operation. You

must be careful to clear the Carry before operating on the first words (obviously there is

no Carry into or Borrow from the least significant bits).

Decimal arithmetic is a common enough task for microprocessors that most have a

special instruction for this purpose. This instruction may either perform a decimal addi-

tion directly or correct the results of a binary addition to the proper decimal form.

Decimal arithmetic is essential in such applications as point-of-sale terminals, calcula-

tors, check processors, order entry systems, and banking terminals.

You can implement multiplication and division as series of additions and subtractions

respectively, much as they are done by hand. Double-word operations are important

here since a multiplication produces a result twice as long as the operands while a divi-

sion similarly contracts the length of the result. Multiplications and divisions are time-

consuming when done in software because of the repeated arithmetic and shift opera-

tions that are necessary.

8-1

EXAMPLES
Multiple-Precision Addition

Purpose: Add two multiple-word binary numbers. The length of the numbers (in bytes)

is in memory location 30, the numbers themselves start (least significant bits

first) in memory locations 41 and 61 respectively, and the sum replaces the

number starting in memory location 41.

Sample Problem:

(30) = 04

(41) = C3
(42) = A7
(43) = 5B
(44) = 2F

(61) = B8
(62) = 35

(63) = DF
(64) = 14

Result = (41) =7B
(42) = DD
(43) = 3A
(44) = 44

i.e., 2F5BA7C3
+14DF35B8
443ADD7B

Flowchart:

f Start J

Count = (30)

Pointer 1 = 41

Pointer 2 = 61

Carry =

(Pointer 1) =
(Pointer 1)

+ (Pointer 2)

+ Carry

Pointer 1 =
Pointer 1 + 1

Pointer 2 =
Pointer 2 + 1

Count = Count - 1

c

(This step also produces new Carry)

8-2

Source Program:

LDA 30H
MOV B.A

LXI H.41H

LXI D.61H
ANA A

ADDW: LDAX D
ADC M
MOV M.A
INX D
INX H
DCR B

JNZ ADDW
HERE: JMP HERE

;COUNT=LENGTH OF STRINGS (IN BYTES)

START POINTER 1 AT FIRST WORD OF STRING 1

START POINTER 2 AT FIRST WORD OF STRING 2

CLEAR CARRY TO START
GET WORD FROM STRING 2

ADD WORDS FROM STRING 1

STORE RESULT

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 LDA 30H 3A
01 30

02 00

03 MOV B.A 47

04 LXI H.41H 21

05 41

06 00

07 LXI D.61H 11

08 61

09 00

OA ANA A A7
OB ADDW: LDAX D 1A
OC ADC M 8E

OD MOV M.A 77

OE INX D 13

OF INX H 23

10 DCR B 05

11 JNZ ADDW C2
12 OB
13 00

14 HERE: JMP HERE C3
15 14

16 00

The instruction ANA A is used to clear the Carry bit. Any other logical operation would
have the same effect. The Carry must be cleared since there is no carry involved in the

addition of the least significant bytes.

The instruction ADC, Add With Carry, includes the Carry from the previous words in the

addition. ADC is the only instruction in the loop which affects the Carry. Remember
that neither INX nor DCR affects the Carry.

Both the pointer in Registers D and E and the one in H and L must be updated during

each iteration.

This procedure can add binary numbers of any length. Note that

ten binary bits correspond to three decimal digits since
2"I0 = 1024 = 1000. So. you can calculate the number of bits re-

quired to give a certain accuracy in decimal digits. For example.

DECIMAL
ACCURACY
IN BINARY

8-3

ten decimal digit accuracy requires:

10
10 x — =33 bits

3

Decimal Addition

Purpose: Add two multiple-word decimal (BCD) numbers. The length of the numbers
is in memory location 30, the numbers themselves start (least significant bits

first) in memory locations 41 and 61 respectively, and the sum replaces the

number starting in memory location 41.

Sample Problem:

(30) = 04

(41) = 85
(42) = 19

(43) = 70
(44) = 36

(61) = 59
(62) = 34
(63) = 66
(64) = 12

Result (41) =44
(42) = 54
(43) = 36
(44) = 49

i.e., 36701 985
+

1

2663459
49365444

Flowchart:

c
Count = (30)

Pointer 1 = 41

Pointer 2 = 61

Carry =

(Pointer 1)
=
(Pointer 1)1

+ (Pointer 2) + Carry

+ Decimal correctioi
J| (This step also produces a new Carry)

Pointer 1 =
Pointer 1 + 1

Pointer 2 =
Pointer 2 + 1

Count = Count - 1

8-4

Source Program:

LDA 30H
MOV B.A

LXI H.41H

LXI D.61H
ANA A

DECAD: LDAX D
ADC M
DAA
MOV M.A
IMX D
INX H
DCR B

JNZ DECAD
HERE: JMP HERE

Object Program:

;COUNT=LENGTH OF STRINGS (IN BYTES)

POINTER 1 =FIRST-WORD OF STRING 1

POINTER 2=FIRST WORD OF STRING 2

CLEAR CARRY TO START
GET 2 DIGITS FROM STRING 2

ADD PAIR OF DIGITS FROM STRING 1

MAKE ADDITIONAL DECIMAL
STORE RESULT AS NEW STRING 1

Memory Address Instruction 'Memory Contents

(Hex) (Mnemonic) (Hex)

00 LDA 30H 3A
01 30

02 00

03 MOV B.A 47

04 LXI H.41H 21

05 41

06 00

07 LXI D.61H 11

08 61

09 00

OA ANA A A7

OB DECAD: LDAX D 1A

OC ADC M 8E

OD DAA 27

OE MOV M.A 77

OF INX D 13

10 INX H 23

11 DCR B 05

12 JNZ DECAD C2
13 OB

14 00

15 HERE: JMP HERE C3
16 15

17 00

8-5

DECIMAL
ADJUST

The Decimal Adjust (DAA) instruction uses the Carry and Auxiliary

Carry bits to correct the following situations:

1) The sum of two digits is between 10 and 15 inclusive. In this case, six must be ad
ded to the sum to give the right result, i.e..

10 1 (5)

+ 1 000 (8)

1101 (D)

+0 1 10
0011 0011 (BCD 13 which is correct)

The sum of two digits is 16 or more. In this case, the result is a proper BCD digit but
six less than it should be, i.e.,

10 (8)

+ 1 00 1 (9)

0001 0001 (BCD 11)

+0110
01 T 1 1 (BCD 1 7 which is correct)

Six must be added >in both situations. However, case 1 can be recognized by the

fact that the sum is not a BCD digit, i.e.. it is between 10 and 15 (or A and F hex-

adecimal). Case 2 can only be recognized by the fact that the Carry (most signifi-

cant digit) or Auxiliary Carry (least significant digit) has been set to 1 since the

result is a valid BCD number. DAA is the only instruction which uses the Auxiliary

Carry.

This procedure can add decimal (BCD) numbers of any length. Here four binary bits are

required for each decimal digit so ten digit accuracy requires:

10x4 = 40 bits

as opposed to 33 bits in the binary case. This is essentially five 8-bit words instead of

four. The decimal procedure also takes a little longer per word because of the extra

DAA instruction.

8-Bit Binary Multiplication

Purpose: Multiply the 8-bit unsigned number in memory location 40 by the 8-bit un-

signed number in memory location 41. Place the 8 least significant bits of

the result in memory location 42 and the 8 most significant bits in memory
location 43.

Sample Problems:

a. (40) = 03

(41) = 05

Result = (42) = OF

(43) = 00
i.e., 3x5 = 15

b. (40) = 6F

(41) = 61

Result = (42) = OF

(43) = 2A
i.e.. 111 x97 = 10.767

8-6

You can perform multiplication on a computer in the same way that you do long

multiplication by hand. Since the numbers are binary, the only problem is whether to

multiply by or 1 ; multiplying by zero obviously gives zero as a result while multiplying

by 1 produces- the same number you started with. So each step in a binary multiplica-

tion can be reduced to the following operation:

If the current bit in the multiplier is 1. add the multiplicand to

the old product.

MULTIPLICATION
ALGORITHM

The only remaining problem is to ensure that you line every-

thing up correctly each time. The following operations perform this task:

1) Shift multiplier left one bit so that the bit to be examined is placed in the Carry.

2) Shift product left one bit so that the next addition is lined up correctly.

The complete process for binary multiplication is as follows:

STEP 1 - Initialization:

PRODUCT =
COUNTER = 8

STEP 2 - Shift PRODUCT so as to line up properly:

PRODUCT = 2 x PRODUCT (LSB=iO)

STEP 3 - Shift MULTIPLIER so bit goes to CARRY:
MULTIPLIER = 2 x MULTIPLIER

STEP 4 - Add MULTIPLICAND to PRODUCT if CARRY is 1

:

If CARRY = 1. PRODUCT = PRODUCT + MULTIPLICAND

STEP 5 - Decrement COUNTER and check for zero:

COUNTER = COUNTER - 1

If COUNTER = 0. go to STEP 2

<n the case of sample problem b. where the multiplier is 61 (hex) and the multiplicand is

6F (hex), the process works as follows:

Initialization:

PRODUCT 0000
MULTIPLIER 61

MULTIPLICAND 6F

COUNTER 08

After First Iteration of STEPS 2 - 5

PRODUCT 0000
MULTIPLIER C2

MULTIPLICAND 6F

COUNTER 07
CARRY FROM MULTIPLIER

After Second Iteration:

PRODUCT, 006F
MULTIPLIER 84

MULTIPLICAND 6F

COUNTER 06
CARRY FROM MULTIPLIER 1

After Third Iteration:

PRODUCT 014D
MULTIPLIER 08

MULTIPLICAND 6F

COUNTER 05
CARRY FROM MULTIPLIER 1

8-7

After Fourth Iteration:

PRODUCT 029A
MULTIPLIER 10

MULTIPLICAND 6F

COUNTER 04
CARRY FROM MULTIPLIER

After Fifth Iteration:

PRODUCT 0534
MULTIPLIER 20

MULTIPLICAND 6F

COUNTER 03
CARRY FROM MULTIPLIER

After Sixth Iteration:

PRODUCT 0A68
MULTIPLIER 40

>. MULTIPLICAND 6F
- COUNTER 02

CARRY FROM MULTIPLIER

After Seventh Iteration:

PRODUCT 14D0
MULTIPLIER 80

' MULTIPLICAND 6F

COUNTER 01

CARRY FROM MULTIPLIER

After Eighth Iteration:

PRODUCT 2A0F
MULTIPLIER 00

MULTIPLICAND 6F

COUNTER 00
CARRY FROM MULTIPLIER 1

8-8

Flowchart:

C Start J

Product ==

Count == 8
Multiplicand -(40)

Multiplier = (41)

1Product— 2 x Product
(Shift left 1 bit)

Multiplier =
2 x Multiplier

(Shift left 1 bit)

Product = Product

+ Multiplicand

Count = Count - 1

(42 and 43)= Product

c ")

8-9

Source Program:

LXI

MOV
MVI
INX

MOV
LXI

MVI
MULT: DAD

RAL
JNC
DAD

CHCNT: DCR
JNZ
SHLD

HERE: JMP

Object Program:

H.40H
E.M

D.O

H
A.M
H.O

B.8

H

CHCNT
D
B

MULT
42H
HERE

;GET MULTIPLICAND
;EXTEND TO 16 BITS

GET MULTIPLIER
PRODUCT =
COUNT = 8

PRODUCT = PRODUCT X 2

;IS CARRY FROM MULTIPLIER 1 ?

:YES, PRODUCT = PRODUCT+MULTIPLICAND

;SAVE PRODUCT IN MEMORY

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 LXI H.40H 21

01 40
02 00
03 MOV E.M 5E

04 MVI D.O 16

05 00

06 INX H 23

07 MOV A.M 7E

08 LXI H.O 21

09 00
OA 00
OB MVI B.8 06
OC 08
OD MULT: DAD H 29

OE RAL 17

OF JNC CHCNT D2
10 13

11 00

12 DAD D 19

13 CHCNT: DCR B 05

14 JNZ MULT C2
15 OD
16 00
17 SHLD 22

18 42

19 00

1A HERE: JMP HERE C3
1B 1A

1C 00

8-10

Note that the multiplicand must be extended to 1 6 bits by clearing Register D so that it

can be added to the product using the DAD instruction.

The instruction DAD H acts as a 16-bit logical left shift for the 16-bit product.

In this program, the 8080 16-bit instructions handle data rather than addresses. LXI is

used to initialize the product, DAD to perform 16-bit shifts and addition, and SHLD to

store the result. You must be careful to extend 8-bit quantities (like the multiplicand) to

1 6 bits. Note that you cannot use the 1 6-bit facilities simultaneously for addressing and

data manipulation.

Besides the obvious uses in calculators and point-of-sale terminals, multiplication is a

key part of almost all signal processing and control algorithms. The speed at which

multiplications can be performed may determine the usefulness of a CPU in process

control, signal detection, and signal analysis.

This algorithm takes between 190 and 230 microseconds to multiply on an 8080 CPU
with a 2 MHz clock. The precise time depends on the number of 1 bits in the multiplier.

Other algorithms may be able to reduce the average execution time, but 200 microse-

conds will still be a typical execution time for a software multiplication.

8-Bit Binary Division

Purpose: Divide the 1 6-bit unsigned number in memory locations 40 and 41 (most sig-

nificant bits in 41) by the 8-bit unsigned number in memory location 42. The

numbers are normalized so that 1) the most significant bits of both the divi-

dend and the divisor are zero and 2) the number in memory location 42 is

greater than the number in memory location 41, i.e., the quotient can be

contained in 8 bits. Store the quotient in memory location 43 and the re-

mainder in memory location 44.

Sample Problems:

a. (40) = 40 (64 decimal)

(41) = 00
(42) = 08

Result = (43) =08
(44) = 00

i.e., 64/8 = 8

b. (40) = 6D (1 2,909 decimal)

(41) = 32

(42) = 47 (71 decimal)

Result = (43) = B5 (181 decimal)

(44) = 3A (58 decimal)

i.e., 12,909/71 = 181 with a remainder of 58.

You can perform division on the computer just like you would per- DIVISION
form division with pen and paper, i.e., using trial subtractions. ALGORITHM
Since the numbers are binary, the only question is whether the bit

in the quotient is or 1, i.e., whether or not the divisor can be subtracted from what is

left of the dividend. Each step in a binary division can be reduced to the following

operation:

If the divisor can be subtracted from the 8

most significant bits of the dividend without

a Borrow, the corresponding bit in the quo-

tient is 1 ; otherwise it is 0.

The only remaining problem is to line up the dividend and quotient properly. You can

do this by shifting the dividend and quotient logically left one bit before each trial

subtraction. The dividend and quotient can share a 16-bit register since the procedure
clears one bit of the dividend at the same time as it determines one bit of the quotient.

8-11

The complete process for binary division is:

STEP 1 - Initialization:

QUOTIENT =
COUNT = 8

STEP 2 - Shift DIVIDEND and QUOTIENT so as to line up properly:

DIVIDEND = 2xQUOTIENT
QUOTIENT = 2 x QUOTIENT

STEP 3 - Perform trial SUBTRACTION. If no BORROW add 1 to QUOTIENT:
If 8 MSBs of DIVIDEND > DIVISOR then

MSBs of DIVIDEND = MSBs of DIVIDEND - DIVISOR
QUOTIENT = QUOTIENT+1

STEP 4 - Decrement counter and check for zero:

COUNT = COUNT-

1

If COUNT * 0, go to STEP 2

REMAINDER = 8>MSBs of DIVIDEND

In the case of sample problem b. where the dividend is 326D (hex) and the divisor is 47

(hex), the process works as follows:

Initialization:

DIVIDEND 326D
DIVISOR 47

QUOTIENT 00
COUNT 00

After first iteration of STEPS 2 - 4:

(Note that the dividend is shifted prior to the trial subtraction)

DIVIDEND 1DDA
DIVISOR 47

QUOTIENT 01

COUNT 07

After second iteration of STEPS 2 - 4:

DIVIDEND 3BB4

After third iteration:

After fourth iteration:

After fifth iteration:

DIVISOR 47
QUOTIENT 02

COUNT 06

DIVIDEND 3068
DIVISOR 47

QUOTIENT 05

COUNT 05

DIVIDEND 19D0
DIVISOR 47

QUOTIENT OB
COUNT 04

DIVIDEND 33A0
DIVISOR 47

QUOTIENT 16

COUNT 03

8-12

After sixth iteration:

DIVIDEND 2040
DIVISOR 47

QUOTIENT 2D
COUNT 02

After seventh iteration:

DIVIDEND 4080
DIVISOR 47

QUOTIENT 5A
COUNT 01

After eighth iteratfon:-

DIVIDEND 3A00
DIVISOR 47

QUOTIENT B5 '

COUNT 00

So the quotient is B5 and the remainder is 3A.

The MSBs of dividend and divisor are assumed to be zero so as to simplify calculations

(the shift prior to the trial subtraction would otherwise place the MSB of the dividend in

the Carry). Problems which do not have the required characteristics can be reformul-

ated by removing those parts of the quotient which would overflow an 8-bit word. For

example:

,

1 024 400 (Hex) 1 00 (Hex)
= = 100+

The last problem is now in the proper form. An extra division may be necessary.

8-13

Flowchart:

c
Dividend =

. ...
(40 and 41)

Divisor = (42)

Count = 8
Quotient =

Dividend =
2 x Dividend

Quotient =
2 x Quotient

(Shift both left 1 bit).

8 MSBs of

Dividend = 8 MSBs
of Dividend - Divisor

Quotient= Quotient +1

(43) = Quotient

(44) = 8 MSBs of

Dividend

c ")

8-14

Source Program:

LHLD
LDA
MOV
MVI
DAD
MOV
SUB
JC
MOV
INR

DCR
JNZ
SHLD

HERE: JMP

Object Program:

DIV:

CNT:

40H
42H
C.A

B.8

H
A.H

C
CNT
H.A

L

B

DIV

43H
HERE

;GET DIVIDEND
;GET DIVISOR

COUNT = 8

SHIFT DIVIDEND. QUOTIENT
IS MOST SIGNIFICANT PART OF DIVIDEND > DIVISOR

NO. GO TO NEXT STEP

YES. SUBTRACT DIVISOR

AND ADD 1 TO QUOTIENT

;STORE QUOTIENT. REMAINDER

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 LHLD 40H 2A
01 40

02 00

03 LDA 42H 3A
04 42

05 00

06 MOV C.A 4F

07 MVI B.8 06

08 08

09 DIV: DAD H 29

OA MOV A.H 7C

OB SUB C 91

OC JC CNT DA
OD 11

OE 00

OF MOV H.A 67

10 INR L 2C
11 CNT: DCR B 05

12 JNZ DIV C2
13 09

14 00

15 SHLD 43H 22

16 43

17 00

18 HERE: JMP HERE C3
19 18

1A 00

Registers H and L hold both the dividend and the quotient. The quotient simply

replaces the dividend in Register L as the dividend is shifted left logically.

An 8-bit subtraction is necessary (plus some register moves) since there is no simple

way to do a 1 6-bit subtraction or comparison. However, DAD H provides a 1 6-bit logical

left shift of the dividend and quotient.

The instruction INR L sets the least significant bit of the quotient to 1 since DAD H has

previously cleared that bit.

8-15

Division is used in calculators, terminals, communications error checking, control

algorithms, and many other applications.

The algorithm takes between 200 and 250 nanoseconds to divide on an Intel 8080 with

a 2 MHz clock. The precise time depends on the number of 1 bits in the quotient. Other
algorithms may reduce the average execution time, but 250 microseconds will still be
typical for a software division.

Self-Checking Numbers
Double Add Double, Mod 1 (T

Purpose: Calculate a checksum digit from a string of BCD digits. The length of the

string of digits (number of words) is in memory location 30; the string of

digits (2 BCD digits to a word) starts in memory location 41. Calculate the

checksum digit by the DOUBLE ADD DOUBLE MOD 10 technique and store

it in memory location 40. (See J.R. Herr, "Self-checking Number Systems",

COMPUTER DESIGN , June 1974. pp. 85-91.).

The DOUBLE ADD DOUBLE MOD 10 technique works as follows:

1) Clear the checksum to start.

2) Multiply the leading digit by two and add the product to the checksum.

3) Add the next digit to the checksum.

4) Continue the alternating process until you have used all the digits.

5) The least significant digit of the checksum is the self-checking dig.it.

Self-checking digits are commonly added to identification numbers on credit cards, in-

ventory tags, luggage, parcels, etc., which are handled by computerized systems. They
may also be used in routing messages, identifying files, and other applications. The pur-

pose of the digits is to minimize entry errors such as transposing digits (69 instead of

96). shifting digits (7260 instead of 3726). missing digits by 1 (65 instead of 64), etc.

You can check the self-checking number automatically for correctness upon entry and
can eliminate many errors immediately.

The analysis of self-checking methods is quite complex. For example, a plain checksum
will not help with transposition (e.g., 4+9 = 9+4). The DOUBLE ADD DOUBLE
algorithm finds transposition errors (e.g.. 2 x4+9 = 17 =# 2 x 9+4) but misses some er-

rors (e.g., 2 x 5+3 has the same least significant digit as 2 x 0+3 so the method will not

find that error).

For example, if the string of digits is:

549321

the result is:

Checksum = 5x2+4+9x2+3+2x2+1=40
Self-checking digit = (least significant digit of checksum)

Note that an erroneous entry like 543921 would produce a different self-checking digit

(4) but an erroneous entry like 043921 would be undetectable.

8-16

Sample Problems:

a. (30) =

(41) =

(42) =

(43) =

Result =

b. (30)

(41)

(42)

(43)

(44)

Result

Flowchart:

03

36
68
51

Checksum = 3x 2+6+6 x 2+8+5 x 2+1 = 43
(40) = 03

04

50
29
16

83
Checksum = 5 x 2+0+2 x 2+9+1 x 2+6+8 x 2+3 = 50
(40) = 00

f Start J

Checksum =

Count = (30)

Pointer = 41

MSD = (Pointer)/ 16
LSD = Pointer AND

00001 111B !

Checksum=Checksum
+ 2 x MSD + LSD

Pointer = Pointer + 1

Count = Count - 1

(40) = Checksum

AND 00001 1 1 1B

c :>

8-17

Source Program:

LDA 30H
MOV B.A

MVI CO
LXI H.41H

CHDIG: MOV A.M
MOV D.A

RAR
RAR
RAR
RAR
ANI 00001 111B
ADD A
DAA
ADD C
DAA
MOV CA
MOV A.D
ANI 00001 1 1 1B

ADD C
DAA
MOV CA
INX H
DCR B

JNZ CHDIG
ANI 00001 1 1 1B
STA 40H

HERE: JMP HERE

;COUNT=LENGTH OF STRING (IN BYTES)

CHECKSUM=0
POINT TO START OF STRING
GET TWO BCD DIGITS

SAVE COPY
GET MSD BY SHIFT AND MASK

MASK OFF MSD
DOUBLE MSD
KEEP IT DECIMAL
ADD 2 x MSD TO CHECKSUM

;MASK OFF LSD
;ADD LSD TO CHECKSUM

;MASK OFF SELF-CHECKING DIGIT

;SAVE SELF-CHECKING DIGIT

8-18

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 LDA 30H 3A
01 30
02 00
03 MOV B.A 47
04 MVI CO OE
05 00
06 LXI H.41H 21

07 41

08 00
09 CHDIG: MOV A.M 7E
0A MOV D.A 57
OB RAR 1F

OC RAR 1F

OD RAR 1F

OE RAR 1F

OF ANI 00001 1 1 1B E6
10 OF
11 ADD A 87
12 DAA 27
13 ADD C 81

14 DAA 27
15 MOV C.A 4F
16 MOV A.D 7A
17 ANI 00001 1 1 1

B

E6
18 OF
19 ADD C 81

1A DAA 27
1B MOV C.A 4F
1C INX H 23
1D DCR B 05
1E JNZ CHDIG C2
1F 09
20 00
21 ANI 00001 1 1 1B E6
22 OF
23 STA 40H 32
24 40
25 00
26 HERE: JMP HERE C3
27 26
28 00

The digits are removed by shifting and masking. Four right shifts are needed to get the

most significant digit.

A Decimal Adjust (DAA) must follow each addition to get the proper decimal result. A
single DAA after a series of additions will not do the job (try it in this program).

Doubling the MSD involves adding it to itself and then performing the Decimal Adjust

(DAA).

Carries from the decimal sum -are ignored since the procedure only uses the least sig-

nificant digit of the checksum.

8-19

PROBLEMS
1) Multiple-Precision Subtraction

Purpose: Subtract two multiple-word numbers. The length of the numbers is in memo-
ry location 30. the numbers themselves start (least significant bits first) in

memory locations 41 and 61 respectively, and the difference replaces the

number starting in memory location 41. Subtract the number starting in 61

from the one starting in 41.

Sample Problem:

(30) = 04

(41) = C3
(42) = A7
(43) = 5B
(44) = 2F

(61) = B8
(62) = 35
(63) = OF
(64) = 14

Result (41) =0B
(42) = 72

(43) = 7C
(44) = 1A

i.e. 2 F 5 BA7 C3

1 A7C720B

2) Decimal Subtraction

Purpose: Subtract two multiple-word decimal (BCD) numbers. The length of the num-
bers is in memory location 30, the numbers themselves start (least signifi-

cant bits first) in memory locations 41 and 61 respectively and the difference

replaces the number starting in 61 from the one starting in 41.

Sample Problem:

(30) = 04

(41) = 85
(42) = 19

(43) = 70
(44) = 36

(61) = 59
(62) = 34
(63) = 66
(64) = 12

Result = (4T) = 26
(42) = 85
(43) = 03
(44} = 24

i.e. 36 70198 5

+12663459
24038526

8-20

This will serve as a hint:

X - Y = X + 99 - Y + BORROW

where X and Y are each 2 digits from the strings and the BORROW is the borrow from
tne less significant digits. Finding 99-Y is no problem since Y'is always less than or

equal to 99. But remember that the role of the CARRY is reversed from the usual (why?).

3) 8-Bit By 16-Bit Binary Multiplication

Purpose: Multiply the 16-bit unsigned number in memory locations 40 and 41 (most

significant bits in 41) by the 8-bit unsigned number in memory location 42.

Store the result in memory locations 43 through 45 with the most significant

bits in memory location 45.

Sample Problems:

(40) = 03
(41) = 00
(42) = 05

Result (43) = OF
(44) = 00
(45) = 00
i.e.. 3x5 = 15

(40) = 6F (29,295 decimal)

(41) = 72

(42) = 61 (97 decimal)

Result (43) = OF

(44) = 5C
(45) = 2B
i.e.. 29,295x97 = 2.841,615

Proceed just as in the example under 8-Bit Binary Multiplication but save the 8 most
significant bits of the product in the Accumulator, i.e.. shift them in as the multiplier is

shifted out.

4) Signed Binary Division

Purpose: Divide the 16-bit signed number in memory locations 40 and 41 (most sig-

nificant bits in 41) by the 8-bit signed number in memory location 42. The
numbers are normalized so that the magnitude of memory location 42 is

greater than the magnitude of memory location 41, i.e., the quotient can be
contained in.8 bits. Store the quotient (signed) in memory location 43 and
the remainder (always positive) in memory location 44.

Sample Problems:

(40) = CO (-64)

(41) = FF

(42) = 08
Result = (43) = F8 (-8) quotient

(44) = 00 (0) remainder

(40) = 93 (-4,717)

(41) = ED
(42) = 47 (71) decimal

Result = (43) = BD (-67) decimal

(44) = 2B (+40) decimal

Determine the sign of the result, perform an unsigned division, and adjust the quotient
and remainder properly.

8-21

5) Self-Checking Numbers ALIGNED 1, 3, 7 MOD 10
Purpose: Calculate a checksum digit from a string of BCD digits. The length of the

string of digits (number of words) is in memory location 30; the string of

digits (2 BCD digits to a word) starts in memory location 41. Calculate the

checksum digit by the ALIGNED 1, 3, 7 MOD 10 method and store it in

memory location 40.

The ALIGNED 1, 3, 7 MOD 10 technique works as follows:

1) Clear the checksum to start.

2) Add the leading digit to the checksum.

3) Multiply the next digit by 3 and add the product to the checksum.

4) Multiply the next digit by 7 and add the product t6 the checksum.

5) Continue the process (Steps 2-4) until you have used all the digits.

6) The self-checking digit is the least significant of the checksum.

For example, if the string of digits is:

549321 •

the result is:

Checksum = 5 + 3x4 + 7x9 + 3 + 3x2 + 7x1=96
Self-checking digit = 6

Sample Problems

a. (30) = 03

(41) = 36

(42) = 68

(43) = 51

Result = Checksum = 3 + 3x6 + 7x6 + 8 + 3x5 + 7x1 =93
(40) = 03

b. (30) = 04

(41) = 50
(42) = 29

(43) = 16

(44) = 83
Result = Checksum = 5 + 3x0 + 7x2 + 9 + 3x1 +7x6 + 8 + 3x3 = 90

(40) = 00

Note that 7 = 2x 3 + 1 and 3 = 2x1+1 so the formula M; = 2 x Mj . 1 + 1 can be

used to get from one multiplying factor to the next.

8-22

Chapter 9
TABLES AND LISTS

Tables and lists are two of the basic data structures used with all computer systems.

We have already seen tables used to perform arithmetic and code conversions. Tables

may also identify or respond to commands and instructions, linearize data, provide ac-

cess to files or records, define the meaning of the keys or switches, and choose instruc-

tion sequences. Lists are usually less structured than tables. Lists may record tasks

which the processors must perform, output messages or data which the processor must

record, or conditions which have changed or should be monitored. Tables are a simple

way of making decisions or solving problems since no computations or logical functions

are necessary. The problem is simply one of organizing the table so that the proper en-

try is easy to find. Lists allow the execution of multiple tasks, the preparation of multiple

results, and the construction of interrelated data files (or data bases). Problems include

how to add elements to the list and delete elements from it.

EXAMPLES
Add Entry To List

Purpose: Add the contents of memory location 30 to a list if it is not already present.

The length of the list is in memory location 40 and the list itself begins in

memory location 42.

Sample Problems:

a. (30) = 6B
(40) = 04
(41) = 37

(42) = 61

(43) = 28

(44) = 1D
Result = (40) =05

(45) = 6B

The entry is added' to the list since it is not already present. The length of the list is in-

creased by 1.

b. (30) = 6B
(40) = 04

(41) = 37

(42) = 6B
(43) = 28
(44) = 1D

Result = No change since the entry is already in the list.

9-1

Flowchart:

f Start J

Entry = (30)

Count = (40)

Pointer = 41

Pointer = Pointer + I

Count = Count - 1

(Pointer) = Entry

(41) = (41) + 1

c :>

Source Program:

SRLST:

DONE:

LXI 41H
MOV B.M
INX H
LDA 30H
CMP M
JZ DONE
INX H
DCR B

JNZ SRLST
MOV M.A
LX! H.41H
INR M
JMP DONE

COUNT = LENGTH OF LIST

POINT TO START OF LIST

GET ENTRY
IS ENTRY = ELEMENT IN LIST?

YES. THROUGH
NO. GO ON TO NEXT ELEMENT

;HAVE ALL ELEMENTS»BEEN EXAMINED?
;YES, ADD ENTRY TO LIST

;ADD 1 TO LIST LENGTH

9-2

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 LXI H.41H 21

01 41

02 00

03 MOV B.M 46
04 INX H 23

05 LDA 30H 3A
06 30

07 00

08 SRLST: CMP M BE
09 JZ DONE CA
0A 16

OB 00

OC INX H 23

OD DCR B 05

OE JNZ SRLST C2
OF 08
10 00
11 MOV M.A 77

12 LXI H.41H 21

13 41

14 00

15 INR M 34

16 DONE: JMP DONE C3
17 16

18 00

The program does not work if the length of the list could be zero. We could avoid this

problem by checking the length initially. The initialization procedure would then be:

COUNT = LENGTH OF LIST

SET FLAGS FROM COUNT
GET ENTRY
POINT TO START OF LIST

ADD 1ST ENTRY IF LIST EMPTY

LXI H.42H

MOV B.M
SUB A
ORA B

LDA 30H
INX H
JZ ADELM

ADELM: MOV M.A ;ADD ENTRY TO LIST

The procedure:

LXI

INR

H.ADDR
M

is a quick way to add 1 to a counter in memory location ADDR. Using DCR M in a similar

fashion subtracts 1 from the counter. MVI M,CONST can place a starting value (such as

zero) in the counter. Memory locations should, of course, only be used for counters

when no registers are available.

9-3

Clearly this method of adding elements is very inefficient if the list | HASHING |

is long. We could improve the procedure by limiting the search to

part of the list or by ordering the list. We could limit the search by using the entry to get

a starting point in the list. This method is called hashing and is much like selecting a

starting page in a dictionary or directory on the basis of the first letter in an entry. We
could order the list by numerical value. The search could then end when the list values

went beyond the entry (the values would be either larger or smaller depending on the

ordering technique used). The difficulty with this method is that a new entry would
have to be inserted properly and then all the other entries would have to be moved
down in the list.

The program could be restructured to use two tables. One table could provide a starting

search point in the other table, e.g.. the search point could be based on the most or

least significant 4-bit digit in the entry.

If each entry were longer than one word, a pattern-matching procedure would be

necessary as in the example given under PATTERN MATCH. We would have to be

careful to line up the next entry correctly if a match failed, i.e.. skip over the last part of

the present entry once a mismatch was found.

Check An Ordered List

Purpose: Check the contents of memory location 30 to see if it is in an ordered list. The
length of the list is in memory location 41; the list itself begins in memory
location 42 and consists of unsigned binary numbers in increasing order. If

the contents of location 30 is in the list, clear memory location 40; otherwise,

set memory location 40 to FF (hex).

Sample Problems:

(30) = 6B

(41) = 04
(42) = 37

(43) = 55

(44) = 7D
(45) = A1

Result = (40) = FF

(30) = 6B
(41) = 04

(42) = 37

(43) = 55

(44) = 6B
(45) = A1

Result = (40) = 00

9-4

Flowchart:

f Start

)

Entry =
Count =
Pointer =
Mark =

(30)

(42)

42

(40) = Mark

C ^)

9-5

Source Program:

LXI H.41H

MOV B.M

INX H
MVI CO
LDA 30H

SRLST: CMP M
JZ DONE
JC NOTIN
INX H
DCR B

JNZ SRLST
NOTIN: MVI C.OFFH
DONE: MOV A.C

STA 40H
HERE: JMP HERE

Object Program:

COUNT = LENGTH OF LIST

POINT TO START OF LIST

MARK = FOR IN LIST

GET ENTRY
IS ENTRY = ELEMENT IN LIST?

YES. THROUGH
ENTRY NOT IN LIST IF < ELEMENT
GO ON TO NEXT ELEMENT

ALL ELEMENTS EXAMINED?
YES, MARK = FF FOR NOT IN LIST

SAVE MARK = OR FF

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 LXI H.41H 21

01 41

02 00
03 MOV B.M 46
04 INX H 23
05 MVI CO OE

06 00
07 LDA 30H 3A
08 30

09 00

OA SRLST: CMP M BE

OB JZ DONE CA
OC 18

OD 00
OE JC NOTIN DA
OF 16

10 00
11 INX H 23

12 DCR B 05

13 JNZ SRLST C2
14 OC
15 00
16 NOTIN: MVI C.OFFH OE

17 FF

18 DONE: MOV A.C 79

19 STA 40H 32

1A 40

1B 00

1C HERE: JMP HERE C3
1D 1C

1E 00

9-6

The searching process is a bit different here since the elements are ordered. Once we
find an element larger than the entry, the search is over sirrce subsequent elements will

be even larger. You may want to try an example to convince yourself that the procedure

works.

As in the previous problem, a table or other methodwhich chose a SEARCHING
good starting point would speed the search. One method would be METHODS
to start in the middle and then determine which half of the list the

entry was in. then divide the half into halves, etc. This method is called a "binary

search" since it divides the remaining part of the list in half each time. Knuth describes

other searching techniques in his book
"
The Art Of Computer Programming, Volume

III: Sorting and Searching" , Addison-Wesley, Reading. -Mass., 1973. Knuth also has dis-

cussed searching and hashing in a. more elementary way in an article entitled

"Algorithms" (see the April- 1977 issue of Scientific American).

This algorithm is a bit slower than the one in the example given under ADD ENTRY TO
LIST because of the extra conditional Jump (JC NOT1N) The average execution time for

this simple search technique increases linearly, with the length of the list, while the

average execution time for a binary search is logarithmically related to the length of the

list (the search time increases by one iteration time when the length doubles). Note that

we could replace the MVI COFFH instruction at label NOTIN with a DCR C instruction

and save a byte of object code. Why are we-allowed to do this?

Replacing A Chain With Data

Purpose: Replace each entry in a chain of addresses with data. The data is in memory
locations 40 and 41 (MSBs in 41). The address of the. start of the chain is in

memory locations 42 and 43 (MSBs in 43). Each entry in the chain is two

bytes long and points to the address of the next two-byte element in the

chain. The last element in the chain contains zercrto indicate that there is no

next element.

This kind of data structure (the chain) is used to allow forward referencing,

i.e., referencing symbols before they are defined. The most common use is in

assemblers and compilers. In this usage, when a symbol that has not_yet.

been defined (by defined we mean established, by an EQU or used.as a label,

etc.) is referenced, an entry is made to a chain of all references 'to that sym-

bol. When the symbol is finally defined, all references to that symbol are lo-

cated and then satisfied by processing the chain.

Sample Problem:

(40) = 66
(data

(41) = 00

(42) = 46

(43) = 00 | address of first element in list

[address of second element in list

(47) = 00

(4D) = 00
J-

end of list.

(4E) = 00

Result = (46) =66
(47) = 00

(4D) = 66
(4E) = 00

9-7

Flowchart:

f Start J

Data = (40 and 41)

Pointer = (42 and 43)

Temp = (Pointer)

(Pointer) = Data

Pointer = Temp

ce Program:

LHLD 40H
MOV B.H

MOV C.L

LHLD 42H
N: MOV

. E.M
MOV M.C
INX H
MOV D.M
MOV M.B
XCHG
MOV A.H
ORA L

JNZ CHAIN
JMP HERE

GET DATA AND SAVE

POINT TO START OF LIST

GET ADDRESS OF NEXT ELEMENT

REPLACE POINTER WITH DATA
NEW POINTER
IS NEW POINTER ZERO?
IF SO. NO MORE ELEMENTS
IF NOT. CONTINUE TRACING

9-8

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 LHLD 40H 2A

01 40

02 00

03 MOV B,H 44

04 MOV C.L 4D
05 LHLD 42H 2A

06 42

07 00

08 CHAIN: MOV E,M 5E

09 MOV M.C 71

0A INX H 23

OB MOV D.M 56

OC MOV M.B 70

OD XCHG EB

OE MOV A.H 7C

OF ORA L B5

10 JNZ CHAIN C2

11 08

12 00

13 HERE: JMP HERE C3

14 13

15 00

The 8080 processor has some 16-bit instructions but not a full set. There is no implied

memory addressing with 1 6-bit data nor is there a way of checking if a 1 6-bit number is

zero. We therefore must use the 8-bit MOV instruction to fetch the new pointer and fill

the old one with data. We also must use the logical ORing of the two 8-bit sections to

determine if the 1 6-bit pointer is zero (note that adding the two 8-bit sections would not

work — why?)

The XCHG instruction which exchanges the contents of register pair H and L with D
and E is convenient as a 16-bit register transfer instruction. XCHG replaces a whole
series of MOV instructions since it exchanges two 1 6-bit quantities. Note that you can-

not transfer the pointer immediately to H and L (what happens if you replace MOV E,M

with MOV L,M?)

Chaining can handle lists which are not in sequential memory locations. Each element

must somehow contain the address of the next element. Such lists can allow a user to

change variables, fill in definitions in a program, or create a linked data base.

9-9

SIMPLE
SORTING
ALGORITHM

8-Bit Sort

Purpose: Sort an array of unsigned binary numbers into decreasing order. The length

of the array is in memory location 40 and the array itself begins in memory
location 41.

Sample Problem:

(40) = 06
(41) = 2A
(42) = B5
(43) = 60
(44) = 3F

(45) = D1

(46) = 19

Result = (41) = D1

(42) = B5
(43) = 60

(44) = 3F

(45) = 2A
(46) = 19

A simple sorting technique works as follows:

STEP 1 -Clear a flag INTER.

STEP 2 - Successively examine each pair of numbers in the array.

If any are out of order, exchange them and set flag INTER.

STEP 3 - If INTER * 0. return to STEP 1

.

INTER will be set to 1 if any pair of numbers is out of order. Therefore, if INTER = 0, the

array is in proper order.

The technique operates as follows in a simple case. Let us assume that we want to sort

an array into ascending order; the array has four elements— 08. 15, 03, 12.

1st iteration:

STEP 1 - INTER =

STEP 2 - Final order of the array is:

15

08
12

03

since the first pa if (08, 15) "is exchanged and so is the third pair (03, 12). INTER = 1.

2nd iteration:

STEP 1 - INTER =

STEP 2 - Final order of the array is:.

15

12

08
03

since the second pair (08, 12) is exchanged. INTER = 1.

3rd iteration:

STEP 1 -INTER =0
STEP 2 -The elements are already in order so no exchanges are necessary and INTER

remains zero.

9-10

Flowchart:

f Start J

Inter =

Count = (41)- 1

Pointer = 42

Temp = (Pointer)

(Pointer) = (Pointer + 1)

(Pointer + 1)= Temp
Inter = 1

Pointer = Pointer + 1

Count = Count - 1

9-11

Source Program:

SORT: MVI B.O ;

LXI H.41H :

MOV CM
OCR C ;

INX H :

PASS1: MOV A.M :

INX H
CMP M :

JNC CNT :

MOV D.M ;

MOV M,A
DCX H
MOV M.D
INX H
MVI B.1 ;

CNT: DCR C ;

JNZ PASS1
DCR B ;

JZ SORT
HERE: JMP HERE

INTERCHANGE FLAG =
COUNT = LENGTH OF ARRAY

NUMBER OF PAIRS = COUNT -1

POINT TO START OF ARRAY
GET Kth ELEMENT

COMPARE TO (K+1)th ELEMENT
NO INTERCHANGE IF Kth > (K+1)th

INTERCHANGE IF OUT OF ORDER

INTERCHANGE FLAG = 1

COUNT DOWN

IS INTERCHANGE FLAG 1?

YES. DO ANOTHER PASS

9-12

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 SORT: MVI B.O 06

01 00

02 LXI H.41H 21

03 41

04 00

05 MOV CM 4E

06 DCR C OD
07 INX H 23

08 PASS1: MOV A.M 7E

09 INX H 23

0A CMP M BE

OB JNC CNT D2

OC 15

OD 00

OE MOV D.M 56

OF MOV M.A 77

10 DCX H 2B

11 MOV M,D 72

12 INX H 23

13 MVI B.1 06

14 01

15 CNT: DCR C OD
16 JNZ PASS1 C2
17 08

18 00

19 DCR B 05

1A JZ SORT CA
1B 00

1C 00

1D HERE: JMP HERE C3
1E 1D

1F 00

The case where two elements in the array are equal is very important here. The program

should not perform an interchange in that case since that interchange would occur in

each pass. The result would be that each pass would set the interchange flag, thus pro-

ducing an endless loop.

The 8080 Conditional Branch instructions can be limiting, and are particularly limiting

in this program. Following an instruction like CMP M, we have only JC, jump if

(M) > (A), and JNC, jump if (M) < (A). We do not have Jump instructions in the case

where the equality condition is reversed, i.e., (M) > (A) and (M) < (A). Therefore, we
must be careful of the order of operations.

Implied memory addressing through Registers H and L is awkward here since the pro-

gram uses pairs of elements rather than single elements. Note that if the 8080 had in-

dexing this program would be much simpler, since the two elements could be referred

to with the same base address but different indexes.

Before starting each sorting pass, we must be careful to re-initialize the counter,

pointer, and interchange flag.

9-13

There are many sorting algorithms which vary widely in efficiency.

Knuth describes some in the book mentioned earlier ("The Art Of

Computer Programming, Volume

OTHER
SORTING
METHODSIII: Sorting and Searching").

Kernighan and Plauger describe some algorithms and compare
their efficiency on pages 106-1 1 1 of their book

"
The Elements of Programming Style ",

McGraw-Hill, New York, 1974.
:

Using A Jump Table With A Key
Purpose: Use the contents of memory location 30 as the key to a jump table starting in

location 41
. Each entry in the jump table contains an 8-bit key value followed

by a 16-bit address (MSBs in second word) to which the program should

transfer control if the key is equal to that key value.

Sample Problem:

(30) = 38

(41) = 32

(42) = 55

(43) = 00

(44) = 35

(45) = 61

(46) = 00
(47) = 38

(48) = 65

(49) = 00

Result = (PC

Flowchart:

(PC) = 0065 since that address corresponds to key value 38.

r Start ^

Key = (30)

Pointer = 4

1

s^^^^
Yes^^^

^LNo
\

Pointer = Pointer

+ 3

PC = (Pointer + 2,

Pointer + 1)

(Jump to

Table Address)

*

(E~>)

9-14

Source Program:

IDA
LXI

CMP
INX

JZ

INX

INX

JMP
MOV
INX

MOV
XCHG
PCHL

Object Program:

SRKEY:

FOUND:

30H
H.41H
M
H
FOUND
H
H
SRKEY
E,M

H
D,M

GET KEY
POINT TO START OF JUMP TABLE
;IS KEY = TABLE KEY?

;YES, JUMP TO ADDRESS IN TABLE

;NO. GOTO NEXT ENTRY

;GET JUMP ADDRESS FROM TABLE

;AND JUMP TO IT BY MOVING IT TO PC

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 LDA 30H. 3A

01 30

02 00

03 LXI H.41H 21

04 41

05 00

06 SRKEY: CMP M BE

07 INX H 23

08 JZ FOUND CA
09 10

OA 00

OB INX H 23

OC INX H 23

OD JMP SRKEY C3

OE 06

OF 00

10 FOUND: MOV E,M 5E

11 INX H 23

12 MOV D.M 56

13 ; '*CHG EB

14 PCHL E9

If a key comparison fails, we must skip over the key and the associated address before

making the next comparison. The three INX H instructions do this.

The instruction PCHL, which transfers H -and L to the Program Counter, is very handy in

jump tables and monitor programs. Note* that PCHL is a Jump instruction since it places

a new value rn the Program Counter. It is, in fact, the only 8080 instruction that allows

us to place a variable address directly into the Program Counter. All the Jump and Call

instructions use fixed addresses.

No ending operation is necessary since PCHL transfers control to the address in the

jump table.

Jump tables are very useful in situations where one of several routines must be

selected. Such situations arise in decoding commands, selecting test programs, choos-

ing alternate methods, or selecting an I/O configuration.

9-15

The jump table replaces a whole series of conditional Jump operations. The program
which searches the jump table could be used to search several different tables merely
by changing the key and starting address.

Here again, handling 16-bit or longer data is awkward. The 8080 has no single instruc-

tion that will increment the address in H and L by three, nor does it have a single in-

struction that will fetch the 1 6-bit jump address from the table. Each of these tasks re-

quires several instructions.

How could you restructure the initial conditions to eliminate the extra Jump instruc-

tion?

PROBLEMS
1) Remove Entry From List

Purpose: Remove the contents of memory location 30 from a list if it is present. The
length of the list is in memory location 41 and the list itself begins in memory
location 42. Move the entries below the one removed up one position and
reduce the length of the list by 1.

Sample Problems:

(30) = 6B
(41) = 04
(42) = 37

(43) = 61

(44) = 28
(45) = 1D

Result = No change since the entry is not in the list.

(30) = 6B

(41) = 04
(42) = 37

(43) = 6B
(44) = 28

(45) = 1D

Result = (41) =03
(43) = 28

(44) = 1

D

The entry is removed from the list and the ones below it are moved up one position. The
length of the list is reduced by 1.

9-16

2) Add Entry To Ordered List

Purpose: Place the contents of memory location 30 in an ordered list if it is not already

there. The length of the list is in memory location 41 ; the list itself begins in

memory location 42 and consists of unsigned binary numbers in increasing

order. Place the new entry in the correct position in the list, adjust the ele-

ments below it down, and increase the length of the list by 1.

Sample Problems:

(30) = 6B
(41) = 04

(42) = 37

(43) = 55

(44) = 7D
(45) = A1

Result = (41) =05
(44) = 6B
(45) = 7D
(46) = A1

(30) = 6B
(41) = 04

(42) = 37

(43) = 55

(44) = 6B
(45) = A1

Result = UnchangeUnchanged since the entry is already in the list.

3) Add Element To Chained List

Purpose: Add the address in memory location 40 and 41 (MSBs in 41) to a chained list.

The address of the old starting address of the list is in memory location 42

and 43 (MSBs in 43). Each entry in the chained list contains either the ad-

dress of the next element in the list or zero if there is no next element; the en-

tries are all 16 bits with the most significant bits in the second word of the

entry. The new entry goes at the head of the list; its address will be in memo-
ry location 42 and 43 and it will contain the address that was previously in

those locations.

Sample Problem:

(40) = 46)

(41) = 00 }
new entry

(4?) = 4D

)

mq nn \ P°inter t0 old nead of list

RSSUlt =
(43) = 00 f

pointer t0 new head of list

47 - nn I
entry points t0 old nead of list

9-17

4) 1 6-Bit Sort

Purpose: Sort an array of unsigned 16-bit binary numbers into increasing order. The
length of the array is in memory location 40 and the array itself begins in

memory location 41. Each 16-bit number is stored with the least significant

bits in the first word.

Sample Problem:

(40) = 03
(41) = 2A
(42) = B5
(43) = 60
(44) = 3F

(45) = D1

(46) = 19

Result = (41) = D1

(42) = 1

9

(43) = 60
(44) = 3F

(45) = 2A
(46) = B5

The numbers are B52A, 3F60. and 19D1.

5) Using An Ordered Jump Table

Purpose: Use the contents of memory location 30 as an index to a jump table starting

in location 41. Each entry in the jump table contains a 16-bit address with
the MSBs in the second word to which the. program should transfer control if

the index has the appropriate value, i.e.. if the index is 6, the program forces

a jump to address entry #6 in the table.

Sample Problem:

(30) = 02

(41) = 00
(42) = 50

(43) = 00
(44) = 56

(45) = 00
(46) = ^ 60

Result = (PC) = 0060 since that is entry #2 in the jump table.

9-18

Chapter 10
SUBROUTINES

None of the examples that we have shown so far is typically a program all by itself.

Most real programs perform a series of tasks, many of which may be the same or may
be common to several different programs. We need a way to formulate these tasks once

and make that formulation conveniently available both in different parts of the current

program and in other programs.

The answer is to formulate the task as a "subroutine". The
resulting sequence of instructions can be written once, tested,

and then used repeatedly. It can form part of a "subroutine

library" which will provide documented solutions to common problems

Most microprocessors have special instructions for transferring

SUBROUTINE
LIBRARY

SUBROUTINE
INSTRUCTIONScontrol to subroutines and restoring control to the main pro-

gram. We often refer to the special instruction that transfers

control to a subroutine as Call, Jump to Subroutine, Jump and Mark Place, or Jump and
Link. The special instruction that restores control to the main program is usually called

Return. On the 8080 microprocessor, the Call instruction saves the old value of the Pro-

gram Counter in the RAM Stack before placing the starting address of the subroutine in

the Program Counter; the Return instruction gets the old value from the Stack and puts

it back in the Program Counter. The effect is to transfer program control, first to the

subroutine and then back to the main program. Clearly the subroutine may itself

transfer control to a subroutine and so on.

In order to be really useful, a subroutine must be reasonably general. A routine that can

only perform a specialized task such as looking for a particular letter in an input string

of fixed length will not be very useful. If, on the other hand, the subroutine can look for

any letters in strings of any length, it will be far more helpful. We call the data or ad-

dresses which the subroutine permits to be variables "parameters". An important part

of writing subroutines is deciding which variables should be parameters.

PASSING
PARAMETERS

One problem is transferring the parameters to the subroutine; this

process is called "passing" parameters. The simplest method is for

the main program to place the parameters in registers. Then the

subroutine can simply assume that the parameters are there. Of course, this technique

is limited by the number of registers that are available. The parameters may, however,

be addresses as well as data. For example, a sorting routine could begin with the start-

ing address of an array in Registers H and L.

Other methods are necessary when there are more parameters. One possibility is to use

the Stack. The main program can place the parameters in the Stack and the subroutine

can retrieve them. The advantages of this method are that the Stack is essentially

unlimited in size and that data in the Stack is not lost even if the Stack is used again.

The disadvantages are that few 8080 instructions use the Stack, and the Call instruc-

tion also stores the return address in the Stack. Another method is to use an area of

memory for parameters. The main program can place the address of the area in

Registers H and L and the subroutine can then retrieve the data as needed. However,
this procedure is awkward if the parameters themselves are addresses.

10-1

Sometimes a subroutine must have special features. A subroutine I RELOCATION I

is "relocatable" if it can be placed anywhere in memory. You can
use such a subroutine easily regardless of the placement of other programs or the ar-

rangement of the memory. A strictly relocatable program can use no absolute ad-

dresses; all addresses must be relative to the start of the program. The program requires

a "relocating loader" to place it in memory; the loader will start the program after other
programs and will add the starting address or "relocation constant" to all addresses in

the program.

RE-ENTRANT
SUBROUTINE

DOCUMENTING
SUBROUTINES

A subroutine is "re-entrant" if it can be interrupted and re-entered

by the interrupting program. Re-entrancy is important for standard

subroutines in an interrupt-based system. Otherwise the interrupt

service routines cannot use the standard subroutines without producing errors.

Microprocessor subroutines are easy to make re-entrant since the Call instruction uses
the Stack and that procedure is automatically re-entrant. The only remaining require-

ment is that the subroutine must use the registers and Stack rather than fixed memory
locations for temporary storage. This is a bit awkward but usually can be done if

necessary.

A subroutine is "recursive" if it calls itself. Such a subroutine clearly must also be re-

entrant. However, recursive subroutines are uncommon in microprocessor applications.

Most programs consist of a main program and several subroutines. This is advan-
tageous because you can use proven routines and debug and test the other subroutines

separately. You must, however, be careful to use the subroutines properly and remem-
ber their exact effects.

SUBROUTINE DOCUMENTATION
Subroutine listings must provide enough information so that

other users can utilize the subroutine without having to ex-

amine its internal structure. Among the necessary specifica-

tions are:

1) A description of the purpose of the subroutine.

2) A list of parameters.

3) Registers and memory locations used.

4) A sample case.

If these guidelines are followed, the subroutine will be as easy to use as possible.

It is important to note that the following examples all reserve an area of memory for the

RAM stack. If the monitor in your microcomputer establishes such an area, you may use
it instead. If you wish to try establishing your own stack area, remember to save and
restore the monitor's Stack Pointer in order to produce a proper return at the end of

your main program.

To save the monitor Stack Pointer, use the routine:

LXI H.O ;GET MONITOR STACK POINTER
DAD SP
SHLD STEMP ;AND SAVE IT

To restore the monitor Stack Pointer, use the routine:

LHLD STEMP ;RESTORE MONITOR STACK POINTER
SPHL

We have used 80 hex as the starting point for the Stack. If necessary, you should con-

sistently replace that address with one suitable for your microcomputer.

10-2

EXAMPLES
Hex To ASCII

Purpose: Convert the contents of the Accumulator to an ASCII character. Place the

result in the Accumulator.

Sample Problems:

a. (A) = OC
Result = (A) =43 'C

b. (A) = 06
Result = (A) =36 '6'

Flowchart:

(A) = (A) + ASCII A
- ASCII 9 - 1

(A) = (A) + ASCII

c D

10-3

Source Program:

The calling program starts the Stack at memory location 80, gets the binary data from
memory location 40, calls the conversion subroutine, and stores the result in memory
location 41.

ORG
LXI SP.80H START STACK AT MEMORY LOCATION 80
LDA 40H GET DATA
CALL ASDEC CONVERT TO ASCII

STA 41H STORE RESULT
HERE: JMP HERE

The subroutine converts a hexadecimal digit to ASCII.

ORG 20H
ASDEC: CPI 10 ;IS DATA 10 OR MORE?

JNC ASCZ
ADI 'A'-'9'-1 ;YES, ADD OFFSET FOR LETTERS

ASCZ: ADI '0' ;ADD OFFSET FOR ASCII

RET

Subroutine documentation:

SUBROUTINE ASDEC

PURPOSE: ASDEC CONVERTS A HEXADECIMAL
DIGIT IN THE ACCUMULATOR TO AN
ASCII CHARACTER IN THE ACCUMULATOR

INITIAL CONDITIONS: HEX DIGIT IN A

FINAL CONDITIONS: ASCII CHARACTER IN A

REGISTERS USED: A

SAMPLE CASE
STARTING CONDITION: 6 IN ACCUMULATOR
FINAL CONDITION: ASCII 6 (HEX 36)

IN ACCUMULATOR

10-4

Object Program:

Calling program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 LXI SP.80H 31

01 80
02 00
03 LDA 40H 3A
04 40
05 00
06 CALL ASDEC CD.

07 20

08 00

09 STA 41

H

32

0A 40
0B 00
OC HERE: JMP HERE C3
OD OC
OE 00

Subroutine:

20 ASDEC: CPI 10 FE

21 OA
22 JNC ASCZ D2
23 27
24 00
25 ADI 'A'-'9'-1 C6
26 07
27 ASCZ: ADI '0' C6
28 30
29 RET C9

The instruction LXI SP.80H starts the Stack at memory location 80. Remember that the

Stack grows downward (to lower addresses). We usually place the Stack at the high

end of RAM (i.e.. the largest address) so ttiat it will not interfere with other temporary

storage.

The Call instruction places the subroutine starting address (0020 hex) in the Program
Counter and saves the old Program Counter (0009 hex) in the Stack. The procedure is:

STEP 1 - Decrement Stack Pointer, save MSBs of old Program Counter in Stack.

STEP 2 - Decrement Stack Pointer, save LSBs of old Program Counter in Stack.

The result in this case is:

(7F) = 00
(7E) = 09
(SP) = 7E

The value which is saved is the value of the Program Counter after the processor has
fetched the entire Calf instruction from memory. Note that the address ends up stored

just like other 8080 addresses with the least significant bits in the lower address.

10-5

The Return instruction loads the Program Counter with the contents of the bottom two

memory locations in the Stack into the Program Counter The procedure is:

STEP 1 - Move 8 bits from Stack to LSBs of Program Counter Increment Stack Pointer.

STEP 2 - Move 8 bits from Stack to MSBs of Program Counter. Increment Stack Pointer

The result in this case is:

[PC] = (7F) (7E)

= 0009
[SP] = 80

This subroutine has a single parameter and produces a single result. The Accumulator
is the obvious place to put both.

The calling program involves three steps: placing the data in the Accumulator, calling

the subroutine, and storing the result. In addition, the initialization must assign the

Stack to an appropriate area of memory.

The subroutine is re-entrant since it uses no memory locations. The subroutine can be

relocated by using a different ORG statement and then reassembling the code.

If you plan to use the Stack for parameters, remember that the Call instruction places

the return address in the Stack. You can execute INX SP twice to get past the return ad-

dress but you must also remember to adjust the Stack Pointer properly before returning.

You can also move the Stack Pointer to Registers H and L with the sequence:

LXI H.O

DAD SP ;STACK POINTER TO ADDRESS REGISTER

Now you can use implied memory, addressing with H and L to access data in the Stack.

10-6

Length Of A String Of Characters

Purpose: Determine the length of a string of ASCII characters. The starting address of

the string is in Registers H and L. The end of the string is marked by a car-

riage return character CCR'. hex OD). Place the length of the string (excluding

the carriage return) in the Accumulator.

Sample Problems:

a. (H AND L) = 43

(43) = OD
Result = (A) == 00

b. (H AND L) = 43
(43) = 52

(44) = 41

(45) = 54

(46) = 48
(47) = 45

(48) = 52

(49) = OD
Result = (A) == 06

Flowchart:

<TStart)

i

Pointer

Count

= (H and L)

=

Count = Count + 1

Pointer = Pointer + 1

c)

10-7

Source Program:

The calling program starts the Stack at memory location 80, gets the starting address
from memory locations 40 and 41, calls the string length subroutine, and stores the
result in memory location 42

HERE:

ORG
LXI SP.80H
LHLD 40H
CALL STLEN
STA 42H
JMP HERE

START STACK AT LOCATION'80
GET STARTING ADDRESS OF STRING
DETERMINE STRING LENGTH
STORE STRING LENGTH

The subroutine determines the length of- a string of ASCII characters and places the
length in the Accumulator.

STLEN:

CHKCR:

DONE:

ORG 20H
MVI B.O LENGTH =
MVI A.ODH GET 'CR' FOR COMPARISON
CMP M IS CHARACTER CR'?

JZ DONE YES, END OF STRING
INR B NO, ADD VTO LENGTH
INX H
JMP CHKCR
MOV A,B

RET

Subroutine documentation:

SUBROUTINE STLEN

PURPOSE: STLEN DETERMINES THE LENGTH
OF A STRING (NUMBER OF CHARACTERS
BEFORE A CARRIAGE RETURN)

INITIAL CONDITIONS: STARTING ADDRESS .

OF STRING IN H AND L

FINAL CONDITIONS: NUMBER OF CHARACTERS IN A

REGISTERS USED: A, B, H, L:

SAMPLE CASE:
STARTING CONDITION: (H AND L) = 43

(43) = 35, (44) = 44, (45) = OD
FINAL CONDITION: (A) =02

10-8

Object Program:

Calling program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 LXI SP.80H 31

01 80

02 00

03 LHLD 40H 2A
04 40

05 00

06 CALL STLEN CD
07 20

08 00

09 STA 42H 32

0A 42

0B 00

OC HERE: JMP HERE C3
OD OC
OE 00

Subroutine:

20 STLEN: MVI B.O 06

21 00

22 MVI A.ODH 3E

23 OD
24 CHKCR: CMP M BE

25 JZ DONE CA
26 2D
27 00

28 INR B 04

29 INX H 23

2A JMP CHKCR C3
2B 24

2C 00

2D DONE: MOV A,B 78

2E RET C9

The calling program involves four steps: initializing the Stack Pointer, placing the start-

ing address of the string in Registers H and L, calling the subroutine, and storing the

result.

The subroutine is re-entrant since it does not change any memory locations.

The subroutine changes Register B and the address in Registers H and L as well as the

Accumulator. The programmer must be aware that data stored in Register B and the ad-

dress loaded into H and L will be lost: the registers used are an absolutely essential part

of the subroutine documentation.

An alternative to destroying register contents in the subroutine is to save them in the

Stack and then restore them before returning. This approach makes life easier for the

user calling the routine, but costs extra time and memory (in the Stack) in the routine.

This subroutine has a single parameter which is an address. The best way to pass this

parameter is through a register pair, and since the H and L register pair is certainly the

most flexible as far as addressing options are concerned, it is the obvious choice.

10-9

The subroutine contains an unconditional Jump instruction, JMP CHKCR. By altering

the initial conditions prior to entering the subroutine's loop, can you eliminate this

Jump?

Add Even Parity To ASCII Characters

Purpose: Add even parity to a string of 7-bit ASCII characters. The length of the string

is in the Accumulator and the starting address of the string is in Registers H
and L. Place even parity in the most significant bit of each character, i.e., set

the most significant bit if that makes the total number of 1 bits in the word
even.

Sample Problem:

(A) = 6

(H AND L) = 40

(40) = 31

(41) = 32

(42) = 33
(43) = 34

(44) =35
(45) = 36

Result = (40) = B1

(41) = B2
(42) = 33

(43) = B4
(44) = 35

(45) = 36

10-10

Flowchart:

10-11

Source Program:

The calling program starts the Stack at memory location 80, sets the starting address to

40. gets the string length from memory location 30, and calls the even parity

subroutine

ORG
LXI SP.80H START STACK AT LOCATION 80
LXI H.40H GET STARTING ADDRESS OF STRIh

LDA 30H GET STRING LENGTH
CALL EPAR ADD EVEN PARITY TO STRING

HERE: JMP HERE

The subroutine adds even parity to a string of ASCII characters.

ORG 20H
EPAR: MOV B.A

MVI C.10000000B GET PARITY BIT OF 1

SETPR: MOV A,M GET A CHARACTER
ORA C PARITY BIT = 1

JPO CHCNT DON'T SAVE IF PARITY NOW ODD
MOV M.A MAKE PARITY EVEN

CHCNT: INX H
DCR B

JNZ SETPR
RET

Subroutine documentation:

SUBROUTINE EPAR

PURPOSE: EPAR ADDS EVEN PARITY

TO A STRING OF 7-BIT ASCII

CHARACTERS

INITIAL CONDITIONS: STARTING ADDRESS
OF STRING IN H AND L, LENGTH
OF STRING IN A

FINAL CONDITIONS: EVEN PARITY IN

MSB OF EACH CHARACTER

REGISTERS USED: A, B, C, H, L

SAMPLE CASE:
STARTING CONDITION: (H AND L)

(A) = 2. (40) =32, (41) =33
FINAL CONDITION: (40) = B2,

(41) =33

40

10-12

Object Program:

Calling program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 LXI SP.80H 31

01 80
02 00
03 LXI 'H.40H 21

04 40
05 00
06 LDA .30H 3A
07 30
08 00
09 GALL EPAR CD
0A 20
OB 00
OC HERE: JMP HERE C3
OD OC
OE 00

Subroutine:

20 EPAR: MOV B.A 47
21 MVI C.1Q000000B OE
22 80
23 SETPR: MOV A,M 7E

24 ORA C B1

25 JPO CHCNT E2
26 29
27 ' 00
28 MOV M.A 77
29 CHCNT: INX H 23
2A DCR B 05
2B JNZ SETPR C2
2C 23
2D 00
2E RET C9

The calling program must place the starting address of the. string in Registers H and L

and the length of the string in A before transferring control to the subroutine.

The subroutine changes the values in Registers A, K and L and uses Registers B and C
for temporary storage. It is re-entrant since it does not use any fixed memory locations

for temporary storage.

This subroutine has two parameters,. an address -and a number. Registers H and L are

used to pass the address and A to pass the number. No.explicit results are returned

since the subroutine only affects tire MSB* of each character in the string.

10-13

Pattern Match
Purpose: Compare two strings of ASCII characters to see if they are the same. The

length of the strings is in the Accumulator. The starting address of one string

is in Registers H and L; the starting address of the other string is in Registers

D and E. If the two strings match, clear the Accumulator; otherwise, set the

Accumulator to FF hex.

Sample Problems:

(A) = 03

(D AND E) = 50

(H AND L) = 60

(50) = 43 C

(51) = 41 A
(52) = 54 T

(60) = 43 C

(61) = 41 A
(62) = 54 T

Result = (A) =

(A) = 03
(D AND E) = 50

(H AND L) = 60

(50) = 52 R

(51) = 41 A
(52) = 54 T

(60) = 43 C

(61) = 41 A
(62) = 54 T

Result = (A) = FF (hex)

10-14

Flowchart:

c)

Pointer 1 = (D and E)

Pointer 2 = (H and L)

Count =(A)

Pointer 1 =
Pointer 1 + 1

Pointer 2 r=
Pointer 2 + 1

Count •.= Count - 1

(A) = FF (Hex)

(A) =

c >

10-15

Source Program:

The calling program starts the Stack at memory location 80, sets the starting addresses

of the strings to 50 and 60 respectively, gets the string length from memory location

40, calls the pattern match subroutine, and places the result in memory location 41.

ORG
LXI SP.80H
LXI D.60H
LXI H.50H
LDA 40H
CALL PMTCH
STA 41H

HERE: JMP HERE

The subroutine determines if

ORG 20H
PMTCH: MOV B.A

CHCAR: LDAX D
CMP M
JNZ NOMCH
INX D
INX H
DCR B

JNZ CHCAR
SUB A
RET

NOMCH: MVI
RET

A.OFFH

START STACK AT LOCATION 80
GET STARTING ADDRESS OF STRING 1

GET STARTING ADDRESS OF STRING 2

GET STRING LENGTH
CHECK FOR MATCH
SAVE MATCH INDICATOR

GET CHARACTER FROM STRING 2

IS THERE A MATCH WITH STRING 1 ?

NO, DONE — STRINGS NOT EQUAL
MOVE POINTERS

;COUNT CHARACTERS

;COMPLETE MATCH. (A) =

;NO MATCH, (A) = FF

'Subroutine documentation:

SUBROUTINE PMTCH

PURPOSE: PMTCH DETERMINES IF

TWO STRINGS ARE EQUIVALENT

INITIAL CONDITIONS: STARTING ADDRESSES
OF STRINGS IN D AND E, H AND L:

LENGTH OF STRINGS IN ACCUMULATOR

FINAL CONDITIONS:
STRINGS MATCH.

IN A IF

FF IN A OTHERWISE

REGISTERS USED: A, B, D, E, H, L

SAMPLE CASE:
STARTING CONDITIONS: (H AND L) =

50, (D AND E) = 60, (A) = 2

(50) =36, (51) = 39

(60) = 36. (61) = 39

FINAL CONDITION: (A) = SINCE THE STRINGS MATCH

10-16

Object Program:

Calling program:

Memory Address Instruction Memory Contents
(Hex) (Mnemonic) (Hex)

00 LXI SP.80H 31

01 80
02 00
03 LXI D.60H 11

04 60
05 00
06 LXI H.50H 21

07 50
08 00
09 LDA 40H 3A
0A 40
0B 00
OC CALL PMTCH CD
OD 20
OE 00
OF STA 41

H

32
10 41

11 00
12 HERE: JMP HERE C3
13 12

14 00

Subroutine:

20 PMTCH: MOV B.A 47
21 CHCAR: LDAX D 1A
"22 CMP M BE
23 JNZ NOMCH C2
24 2E
25 00
26 INX D 13

27 INX H 23
28 DCR B 05
29 JNZ CHCR C2
2A 21

2B 00
2C SUB A 97
2D RET C9
2E NOMCH: MVI A.OFFH 3E
2F FF

30 RET C9

This subroutine, like the preceding ones, changes all of the flags. You should generally

assume that a subroutine call changes the flags unless it is specifically stated other-

wise. If the main program needs the old flag values, it must save them in the Stack prior

to calling the subroutine. (This is accomplished by using the PUSH PSW instruction.)

The subroutine is re-entrant and changes all the registers except C.

This subroutine has three parameters — the two starting addresses and the length of

the strings. These parameters use five of the seven general-purpose registers.

10-17

Multiple-Precision Addition

Purpose: Add two multiple-word binary numbers. The length of the numbers (in bytes)

is in the Accumulator, the starting addresses of the numbers are in Registers

D and E and H and L, and the starting address of the result is in Registers B

and C. All the numbers begin with the least significant bits.

Sample Problem:

Flowchart:

(A)

(D AND E)

(H AND L)

(B AND C)

= 04
= 51

= 61

= 71

(51)

(52)

(53)

(54)

= C3
= A7
= 5B
= 2F

(61)

(62)

(63)

(64)

= B8
= 35
= DF
= 14

Result = (71)=7B
(72) = DD
(73) = 3A
(74) = 44

i.e.. 2F5BA7C3
14DF35B8
443ADD7B

[Start J

Count - (A)

Pointer 1 = (D and E)

Pointer 2 = (H and U
Pointer 3 = (B and C)

Carry =0

fc,**T
(Pointer 3) =

(Pointer 1)

+ (Pointer 2)

+ Carry

Pointer 1 = Pointer 1 + 1

Pointer 2 = Pointer 2 +

1

Pointer 3=Pointer 3 +

1

Count = Count - 1

No^^ Count ^^

J^Yes

(&* 3

(This step also produces new Carry)

10-18

Source Program:

The calling program starts the Stack at memory location 80, sets the starting addresses

of the various numbers to 50, 60 and 70 respectively, gets the length of the numbers
from memory location 40, and calls the multiple-precision addition subroutine.

HERE:

MPADD:

ADDW:

ORG
LXI SP.80H
LXI H.50H
LXI D.60H
LXI B.70H

LDA 40H
CALL MPADD
JMP HERE

utine performs the

ORG 20H
PUSH B

MOV B.A

ANA A
LDAX D
ADC M
XTHL
MOV M,A
INX H
XTHL
INX D
INX H
DCR B

JNZ ADDW
POP B

RET

START STACK AT LOCATION 80
GET STARTING ADDRESS OF FIRST NUMBER
GET STARTING ADDRESS OF SECOND NUMBER
GET STARTING ADDRESS OF RESULT
GET LENGTH OF NUMBERS
MULTIPLE-PRECISION ADDITION

multiple-precision binary addition.

:RESULT ADDRESS TO STACK

INITIAL CARRY =
GET WORD FROM FIRST NUMBER
ADD WORD FROM SECOND NUMBER
GET RESULT ADDRESS
STORE WORD OF RESULT

;SAVE RESULT ADDRESS
.UPDATE POINTERS AND COUNT

ELIMINATE RESULT ADDRESS FROM STACK

Subroutine documentation:

SUBROUTINE MPADD

PURPOSE: MPADD ADDS TWO
MULTIPLE-WORD BINARY NUMBERS

INITIAL CONDITIONS: STARTING ADDRESSES
OF NUMBERS IN D AND E, H AND L;

STARTING ADDRESS OF RESULT IN

B AND C. LENGTH OF NUMBERS IN

A

REGISTERS USED: ALL

SAMPLE CASE:
STARTING CONDITIONS: (H AND L)

= 50. (D AND E) = 60. (B AND C) = 70, (A) = 2,

(50) = C3. (51) = A7. (60) = B8. (61) = 35
FINAL CONDITIONS: (70) = 7B, (71) = DD

10-19

Object Program:

Calling program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 LXI SP.80H 31

01 80
02 00
03 LXI H.50H 21

04 50
05 00
06 LXI D.60H 11

07 60
08 00
09 LXI B.70H 01

0A 70

0B 00
OC LDA 40H 3A
OD 40
OE 00
OF CALL MPADD CD
10 20
11 00
12 HERE: JMP HERE C3
13 12

14 00

Subroutine:

20 MPADD: PUSH B C5
21 MOV B.A 47
22 ANA A A7
23 ADDW: LDAX D 1A
24 ADC M 8E
25 XTHL E3
26 MOV M.A 77

27 INX H 23
28 XTHL E3
29 INX D 13

2A INX H 23
2B DCR B 05
2C JNZ ADDW C2
2D 23
2E 00
2F POP B C1
30 RET C9

The instruction XTHL exchanges the top two locations in the Stack with the contents of

Registers H and L. This single instruction gets the address for the result from the Stack

and saves the data address in the Stack. It allows you to use the top of the Stack as an

extra register pair.

The POP B instruction at the end of the program clears the data from the Stack so that

the Return instruction will operate properly. You must be careful to clear the Stack cor-

rectly since the Return instruction uses the top entry in the Stack as its destination.

This subroutine has four parameters — three addresses and the length of the numbers.

All of the registers are used for passing parameters.

10-20

The subroutine needs some registers for its own use and must therefore employ some
temporary storage. The Stack is not only easy to use for this purpose but also makes the

program re-entrant.

PROBLEMS
Note that you are to write both a calling program for the sample problem and a properly

documented subroutine.

1) ASCII To Hex
Purpose: Convert the contents of the Accumulator from the ASCII representation of a

hexadecimal digit to the actual digit itself. Place the result in the Accumula-
tor.

Sample Problems:

a. (A) = 43 'C

Result = (A) =0C

b. (A) = 36 '6'

Result = (A) =06

2) Length Of A Teletype Message
Purpose: Determine the length of an ASCII-coded teletype message. The starting ad-

dress of the string of characters in which the message is embedded is in

Registers^ and L. The message itself starts with an ASCII STX character (hex

02) and ends with ETX (hex 03). Place the length of the message (the number
of characters between the STX and the ETX) in the Accumulator.

STX
G

ETX

= 02

3) Check Even Parity In ASCII Characters

Purpose: Check the parity of a string of ASCII characters. The length of the string is in

the Accumulator and the starting address of the string is in Registers H and
L If the parity of all the characters in the string is even, clear the Accumula^
tor; otherwise, set the Accumulator to FF hex (all 1s).

e Problem:

(H AND L) = 41

(41) = 49

(42) = 02

(43) = 47

(44) = 4F

(45) = 03

Result = (A)

Sample Problems:

a. (A) = 03
(H AND L) = 42

(42) = B1

(43) = B2
(44) = 33

Result = (A) = 00 since all the characters have even parity.

b. (A) = 03
(H AND L) = 42

(42) = B1

(43)
='

B6
(44) = 33

Result = (A) = FF (hex) since the character in memory location

43 does not have even parity.

10-21

4) String Comparison

Purpose: Compare two strings of ASCII characters to see which is larger (i.e.. which

follows the other in 'alphabetical' ordering). The length of the strings is in the

Accumulator; the starting address of string 1 is in Registers H and L and the

starting address of string 2 is in Registers D and E. If string 1 is larger than or

equal to string 2. clear the Accumulator; otherwise, set the Accumulator to

FF hex (all 1s).

Sample Problems:

a. (A) = 03
(D AND E) = 60
(H AND L) = 50

(50) =43 C
(51) = 41 A
(52) = 54 T

(62) = 42 B

(63) = 41 A
(64) = 54 T

Result = (A) = 00 since CAT is 'larger' than BAT.

b. (A) = 03
(D AND E) = 60
(H AND L) = 50

(50) = 44 D
(51) = 4F O
(52) = 47 G

(60) = 44 D
(61) = 4F O
(62) = 47 G

Result = (A) = 00 since the two strings are equal.

c. (A) = 03
(D AND E) = 60
(H AND L) = 50

(50) = 43 C
(51) = 41 A
(52) = 54 T

(60) = 43 C
(61) = 55 U
(62) = 54 T

Result = (A) = FF (hex) since CUT is "larger than CAT.

10-22

5) Decimal Subtraction

Purpose: Subtract two multiple-word decimal (BCD) numbers. The length of the num-

bers (in bytes) is in the Accumulator, the starting addresses of the numbers

are in Registers D and E and H and L (subtract the one with the starting ad-

dress in H and L). The starting address of the result is in Registers B and C.

All the numbers begin with the least significant digits. Return the sign of the

result in the Accumulator— zero if the result is positive, FF (hex) if it is nega-

tive.

Sample Problem:

(A) = 04
(H AND L) = 50

(D AND E) = 60

(B AND = 70

(50) = 85
(51) = 19

(52) = 70

(53) = 36

(60) = 59

(61) = 34

(62) = 66

(63) = 12

Result = (A) = 00 (positive

(70) = 26

(71) =85
(72) = 03

(73) = 24

i.e., 36701 985
- 1 2663459
+24038526

10-23

10-24

Chapter 11
INPUT/OUTPUT

I/O AND
MEMORY

There are two problems in the design of input/output systems: one is how to interface

peripherals to the computer and transfer data, status and control signals; the other is

how to address I/O devices so that the CPU can select a particular one for a data

transfer. Clearly, the first problem is both more complex and more interesting. We will

therefore discuss the interfacing of peripherals and leave addressing to a more hard-

ware-oriented book.

In theory, the transfer of data to or from an I/O device is not much different than the

transfer of data to or from memory. In fact, we can consider the memory as just another

I/O device. The memory is, however, rather special for the following reasons:

1) It operates at almost the same speed as the processor.

2) It uses the same type of binary voltage signals as the CPU. The

only devices usually needed to interface the memory and the

CPU are drivers and receivers.

3) It requires no special formats or any control signals beyond a READ/WRITE pulse.

4) It automatically latches data sent to it.

5) Its basic word length is the same as that of the computer.

Most I/O devices do not have such convenient features. They may operate at speeds

much slower than the processor; e.g., a teletypewriter can transfer only 10 characters

per second while a slow processor can transfer 10 000 characters per second. The

range of speeds is also very large — sensors may provide one reading per minute while

CRTs or floppy disks may transfer 250 000 bits per second. Furthermore, I/O devices

may require continuous signals (e.g., motors or thermometers), currents rather than

voltages (e.g., a teletypewriter), or far different voltage signals than the signals used by

the processor (e.g., gas-discharge displays). I/O devices may also require special for-

mats, protocols or control signals. Their basic word length may be much shorter or

much longer than the word length of the computer. All of these variations mean that

the design of I/O systems is difficult and has few general principles. Each peripheral is

unique and presents its own special interfacing problem.

We may, however, provide some general description of devices

and interfacing methods. We may roughly separate devices into

three categories based on their data rates:

1) Slow devices which change state no more than once per second and whose state

changes typically last milliseconds or longer. Such devices include lighted dis-

plays, switches, relays, and many mechanical sensors and actuators.

2) Medium-speed devices which have data transfer rates of 1 to 10 000 bits per sec-

ond. Such devices include keyboards, printers, card and paper tape readers and

punches, cassette drives, ordinary communications lines and many analog data ac-

quisition systems. '

3) High-speed devices which have data transfer rates over 10 000 bits per second.

Such devices include magnetic tapes, magnetic disks, high-speed line printers,

high-speed communications lines and video displays.

11-1

I/O

CATEGORIES

The interfacing of slow devices is relatively simple. Few control INTERFACING
signals are necessary except for multiplexing, i.e.. handling SLOW DEVICES
several devices from one port as shown in Figures 11-1 to

11-4. Input data from slow devices does not require a latch because of the long time

constants involved. Output data must, of course, be latched. The only problems that oc-

cur while data is being input are transitions at the instant when the input data is being
sampled. Hardware circuits or software delay routines can smooth out the transition

periods.

A single port can handle several slow devices. Figure 11-1 shows a demultiplexer
which automatically directs data to the next consecutive device by counting output
operations. Figure 11-2 shows a control port which provides select lines to a

demultiplexer. The order here need not be consecutive, but an output instruction is

necessary to change the state of the control port. The output demultiplexer is com-
monly used to drive several displays from the same output port. Figures 1 1-3 and 1 1-4

show the same alternatives for an input multiplexer.

Note the differences between input and output with slow devices:

1 > Input data need not be latched since the input device provides the data for an enor-

mous length of time by computer standards. Output data must be latched since the
output device will not respond to data which is only present for a few CPU clock cy-

cles.

2) Input transitions are a major problem because of their length; output transitions are

no problem because of the slow reaction pf the output device compared with a CPU
clock cycle.

3) The major constraints on input are reaction time and responsiveness; the major
constraints on output are response time and observability.

Medium-speed devices must be synchronized in some way to the processor clock. The
CPU cannot simply treat these devices as if they held their data forever or could receive

data at any time. Instead, the CPU must have a way of discovering when a device is pre-

senting new input data or when a device is ready to receive output data. It must also

have a way of telling an output device that new output data is ready.

The standard unclocked procedure is the handshake. Here the | HANDSHAKE |

sender transfers the data and indicates the presence of data to the

receiver; the receiver reads the data and completes the handshake by acknowledging
the receipt. The receiver may control the situation by initially requesting the data or by
indicating its readiness to accept data; the sender then sends the data and completes
the handshake by sending an indicator of the presence of data. In either case, the

sender knows that the transfer has proceeded successfully and the receiver knows
when new data is present.

11-2

uata bus
Output

Port

Port Selection Logic

^>
Data

Inputs

Demultiplexer

Select

Inputs

Data Outputs

Data Outputs 1

Data Outputs 2

C>

Data Outputs 3

^>

The Counter controls where the Demultiplexer sends the data.

Figure 11-1. An Output Demultiplexer Controlled By A Counter

CZ>
Data

Port

l^> Control

Port

Data

Inputs

Demultiplexer

Select

Inputs

Data Outputs

$
Data Outputs 1

^>

Data Outputs 2

^>

Data Outputs 3

^>

The CPU sends control information to the Control Port; that port then determines

where the Demultiplexer sends the data.

Figure 1 1-2. An Output Demultiplexer Controlled By A Port

11-3

c Input

Port

Port Selection Logic 3
C

Data

Outputs

Multiplexer

Select

Inputs

Data Inputs

Data Inputs 1

Data Inputs 2

Data Inputs 3

The Counter controls which input the Multiplexer gates to the Input Port.

Figure 1 1-3. An Input Multiplexer Controlled By A Counter

Input Data Bus

c

Output Data Bus

*=3

Data

Port

Control

Port

c Data

Outputs

Multiplexer

Select

Inputs

Data Inputs

Data Inputs 1

Data Inputs 2

Data Inputs 3

The control information which the CPU sends to the Control Port (with an output operation)

determines which input the Multiplexer routes to the Data Port.

Figure 1 1-4. An Input Multiplexer Controlled By A Port

11-4

Figures 1 1-5 and 11-6 show typical input and output operations using the handshake

method. The procedure whereby the CPU performs an input operation to check the

readiness of the peripheral before transferring data is called "poHing". Clearly, polling

can occupy a large amount of processor time if there are many I/O devices. There are

several ways of providing the handshake signals. Among these are:

• Separate dedicated I/O lines. The processor may handle these through its regular I/O

system or through special lines or interrupts. The 8085 processor has a special serial

input line {SID) and a special serial output line (SOD); the 8080 processor does not

have these lines.

• Special patterns on the I/O lines. These may be single start and stop bits or entire

characters or groups of characters. The patterns must be easily distinguished from

background noise or the ordinary state of the lines.

We often call a separate I/O line which indicates the presence of | STROBE |

data or the occurrence of an operation a "strobe". A strobe may,

for example, place data in a latch or fetch it from a buffer.

Many peripherals transfer data at regular intervals, i.e.. synchronously. Here the only

problem is starting the. process, i.e., lining up to the first input or marking the first out-

put. In some cases the first transfer proceeds asynchronously; in other cases the periph-

eral provides a clock signal which the processor can examine for timing purposes.

One problem with medium-speed devices is errors in transmis-

sion. Several methods can lessen the likelihood of such errors;

they include;

REDUCING
TRANSMISSION
ERRORS

• Sampling input data at the center of the transmission interval

to avoid transition effects

• Sampling each input several times and using majority logic, e.g., if there are five input

lines and three or more of them are 'on', then the signal is assumed to be 'on'

• Generating and checking parity, i.e.. an extra bit which makes the number of 1 bits in

the correct data even or odd

• Using "other error detecting and correcting codes such as checksums, LRC

(longitudinal redundancy check), and CRC (cyclic redundancy check)

High-speed devices which transfer more than 10 000 bits per sec-

ond require special methods. The usual technique is to construct a

special-purpose external controller which transfers data directly

between the memory and an I/O device. This process is called

direct memory access (DMA). The DMA controller must force the CPU off the busses,

provide addresses and control signals to the memory, and transfer the data. Such a con-

troller will be fairly complex, typically consisting of 50 to 100 chips, although LSI

devices are now available. For example, the 8257 Direct Memory Access Controller for

8080-based microcomputers is described in An Introduction To Microcom-

puters; Volume II — Some Real Products . The CPU must initially load the Address and

Data Counters in the controller so that the controller will know where to start and how
much data to transfer.

DIRECT
MEMORY
ACCESS

11-5

c I/O

Section

Input

Acknowledge

c
Data Ready

Peripheral

a) Peripheral provides data and Data Ready signal to computer I/O section.

c

Input

Acknowledge

Peripheral
I/O

Section

Data Bus
<•

data

c
si

Data Ready

b) CPU reads Data Ready signal from I/O section (this may be a hardware, e.g., interrupt connection).

CPU C

Input

Acknowledge

Peripheral
I/O

Section

Data Bus
<•

data

<

Data Ready

c) CPU reads data from' I/O section.

CPU

Data Bus> I/O

Section

Input

Acknowledge

c=
Data Ready

Peripheral

d) CPU sends Input Acknowledge signal to I/O section which then provides Input Acknowledge signal,

to Peripheral (this may be a hardware connection).

Figure 11-5. An Input Handshake

11-6

C

Output Ready

Peripheral
I/O

Section

Data Bus data

>

Peripheral Ready

a) Peripheral. provides Peripheral Ready signal to corrtputer I/O section.

c

Output Ready

Peripheral
I/O

Section

Data Bus data

>
*

Peripheral Ready

b) CPU reads Peripheral Ready signal from I/O section (this may be a hardware, e.g., interrupt connection).

5
I/O

Section

Output Ready

$
Peripheral Ready

c) CPU sends data to Peripheral.

CPU

Data Bus

"s
I/O

Section'

Output fleady

t>
Peripheral Ready

Peripheral

d) CPU sends Output Ready signal to Peripheral (this may be a hardware connection).

Figure 1 1 -6. An Output Handshake

11-7

TIMING INTERVALS (DELAYS)

One problem which we will face throughout the discussion of in- USES OF
put/output is the generation of timing intervals of a specific TIMING
length. Such intervals are necessary to debounce mechanical INTERVALS
switches (i.e., to smooth their irregular transitions), to provide

pulses with specified lengths and frequencies for displays, and to provide timing for

devices that either send or receive data regularly (e.g., a teletypewriter which sends or

receives one bit every 9.1 ms).

2)

3)

METHODS
FOR
PRODUCING
TIMING
INTERVALS

We can produce timing intervals in several ways:

1) In hardware with one-shots (monostable multivibrators).

These devices produce a single pulse of fixed duration in

response to a trigger input.

In a combination of hardware and software with a flexible pro-

grammable timer, such as the 8253 Programmable Timer for

8080-based microcomputers as described in An Introduction To Microcom-

puters: Volume II — Some Real Products. The 8253 can provide timing intervals of

various lengths with a variety of starting and ending conditions.

In software with delay routines. These routines use the processor as a counter. This

use is possible if the processor has a stable clock reference, but it clearly under-util-

izes the processor. However, delay routines require no additional hardware and

often use processor time which would otherwise be wasted.

CHOOSING
A
TIMING
METHOD

BASIC
SOFTWARE
DELAY

The choice among these three, methods depends on your applica-

tion. The software method is inexpensive but may overburden the

processor. The programmable timers are relatively expensive, but

are easy to interface and may be able to handle many complex

timing tasks. The use of one-shots is usually avoided by good

digital designers.

DELAY ROUTINES
A simple delay routine works as follows:

STEP 1 - Load a register with a specified value.

STEP 2 - Decrement the register.

STEP 3 - If the result of STEP 2 is not zero, repeat STEP 2.

This routine is used strictly for timing purposes, it serves no other function. The amount

of time used depends upon the execution time of the various instructions and the

specified value loaded into the register. The maximum length of the delay is limited by

the size of the register; however, the entire routine can be placed inside a similar

routine which uses another register and so on.

The following example uses Register C and the Accumulator to

provide delays as long as 255 ms. The choice of registers is ar-

bitrary. You may, in fact, find the use of a register pair (e.g., B

and C) more convenient. A PUSH B instruction at the start of

the delay routine and a POP B at the end wilt result in a routine that does not affect any

registers at all. Note that the PUSH and POP instructions must be included in the time

budget.

TRANSPARENT
DELAY
ROUTINE

11-8

EXAMPLES
Delay Program

Purpose: The program provides a delay of 1 ms times the contents of the Accumula-
tor.

Flowchart:

f Start J

Count = Mscnt

Count = Count - 1

<A)=(A)-1

The value of MSCNT depends on the speed of the CPU and the memory cycle.

GET COUNT FOR 1 MS DELAY
COUNT=COUNT- 1

CONTINUE UNTIL COUNT=0
NUMBER OF MS=NUMBER OF MS - 1

CONTINUE UNTIL NUMBER OF MS=0

Source Program:

DELAY: MVI B.MSC
DLY1: DCR B

JNZ DLY1
DCR A
JNZ DELAY
RET

11-9

Object Program: (starting in location 30)

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

30 DELAY: MVI B.MSCNT 06

31 MSCNT
32 DCR B 05

33 JNZ DLY1 C2
34 32

35 00

36 DCR A 3D
37 JNZ DELAY C2
38 30

39 00

3A RET C9

Time Budget:

Number Of Times
Instruction

Executed

MVI B.MSCNT (A)

DCR B (A) x MSCNT
JNZ DLY1 (A) x MSCNT
DCR A (A)

JNZ DELAY (A)

RET

The total time used should be (A) x 1 ms. If the memory is operating at full speed, the

instructions take the following number of clock cycles:

MVI
DCR
JNZ

B 7

5

10

Ignoring the CALL and RET instructions (which only occur once), the program takes

(A)x(7+15xMSCNT+15)

clock cycles. So, to make the delay 1 ms,

22+(15xMSCNT) = Nq

where Nc is the number of clock cycles per millisecond. At the standard 2 MHz 8080

clock rate, Nq = 2000, so

15 x MSCNT = 1978

| MSCNT=132 (hex 84) at an 8080 clock rate of 2 MHz 8080A
DELAY
LOOP
CONSTANT

11-10

The 8085 timing is different since DCR takes 4 clock cycles on that

processor. Furthermore, JNZ requires only 7 clock cycles when no
Jump is performed.

So. to produce a 1 ms delay on the 8085. the equation is:

7+14 xMSCNT- 3+11 = NC

8085
DELAY
LOOP
CONSTANT

(14xMSCNT)+15 = Nc

The -3 is caused by the fact that the last unsuccessful JNZ instruction in the inner loop

uses 7 rather than 10 cycles. At the standard 3 MHz 8085 clock rate, Nq = 3000. so

14xMSCNT = 2985

I
MSCNT = 213 (hex D5) at an 8085 clock rate of 3 MH"z]

A Pushbutton (Or SPST Momentary Switch)

Purpose: To interface one pushbutton switch (or a single-pole, single-throw momen-
tary switch) to an 8080 microprocessor. The pushbutton is a mechanical
switch which provides a single contact closure (i.e.. a logic '0') while pushed.

Circuit Diagram:

Figure 1 1-7 shows the circuitry required to interface the pushbutton. It uses one bit of

an 8212 input port which acts as a buffer: no latch is needed since the pushbutton
closure is present for a very long time by CPU standards. (We will not discuss the use of

the 821 2 port in detail in this book. You can find a complete description of the device in

Volume II of An Introduction To Microcomputers).

+ 5V

O

H
I

8212

I/O

Port

X

^>

Figure 11-7. A Pushbutton Circuit

11-11

Programming Examples:

We will perform two tasks that involve this circuit. They are:

1) Set a memory location based on the value of the switch.

2) Count the number of times that the switch is closed.

Task 1: Set memory location 40 to 1 if the button is open ('1'

Sample Problems:

a.

Button open (i.e., not pushed)

Result = (40) = 01

if it is closed CO':

Button closed (i.e., pushed)

Result = (40) = 00

Flowchart:

DONE:

[Start

)

(40) =

Input and mask

Pushbutton Dat

Yes ^^"""s^N——^^ Result

j^No

(40) = 1

~-l
f End

)

ogram:

LXI H.40H

MVI M.O MARKER=0
IN PORT READ BUTTON POSITION

ANI MASK IS BUTTON CLOSED (0)?

JZ DONE YES, DONE
INR M NO, MARKER=1
JMP DONE

11-12

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 LX1 H.40H- 21

01 40

02 00
03 MVI M,0 36
04 00
05 IN PORT DB
06 PORT
07 ANI MASK E6

08 MASK
09 . JZ DONE CA
0A OD
OB 00
OC INR M 34

OD. DONE: JMP DONE C3
OE OD
OF 00

The port number depends on which port the pushbutton is connected to. MASK de-

pends on which bit of the port the pushbutton is connected to;. MASK has a T bit in

the button position and zeros elsewhere

Button Position

(Bit Number)

Mask

Binary Hex

00000001 01

1 00000010 02
2 00000100 04
3 00001000 08
4 00010000 . 10
5 00100000 20
6 01000000 40
7 1000000O. 80

If the button is attached to bit or bit 7 of the input port, the program can use a Shift

instruction to set the Carry and thereby determine the button's state. For example:

Bit 7

IN

RAL
JNC

Bit.O

PORT

DONE

PORT

DONE

READ BUTTON POSITION
IS BUTTON CLOSED (0)?

YES. DONE

READ BUTTON POSITION
IS BUTTON CLOSED (0)?

YES. DONE

11-13

If the button is attached to bits 6 or 7 of the input port, the program can use the Sign bit

to determine the button's state. For example:

Bit 7

READ BUTTON POSITION

IS BUTTON CLOSED (0)?

YES, DONE

IN does not affect the flags; therefore we must use the ORA instruction to set the flags.

Bit 6

IN PORT
ORA A
JP DONE

IN PORT ;READ BUTTON POSITION

ADD A ;IS BUTTON CLOSED (0)?

JP DONE ;YES, DONE

RAL cannot be used because it does not affect the Sign bit.

Task 2: Count the number of button closures by incrementing memory location 40.

In order to count the number of times the button has been SWITCH
pressed, we must be sure thateach closure causes a single transi- BOUNCE
tion. However, a mechanical pushbutton does not produce a

single transition for each closure because the mechanical contacts bounce back and

forth before settling in their final positions. We can use hardware to eliminate the

bounce or we can handle it in software.

The program can debounce the pushbutton by waiting after it DEBOUNCING
finds a closure. The required delay is called the debouncing time IN

and is a characteristic of the pushbutton. It is typically a few | SOFTWARE
milliseconds. The program should not examine the pushbutton

during this period because it might mistake the bounce for a new closure. The program

may either enter a delay routine like the one described previously or may simply per-

form other tasks for the specified amount of time.

Even after debouncing, the program must still wait for the present closure to end before

looking for a new closure. This procedure avoids counting the same closure more than

once. The following program uses a software delay of 1 ms to debounce the pushbut-

ton. You may want to try varying the delay or eliminating it entirely in order to see what

happens. To run this program you must also enter the delay subroutine into memory,

starting at location 30.

11-14

Sample Problem:

Pressing the button ten times after the start of the program should give

(40) = 0A

Flowchart:

c J

Count = Count + 1

Source Program:

LXI H.40H ;COUNT=0
MVI M.O

CHKCL: IN PORT ;IS BUTTON CLOSED (0)?

ANI MASK
JNZ CHKCL ;NO WAIT
INR M ;YES. COUNT=COUNT+1
MVI A.1

CALL DELAY ;DEBOUNCE BUTTON BY WAITI
CHKOP. IN PORT ;IS BUTTON STILL CLOSED (0)?

ANI MASK
JZ CHKOP ;YES, WAIT
JMP CHKCL ;NO. LOOK FOR NEXT CLOSURE

11-15

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic! (Hex)

00 LXI H.40H 21

01 40
02 00

03 MVI M.O 36
04 00
05 CHKCL: IN PORT DB
06 PORT
07 ANI MASK E6

08 MASK
09 JNZ CHKCL C2
0A 05

OB 00
OC INR M 34
OD MVI A,1 3E

OE 01

OF CALL DELAY CD
10 30

11 00
12 CHKOP: IN PORT DB
13 PORT
14 ANI MASK E6

15 MASK
16 JZ CHKOP CA
17 12

18 00
19 JMP CHKCL C3
1A 05

1B 00

Note that the three instructions beginning with the label CHKOP are used to determine

when the switch reopens.

11-16

A Toggle (SPDT) Switch

Purpose: To interface a single-pole, double-throw switch to an 8080 microprocessor.

The toggle switch is a mechanical device which is either in the normally

closed (NO position or the normally open (NO) position.

Figure 11-8 shows the circuitry required to interface the DEBOUNCING
switch. Like the pushbutton, the switch uses one bit of an WITH CROSS-
unlatched 8212 input port which serves as an addressable COUPLED NAND
buffer. Unlike the button, the switch may be left in either posi- GATES
tion; typical program tasks are to determine the switch posi-

tion and to see if the position has changed. A pair of cross-coupled NAND gates (see

Figure 1 1-9) can debounce a mechanical switch.

O
NO

Debouncing

circuitry

I

8212

I/O

Port

X

$

Figure 11-8. A Toggle Switch Circuit

6nc +!

qno

To I/O Port

Figure 11-9 A Debouncing Circuit Based On Cross-Coupled

NAND Gates

This circuit produces a single step in response to a change in switch position even if the

switch bounces before settling into its new position.

11-17

Programming Examples:

We will perform two tasks that involve this circuit. They are:

1) Monitor the output of the switch and clear a memory location when the normally

open contacts of the switch are closed.

2) Monitor the output of the switch and clear a memory location when the switch out-

put changes.

Task 1: Wait for switch to close.

Memory location 40 remains 1 until the switch is closed and then is cleared, i.e., the

processor sets memory location 40 to 1, waits for the switch to be closed, and then

clears memory location 40. The switch acts as a RUN/HALT command since the pro-

cessor will not proceed until the switch is closed.

Flowchart:

c
Start

i

)

(40) = 1

No^
switch closed

^^^ ? ^^
XYeS

(40) =0

t

c
End

)

Source Program:

LXI H.40H MARKER=1
MVI M.1

WAITC: IN PORT READ SWITCH POSITION

ANI MASK IS SWITCH CLOSED (0)?

JNZ WAITC NO, WAIT
DCR M YES, MARKER=0

DONE: JMP DONE

11-18

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 LXI H.40H 21

01 40

02 00

03 MVI M.1 36

04 01

05 WAITC: IN PORT DB
06 PORT
07 ANI MASK E6

08 MASK
09 JNZ WAITC C2
0A 05

OB 00

OC DCR M 35

OD DONE: JMP DONE C3
OE OD
OF 00

Task 2: Wait for switch to change.

Memory location 40 remains 1 until the switch position changes, i.e., the processor

waits until the switch changes, then clears memory location 40.

Flowchart:

c

(40) = 1

Old data =

switch position

New data =

switch position

11-19

Source Program:

LXI H.40H

MVI M,1

IN PORT
ANI MASK
MOV B.A

SRCH: IN PORT
ANI MASK
CMP B

JZ SRCH
DCR M

DONE: JMP DONE

;MARKER=1
;GET OLD SWITCH POSITION

;GET NEW SWITCH POSITION

ARE NEW AND OLD POSITIONS THE SAME?
YES. WAIT
NO. MARKER=0

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 LXI H.40H 21

01 40

02 00

03 MVI M.1 36

04 01

05 IN PORT DB
06 PORT
07 ANI MASK E6

08 MASK
09 MOV B.A 47

0A SRCH: IN PORT DB
OB PORT
OC ANI MASK E6

OD MASK
OE CMP B B8

OF JZ SRCH CA
10 OA
11 00

12 DCR M 35

13 DONE: JMP DONE C3
14 13

15 00

SUB B or XRA B could replace CMP B in the program. Both of these instructions would,

however, change the contents of the Accumulator. If several switches were attached to

the PORT, then XRA B might be more useful than CMP B. since XRA B would produce a

1 bit for each switch that changed state. How would you rewrite this program in order

to debounce the switch in software?

11-20

A Multiple-Position (Rotary, Selector, Or Thumbwheel) Switch
Purpose: To interface a multiple-position switch to an 8080 microprocessor. The

switch provides a connection to ground in the lead corresponding to the

switch position.

Figure 11-10 shows the circuitry required to interface an 8-position switch. The switch

uses all eight bits of an; 82 12 input port. Typical tasks are to determine the position of

the switch and to check if that position has changed. Two special situations must be
handled:

1) The switch is temporarily between two positions so that no leads are grounded.

2) The switch has not yet reached its final position.

The first of these situations can be handled by waiting until the input is not all 1s, i.e.,

until some switch position is grounded. We can handle the second situation by examin-
ing the switch again after a delay (e.g., 1 or 2 seconds) and only accepting the input

when it is repeated. This delay will not usually affect the responsiveness of the system
to the switch. We can also use another switch (i.e., a LOAD switch) to tell the processor

that the selector switch should be read.

Programming Examples:

We will perform two tasks which involve the circuit of Figure 11-10. These are:

1) Monitor.the switch output until a stable condition is detected, then determine the

position of the switch and store the binary equivalent of the switch position in a

memory location.

2) Waitfor the position of the switch to change, then store the new switch position in

a memory location.

+ 5V

?

To CPU
K

7 .^
STB

8212

I/O

Port

MD

6 ^
5 ^

to A
~

<PTTT 3 ^
Tr? 2 ^ >

1 ^
o T

common .

1

Figure 11-10. A Multiple-Position Switch

If the switch is in a particular, position, the lead from that position is grounded through
the common line. Pullup resistors are usually necessary on all the input lines to avoid
problems caused by noise.

11-21

Task 1 : Determine switch position.

The program waits for the switch to be in a specific position and then places the num-

ber of that position in memory location 40.

The following table relates the data input to the switch position for Figure 1 1-10.

Table 11-1. Data Input vs. Switch Position

Switch Position

Data Input

Binary Hex

1

2

3

4

5

6

7

11111110
11111101
11111011
11110111
11101111
11011111
10111111
01111111

FE

FD
FB
F7

EF

DF
BF
7F

Note the inefficiency of this scheme, which requires eight bits to distinguish among

eight different positions.

USING A
DIGITAL
ENCODER

A digital encoder could reduce the number of bits needed. Figure

11-11 shows a circuit using the 74LS 148 TTL 8-to-3 encoder. We
attach the switch outputs in inverse order since the 74LS148

device has active-low outputs. The result of the encoder circuit is

a 3-bit representation of the switch position. Many switches have encoders or diode

matrices included so that they automatically produce a coded output, usually BCD.

+ 5V

1
7 fc

'3
7S

l4
74LS148 i?0

Tc 8-to-3 °1

Ig Encoder u2

'7

Ei

STB

To CPU

6 ^
5 ^

Multiple KJ~
4 ^

Position
^~~

3 r^
Switch x"*' 2 r CMI I/O

DI2 Port

MD

—

s

1 r. fc
•

O—
o r:

Common

I 1

Figure 11-11. A Multiple-Position Switch With An Encoder

The encoder provides outputs that are active-low. Note, for example, that the output

from position 5 on the multiple position switch is connected to I2 on the encoder. The

encoder takes the three-bit binary representation (000) of 2 and produces 101. which is

the active-low representation of 2.

11-22

Flowchart:

c Start
)

Data =

switch position

Position =

Position + 1
(40) = Position

c D
Source Program:

CHKSW: IN PORT
CPI 11111111B
JZ CHKSW
MVI B.O

CHPOS: RAR
JNC DONE
INR B

JMP CHPOS
DONE: LXI H.40H

MOV M.B
HERE: JMP HERE

GET SWITCH DATA
IS SWITCH IN A POSITION?

NO. WAIT FOR POSITION
POSITION =
IS NEXT BIT GROUNDED POSITION?

YES, SWITCH POSITION FOUND
NO. POSITION = POSITION+1

;STORE SWITCH POSITION

11-23

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 CHKSW: IN PORT DB
01 PORT
02 CPI 11111111B FE

03 FF

04 JZ CHKSW CA
05 00
06 00
07 MVI B.O 06
08 00
09 CHPOS: RAR 1F

0A JNC DONE D2
OB 11

OC 00
OD INR B 04

OE JMP CHPOS C3
OF 09
10 00
11 DONE: LXI H.40H 21

12 40

13 00

14 MOV M,B 70

15 HERE: JMP HERE C3
16 15

17 00

Suppose that a faulty switch or defective I/O port results in the input always being

0FF-|6- How could you change the program so that it would detect this error?

There is an unconditional Jump, JMP CHPOS, in the source program. Can you restruc-

ture the initial conditions so that this unnecessary jump rs eliminated?

11-24

Task 2: Wait for switch position to change.

The program waits for the switch position to change and places the new position

(decoded) in memory location 40. The program ignores intermediate states where the

switch is not in any position.

Flowchart:

c J

Old data =

switch position

Position = -1

Shift data right 1 bit

Position =
Position + 1

(40) = Position

c

11-25

Source Program:

CHFST:

CHSEC:

CHPOS:

DONE:

HERE:

IN PORT
CPI 11111111B
JZ CHFST
MOV B.A

IN PORT
CPI 11111111B
JZ CHSEC
CMP B

JZ CHSEC
MVI B.OFFH

RAR
INR B

JC CHPOS
LXI H.40H

MOV M.B
JMP HERE

GET SWITCH DATA
IS SWITCH IN A POSITION?
NO. WAIT FOR POSITION

GET NEW SWITCH DATA
IS SWITCH IN A POSITION?
NO. WAIT FOR POSITION
IS POSITION SAME AS BEFORE?
YES, WAIT
POSITION =-1

IS NEXT BIT GROUNDED POSITION?
POSITION =POSITION+1
NO. KEEP LOOKING FOR GROUNDED POSITION
STORE SWITCH POSITION

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 CHFST: IN PORT DB
01 PORT
02 CPI 11111111B FE

03 FF

04 JZ CHFST CA
05 00
06 00
07 MOV B.A 47

08 CHSEC: IN PORT DB
09 PORT
0A CPI 11111111B FE

0B FF

OC JZ CHSEC CA
0D 08

0E 00

OF MVI B.OFFH 06

10 FF

11 CHPOS: RAR 1F

12 INR B 04
13 JC CHPOS DA
14 11

15 00
16 DONE: LXI H.40H 21

17 40
18 00
19 MOV M.B 70

1A HERE: JMP HERE C3
1B 1A

1C 00

11-26

A Single LED
Purpose: To interface a single light-emitting diode to an 8080 microprocessor. The

LED can be attached so that either a '0' or a T turns it on.

Figure 11-12 shows the circuitry required to illuminate an LED. The LED lights when its

anode is positive with respect to its cathode (Figure 1 1 -1 2a). So. the circuitry can either

light the LED by grounding the cathode and having the computer supply a 'V to the

anode (Figure 1 1 -1 2b). or by tying the anode to +5 volts and having the computer sup-

ply a '0' to the cathode (Figure 11 -12c). Using the cathode is the most common ap-

proach. The LED is brightest when it operates from pulsed currents of about 10 to 50

mA applied a few hundred times per second. LEDs have a very short turn-on time (in

the microsecond range), so they are well-suited to multiplexing, i.e.. operating several

from a single port. LED circuits usually need peripheral or transistor drivers and current-

limiting resistors.

Anode ^._^. Cathode

+ 5VO- -vw.

a) Basic LED circuitry. The resistor R should limit the maximum current to 50 mA and

the average current to 10 mA.

f=0
8212

Output

Port

I

-WVr€h

5V

b) Interfacing an LED with positive logic. A logic V from the CPU turns the LED on.

t=>
8212

Output

Port

the LED on.

@H

c) Interfacing an LED with negative logic. A logic '0' from the CPU turns the LED on. The driver or the CPU may

reverse the logic levels. Note that the 8212 output port acts as a latch when MD is connected to + 5V.

Figure 11-12. Interfacing an LED

11-27

Programming Examples:

The program turns a single LED either on or off

Task 1 : Send a logic
'1

' to the LED (i.e., turn a positive display on or a negative display
off).

Source Program: (form data initially)

; DATA TO LEDS
;SAVE COPY OF OUTPUT DATA

LOAD POINTER TO DATA
GET COPY OF OUTPUT DATA
LED BIT = 1

DATA TO LEDS
SAVE COPY OF OUTPUT DATA

MASKP has a
'1

' in the bit position assigned to the LED we wish to illuminate. There are
zeros in all other bit positions. Logically ORing with MASKP does not affect the other bit

positions. Note that the CPU cannot directly read the data from the output port, so a

copy is necessary.

Object Program: (form data initially)

MVI A.MASKP
OUT PORT
STA 40H

HERE: JMP HERE

(update data in location 40H)

LXI H.40H
MOV A,M
ORI MASKP
OUT PORT
MOV M.A

HERE: JMP HERE

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 MVI A.MASKP 3E
01 MASKP
02 OUT PORT D3
03 PORT
04 STA 40H 32
05 40
06 00
07 HERE: JMP HERE C3
08 07
09 00

Object Program: (update data in location 40H)

00 LXI H.40H 21

01 40

02 00
03 MOV A,M 7E

04 ORI MASKP F6

05 MASKP
06 OUT PORT D3
07 PORT
08 MOV M.A 77

09 HERE: JMP HERE C3
0A 09

0B 00

11-28

Task 2: Send a logic '0' to the LED (i.e.. turn a positive display off or a negative display

on).

Source Program: (form data initially)

MVI A.MASKN
OUT PORT DATA TO LEDs

STA 40H SAVE COPY OF OUTPUT DATA
HERE: JMP' HERE

(update data in location 40H)

LXI H.40H LOAD POINTER TO DATA
MOV A,M GET COPY OF OUTPUT DATA
ANI MASKN LED. BIT =
OUT PORT DATA TO LEDs

MOV M.A SAVE COPY OF OUTPUT DATA
HERE: JMP HERE

MASKN has a '0' bit in the LED position and 1s elsewhere. Logically ANDing with

MASKN does not affect the other bit positions.

Object Program: (form data initially)

Memory Address Instruction Memory Contents

(Hek) (Mnemonic) (Hex)

00 MVI A.MASKN 3E

01 MASKN
02 OUT PORT D3
03 PORT
04 STA 40H 32
05" 40
06 00
07 HERE: JMP HERE C3
08 07

09 00

Object Program: (update data in location 40H)

00 LXI H.40H 3A
01 40
02 00
03 MOV A.M 7E
04 ANI MASKN E6-

05 MASKN
06 OUT PORT D3
07 PORT
08 MOV M.A 77
09. HERE: JMP HERE C3
0A 09
0B 00

11-29

7-Segment LED Display

Purpose: To interface a 7-segment LED display to an 8080 microprocessor. The dis-

play may be either common-anode (negative logic) or common-cathode
(positive logic).

COMMON-ANODE
AND
COMMON-CATHODE
DISPLAYS

Figure 11-13 shows the circuitry required to interface a 7-

segment display. Each segment is an individual LED. There

are two ways of connecting the LEDs. One is to tie all the

cathodes together to ground (see Figure 11 -14a); this is a

"common-cathode display", and a logic '1' at an anode
lights a segment. The other is to tie all the anodes together to a positive voltage supply;

this is a "common-anode" display, and a logic '0' at a cathode lights a segment. So. the

common-cathode display uses positive logic and the common-anode display uses

negative logic. Either display requires appropriate drivers and resistors.

From CPU
8212

Output

Port

MD

o6

°5

°4

°3

°2

°1

°0

Drivers

9

f

e

d Display

c

b

a Common

1 J

<

+

!>

5V

1

— + 5V

(Common- (Common-

Cathode) Anode)

Figure 11-13. Interfacing A 7-Segment Display

The COMMON line from the display is tied either to ground or to +5 volts. The display

organization is:

The eighth bit may control a decimal point LED.

11-30

a) Common-cathode

gO WV-

f o w*-

e O <WV-

d O ^Ar

c o ^A-

bo w*-

a o *SA/V-

^̂
^̂
^̂
^

b) Common-anode + 5V

Q

gO Wr-

fO ^^-

eQ——Wr

dO wv-

cO W\r

bO WAr

o O wv-

^̂
^̂
^̂
^

Figure 11-14. Display Organization

11-31

7-SEGMENT
REPRESENTATIONS

Note that the 7-segment display is widely used because it

contains the smallest number of separately controlled

lights which can provide recognizable representations of all

the decimal digits (sBe-Figure 11-15 and Table 1 1-2). 7-segment displays can also pro-

vide some letters and signs (see Tables II-3 and Ih4). Better representations .require a

substantially larger numbenof display elements and more circuitry. The popularity of 7-

segment displays has resulted in the wide availability' of low-cost 7-segment
decoder/drivers (e.g., 74LS47, 74LS48, 74LS49 and 4511). Some crevices also have

LAMP TEST inputs (which turn all the display elements on for checking purposes) and
blanking inputs and outputs (for blanking leading or trailing zeros).

0: Segments f , e, d, c, b, a on 3: Segments g, d,. c, b, a or

a o

f b b

9

e c c

d d

1: Segments ebon 4: Segmerits g, f , c, b on

b f b

9

< c .

2: Segments g, e, d, b, a on 5: Segments g, f, d, c, a on

a a

b f

9 9

e c

d d

Figure 11-15. 7-Segment Representations Of Decimal Digits

11-32

6: Segments g , f, e. d, c, a on

a

8: Segments g, f, e, d, c, b, a on

a

f

e

f

e

b

c

g

c

g

d
Note that the alternate representation with a_ofi may
be reserved for the lower case letter 'b'.

7: Segments c, b, a on
a

This is

9: Segments

d
the same as LAMP TEST.

g, f, c, b, a on

a

b

c

f b

c

g

An alternate has segment d on also.

Figure 11-15. 7-Segment Representations Of Decimal Digits

(Continued)

Table 11-2. 7-Segment Representation of Decimal Numbers

Number
Hexadecimal Representation

Common-Cathode Common-Anode

1

2

3

4
5

6

7

8

9

3F

06
5B
4F

66
6D
7D
07
7F

67

40
79

24

30
19

12

02

78

00
18

Bit 7 is always 0. and the others are g. f, e, d, c, b, a in decreasing order of significance.

11-33

Table 1 1-3. 7-Segment Representation Of Letters And Symbols

Upper-Case Letters

Letter
Hexadecimal Representation

Common-Cathode Common-Anode

A
C
E

F

H

I

J

L

P

u

Y

77

39
79
71

76

06
1E

38
3F

73

3E
6E

08
46
06
OE

09
79

61

47

40
OC
41

11

Lower-Case Letters and Special Characters

Letter
Hexadecimal Representation

Common-Cathode Common-Anode

b

c

d

h

n

r

u

?

7C
68

5E

74
54
5C
50
1C
40
53

03

17

21

OB
2B
23

2F

63
3F

2C

Programming Example:

Display the contents of memory location 40 on a 7-segment display if 40 contains a

decimal digit. Otherwise, blank the display.

Sample Problems:

a. (40) = 05
Result = 5 on display

b. (40) = 66
Result = A blank on display

11-34

Flowchart:

c :>

Code = Blank

Data = (40)

Code = (Sseg +

Data)

Send code

to display

c 1

Source Program:

GET BLANK CODE
GET DATA
IS DATA > 10?

YES, DISPLAY BLANKS
BASE OF 7-SEGMENT TABLE

MAKE DATA INTO 16-BIT INDEX
INDEX TABLE
GET 7-SEGMENT CODE

CODE TO DISPLAY

BLANK is 00 for a common-cathode display, FF for a common-anode display. An alter-

native procedure would be to put the blank code at the end of the table and replace all

improper data values with 10, i.e.,

GET DATA
IS DATA > 10?

NO. GO CONVERT TO 7-SEGMENT
YES, GET INDEX FOR BLANK CODE
BASE OF 7-SEGMENT TABLE

Table SSEG is either the common-cathode or common-anode representation from Table

11-2.

MVI B.BLANK
LDA 40H
CPI 10

JNC DSPLY
LXI D.SSEG
MVI H.O

MOV LA
DAD D
MOV B,M

DSPLY: MOV A,B

OUT PORT
HERE: JMP HERE

LDA 40H
CPI 10

JC CNVRT
MVI A, 10

CNVRT: LXI D.SSEG

11-35

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 MVI B.BLANK 06
01 BLANK
02 LDA 40H 3A
03 40
04 00
05 CPI 10 FE

06 OA
07 JNC DSPLY D2
08 12

09 00
0A LXI D.SSEG 11

OB 18

OC 00
OD MVI H.O 26
OE 00
OF MOV L.A 6F

10 DAD D 19

11 MOV B.M 46
12 MOV A.B 78
13 DSPLY: OUT PORT D3
14 PORT
15 HERE: JMP HERE C3
16 15

17 00
18-21 SSEG

PROBLEMS
1) An On-Off Pushbutton

Purpose: Each closure of the pushbutton complements (inverts) all the bits in memory
location 40. The location initially contains zeros. The program should con-

tinuously examine the pushbutton and complement location 40 with each

closure.

Sample Case:

Location 40 starts with zero.

The first pushbutton closure changes location 40 to FF (hex), the second back to zero,

the third back to FF (hex), etc. Assume the pushbutton is debounced in hardware. How
would you include debouncing in your program?

2) Debouncing a Switch in Software

Purpose: Debounce a mechanical switch by waiting until two readings, taken a de-

bounce time apart, give the same result. Assume the debounce time (in ms)

is in memory location 40, and place the switch position in memory location

41.

Sample Problem:

(40) = 03 causes the program to wait 3 ms
between readings.

11-36

3) Control for a Rotary Switch

Purpose: Another switch serves as a LOAD switch for a four-position unencoded ro-

tary switch. The CPU waits for the LOAD switch to close and then reads the

position of the rotary switch. This procedure, allows the operator to select a

final position for a rotary switch before the CPU tries to read it The program

should place the position of the rotary switch in memory location 40. De-

bounce ttie LOAD switch in software.

Sample Problem:

Place rotary.switch in position 2. Close LOAD switch.

Result = (40)^02

4) Record Switch. Positions on Lights

Purpose: A set of eight switches should have their positions reflected in eight LEDs.

i.e.. if the switch is^closed CO'), the LED should be off; otherwise, the LED

should be on. Assume the CPU output port is connected to the cathodes of

the LEDs.

.Sample Problem:

SWITCH CLOSED
SWITCH 1 OPEN
SWITCH 2 CLOSED
SWITCH 3 OPEN
SWITCH 4 OPEN
SWITCH 5 CLOSED
SWITCH 6 CLOSED
SWITCH 7 OPEN

Result:

LED OFF
LED 1 ON
LED 2 OFF
LED 3 ON
LED 4 ON
LED 5 OFF
LED 6 OFF
LED 7 ON

How would you change the program so that a switch attached to bit 7 of Port 2 deter-

mined whether the displays were active or not (i.e.. if the control switch is closed, the

d-isplays reflect the other switches; if the control switch is open, the displays are off) ? A
control switch is useful when the displays may be distracting to the operator, as in an

.airplane.

How would you changenhe program if the control switch were an on-off pushbutton,

i.e.. each closure reversed the previous state of the displays? Assume that the displays

start in the active state and that the program examines and debounces the pushbutton

before activating the displays.

5) Count on a 7*Segment Display

Purpose: The program should count from to 9 continuously on a 7-segment display,

starting with zero.

Try different timing lengths for the displays and see what happens. When does the

count become visible? What happens if the display is blanked part of the time?

11-37

MORE COMPLEX I/O DEVICES

More complex I/O devices differ from simple keyboards, switches and displays in that:

1) They operate at higher data rates.

2) They may have their own internal clocks and timing.

3) They produce status information and require control information as well as

transferring data.

Higher data rates mean that you cannot handle these I/O devices casually. If the pro-

cessor does not provide the appropriate service, it may miss input data or produce er-

roneous output data. You are therefore working under much more exacting constraints

than in dealing with slower devices. Interrupts are a convenient method for handling
complex I/O devices, as we shall see in Chapter 12.

SYNCHRONIZING
WITH I/O

DEVICES

Peripherals like keyboards, teletypewriters, cassettes and flop-

py disks usually have their own internal timing. These devices

generally provide strings or blocks of data, separated by
specific timing intervals. The computer must synchronize the

initial input or output operation with the peripheral clock and then provide the proper
interval between subsequent operations. A simple delay loop like the one shown pre-

viously will produce the timing interval. The synchronization may require one or more of

the following procedures:

1) Looking for a transition on a clock or strobe line provided by the peripheral for tim-

ing purposes. A simple method is to tie the strobe line to the most significant bit of

an input port and look for a change in the Sign flag.

2) Finding the center of the time interval during which the data is valid. We would
prefer to determine the value of the data at the center of the pulse rather than at

the edge where the data may be changing. Finding the center requires a delay of

one-half of a transmission interval (bit time) after the edge. Fetching the data at the

center also means that small timing errors have little effect on the accuracy of the

reception.

3) Recognizing a special starting code. This is easy if the code is a single bit or if we
have some timing information. The procedure is more complex if the code is long

and could start at any time. Shifting will be necessary to determine where the

transmitter is starting its bits, characters, or messages (this is often called a search

for the correct "framing").

4) Sampling the data. Taking several samples of the data reduces the probability of

receiving it incorrectly from noisy lines. Majority logic can be used to decide on the

actual data value.

Reception is, of course, much more difficult than transmission since the peripheral con-

trols the reception and the computer must interpret timing information generated by
the peripheral. In transmission, the computer provides the proper timing and formatting

for a specific peripheral.

CONTROL
AND
STATUS
INFORMATION

Peripherals may require or provide a great deal of information in

addition to date and timing. We refer to other information

transmitted by the computer as "control information"; it may
select modes of operation, start or stop processes, clock registers,

enable buffers, choose formats or protocols, provide operator dis-

plays, count operations, or identify the type and priority of the operation. We refer to

other information transmitted by the peripheral as "status information"; it may indicate

the mode of operation, the readiness of devices, the presence of error conditions, the

format or protocol in use, and other states or conditions.

11-38

The computer handles control and status information just like data. This information

often acts like data from a slow peripheral, since it seldom changes even though actual

data may be transferred at a high rate. The information may be single bits, digits,

words, or multiple words. Single bits or short fields are often combined and handled by

a single input or output port

Combining status and control information into bytes reduces the total number of I/O

port addresses required by the peripherals. However, the combination does mean that

individual status input bits must be separately interpreted and control output bits must

be separately determined. The procedure for isolating status bits is as follows:

STEP 1) READ STATUS DATA FROM THE PERIPHERAL

STEP 2) LOGICAL AND WITH A MASK (the mask has '1s' in bit

positions that must be preserved, 'Os' elsewhere).

A shift or flag-setting operation (e.g., ORA A) can replace Step 2 if

the field is a single bit and occupies the least significant, most significant, or next to

most significant bit position. These positions are often reserved for the most frequently

used status information.

SEPARATING
STATUS
INFORMATION

COMBINING
CONTROL
INFORMATION

The procedure for setting or resetting control bits is as follows:

STEP 1) LOAD PRIOR CONTROL INFORMATION

STEP 2) LOGICAL AND WITH MASK TO RESET BITS (mask has

'Os' in bit positions to be reset, '1s' elsewhere).

STEP 3) LOGICALLY OR WITH MASK TO SET BITS (mask has '1s' in bit positions to be

set, 'Os' elsewhere).

STEP 4) SEND NEW CONTROL INFORMATION TO PERIPHERAL

Here again the procedure is simpler if the field is a single bit and occupies a position at

the end of the word.

This is illustrated by the following examples:

1) A 3-bit field in bit positions 2 through 4 of input port 1 is a scaling factor. Place that

factor in the Accumulator.

READ STATUS DATA FROM INPUT PORT

IN 1 :READ STATUS DATA

MASK OFF SCALING FACTOR AND SHIFT

ANI 00011100B ;MASK SCALING FACTOR
RRC ;SHIFT RIGHT TWICE TO NORMALIZE
RRC

11-39

Bits 2 and 3 in the Accumulator form a 2-bit field which is to be placed into bit

positions 5 and 6 of output port 4. Memory location 40 contains bits through 4
and bit 7 of the word to be sent to output port 4. i.e., (40) is the current control in-

formation.

MOVE DATA TO FIELD POSITIONS

RLC ;SHIFT DATA'TO POSITIONS 5 AND 6

RLC
RLC
ANI 01100000B ;CLEAR OUT OTHER BITS

MOV B.A

COMBINE NEW FIELD POSITIONS WITH OLD DATA

GET OLD DATA
CLEAR FIELD POSITIONS
ADD NEW DATA

LDA 40H
ANI 100111-11B

ORA B

OUT 4
A copy of the control information is necessary since the CPU cannot read an output
port.

DOCUMENTING
STATUS AND
CONTROL
TRANSFERS

Documentation is a serious problem in handling control and
status information. The meaning of status inputs or control

outputs is seldom obvious. The programmer should cJearly in-

dicate the purposes of input and output operations in the com-
ments, e.g.. "CHECK IF READER IS ON", "CHOOSE EVEN
PARITY OPTION", or "ACTIVATE BIT RATE COUNTER". The Logical and Shift instruc-

tions will otherwise be very difficult to remember, understand and debug.

EXAMPLES
An Unencoded Keyboard
Purpose: Recognize a key closure from an unencoded 3x3 keyboard and place the

number of the key that was closed in the Accumulator.

Keyboards are just collections of switches (see Figure 11-16). Small numbers of keys are

easiest to handle if each key is attached separately to a bit of an input port. Interfacing

the keyboard is then the same as interfacing a group of switches.

Keyboards with more than eight keys require more than one input

port, and therefore multibyte operations. This is particularly

wasteful, if the keys are logically separate, i.e., the user will only

strike one at a time as in using a calculator or terminal keyboard. The number of input

lines required may be reduced by connecting the keys into a matrix.as shown in Figure

1 1-17. Now each key. represents a potential connection between a row and a column.
The keyboard matrix has n+m external lines, where n is the number of rows and m the

number of columns. This compares to n x m external lines if each key is separate. Table
1 1-4 shows the comparison for some typical configurations.

MATRIX
KEYBOARD

11-40

Figure 11-16. A Small Keyboard

Column Column 1 Column 2

V<4

v<4

Key 6.

X-

Key 1

X-

Key 4

X-

W' ""W' """></

^

Key 2

X-

Key 5V4^

^
Each key now serves to connect a row to a column, e.g., key 4 connects row 1 to column 1.

Figure 11-17. A Keyboard Matrix

11-41

Table 11-4. Comparison Between Independent Connections

And Matrix Connections For Keyboards

Keyboard Size
Number Of Lines With Number Of Lines With

Independent Connections Matrix Connection

3x3 9 6

4x4 16 8

4x6 24 10

5x5 25 10

6x6 36 12

6x8 48 14

8x8 64 16

The programming involved concerns how to determine which key KEYBOARD
has been pressed by using the external lines from the matrix. The SCAN
usual procedure is a "keyboard scan". We ground row and ex-

amine the column lines. If ,any of these lines is grounded, a key in that row has been

pressed causing a row-to-column connection. We can determine which key was
pressed by determining which column line is grounded, i.e., which bit is

'0' at the input

port. If none of the column lines is grounded, we proceed to row 1 and repeat the scan

of the columns. We can check to see if any keys in the keyboard have been pressed by

grounding all the rows at once and examining the columns.

The keyboard scan requires that the row lines be tied to an output port and the column

lines to an input port. Figure 11-18 shows the arrangement. The CPU can ground a par-

ticular row by placing a '0' in the appropriate bit of the output port and '1s' in the other

bits.

The CPU can determine the state of a particular column by examining the appropriate

bit of the input port.

Task 1: Wait for a key to be pressed.

The procedure is as follows:

1) Ground all the rows by placing '0s' in all the connected bits of

the output port.

2) Get column inputs by reading the input port.

3) Return to Step 1 if all the column inputs are '1s'.

Flowchart:

WAITING
FOR A KEY
CLOSURE

(
Start

J

Ground all

keyboard rows

No
^^^Are^^^
any columns^^^
grounded ^^
^LYes

c
End ^

11-42

(from CPU)

Column Column 1 Column 2

Output

Port

°va

Key 3va

Key 6

Key 1

vA

Key 4

v4

Key

v<4

Key 2^
Key 5

vA

Key 8

Input

Port

Data Bus (to CPU)

Figure 11-18. I/O Arrangement For A Keyboard Scan

Source Program:

WAITK: MVI A,11111000B
OUT KBDOT
IN KBDIN
ANI 000001 1 IB

CPI 000001 1 1B

JZ WAITK
DONE: JMP DONE

GROUND ALL KEYBOARD ROWS
GET KEYBOARD COLUMN DATA
MASK COLUMN BITS

ARE ANY COLUMNS GROUNDED?
NO. KEEP LOOKING AT KEYBOARD

11-43

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 WAITK: MVI A. 1 1 1 1 1000B 3E

01 F8

02 OUT KBDOT D3
03 KBDOT
04 IN KBDIN DB
05 KBDIN
06 ANI 000001 1 1B E6

07 07

08 CPI 000001 1 1B FE

09 07

0A JZ WAITK CA
OB 00

OC 00

OD DONE: JMP DONE C3
OE OD
OF 00

KBDOT is the keyboard output port, KBDIN is the input port.

Masking off the column bits eliminates any problems that could be caused by the states

of the unused input lines.

We could generalize the routine by naming the output and masking patterns, i.e.,

ALLG EQU 11111000B

OPEN EQU 000001 11B

These names could then be used in the actual program; a different keyboard would

only require a change in the definitions and a re-assembly.

Task 2: Identify a key closure by placing the number of the key in the Accumulator.

The procedure is as follows:

1) Set key number to 0, counter to number of rows, and out-

IDENTIFYING
KEY
CLOSURES

put pattern to all '1s' except for a '0' in bit

2) Ground a row by sending the output pattern to the

keyboard output port.

3) Update output pattern by shifting the '0' bit left one position.

4) Get column inputs by reading the input port.

5) If any column inputs are '0', proceed to Step 8.

6) Add number of columns to key number to reach next row.

7) Decrement counter. Go to Step 2 if any rows not scanned, otherwise to Step 10

8) Shift column inputs right one bit.

9) If CARRY = 1, add 1 to key number and return to Step 8.

10) End of program.

11-44

Flowchart:

r Start J

Kev number =
Counter=

Number of rows
Scan pattern =

11111110B:

fc±*
Ground row by

output of '

•

scan pattern

^^any columns^^
^^^grounded-^^&

jLNo

Yes

1

i I

\

Update scan pattern

by shifting left

circularly

Shift column

inputs right 1 bit

*
Key number =

Key number +

number of columns
Counter = Counter- 1

Yes _^^^ r

ry -^^

I No

1 ^T Counter ^^
Key number =

Key,numbeF + 1

YesJ

C «)

11-45

Source Program:

MVI B.O

MVI C.1 1 1 1 1 1 10B

MVI D.3

FROW: MOV A.C

OUT KBDOT
RLC
MOV CA
IN KBDIN
ANI 000001 11B
CPI 000001 11B
JNZ FCOL
MOV A.B

ADI 3

MOV B.A

DCR D
JNZ FROW
JMP DONE

FCOL: RAR
JNC DONE
INR B

JMP FCOL
DONE: JMP DONE

KEY NO. =
START SCAN PATTERN TO GROUND ROW
COUNTER = NO. OF ROWS

SCAN A ROW
UPDATE SCAN PATTERN FOR NEXT ROW

GET COLUMN INPUTS
MASK COLUMN BITS

ARE ANY COLUMNS GROUNDED?
YES, GO FIND WHICH ONE
KEY NO = KEY NO.+NO. OF COLUMNS

HAVE ALL ROWS BEEN SCANNED?
NO, SCAN NEXT ONE
YES, DONE
IS THIS COLUMN GROUNDED?
YES, DONE
NO, KEY NO. =KEY NO.+ 1

EXAMINE NEXT COLUMN

11-46

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 MVI B.O 06
01 00
02 MVI C.11111110B OE
03 FE

04 MVI D,3 16

05 03
06 FROW: MOV A.C 79
07 OUT KBDOT D3
08 KBDOT
09 RLC 07
0A MOV C.A 4F
OB IN KBDIN DB
OC KBDIN
OD ANI 000001 1 1B E6
OE 07
OF CPI 000001 1 1B FE

10 07
11 JNZ FCOL C2
12 1F

13 00
14 MOV A.B 78
15 ADI 3 C6
16 03
17 MOV B.A 47
18 DCR D 15
19 JNZ FROW C2
1A 06
1B 00
1C JMP DONE C3
1D 27
1E 00
1F FCOL: RAR 1F

20 JNC DONE D2
21 ' 27
22 00
23 INR B 04
24 JMP FCOL C3
25 1F

26 00
27 DONE: JMP DONE C3
28 27
29 00

Each time a row scan fails, we must add the number of columns to the key number so

as to move past the present row (try it on the keyboard in Figure 1 1-18).

This program can be generalized by making the number of rows, the number of col-

umns, and the masking pattern into named parameters through the use of EQU pseudo-
operations.

There are three unconditional Jumps in this program. Can you eliminate two of them by
appropriately restructuring the initial conditions? In addition, can you shorten the pro-

cedure by which 3 is added to Register B?

11-47

ENCODED
KEYBOARDS

An Encoded Keyboard
Purpose: Wait for data to be available from an encoded keyboard

which provides a strobe signal along with each data

item. Place the data in the Accumulator.

An encoded keyboard provides a unique identification code for each key. It has internal

electronics which perform the scanning and identification procedure described in the

previous example. The tradeoff is between the simpler software and higher cost of the

encoded keyboard and the more complex software and lower cost of the unencoded
keyboard.

Encoded keyboards may use diode matrices, TTL encoders, or MOS encoders. The iden-

tification codes may be ASCII, EBCDIC, or some other code. PROMs are often part of the

encoding circuitry.

The encoding circuitry may do more than just transform key
|
ROLLOVER

|

closures into codes. It may also debounce the keys and handle

"rollover", the problem which arises when more than one key is struck at the same
time. Common ways of handling rollover include "2-key rollover" (2KRO). whereby two
keys (but not more) struck at the same time are resolved into separate closures, and "n-

key rollover" (NKRO). whereby any number of keys struck at the same time are resolved

into separate closures.

The encoded keyboard also provides a strobe signal with each new data item. The
strobe indicates that new data is present. Figure 11-19 shows the interface between an

encoded keyboard and an 8080 microprocessor. The keyboard strobe is latched into the

SR flip-flop in the 821 2" I/O port (note that the strobe is active-high but the flip-flop out-

put is active-low). A serial input port is also necessary, since the processor has no direct

way of determining the status of the SR flip-flop. Output INT from the 8212 is active-

low and is intended to serve as an interrupt signal, either directly to the processor or via

an 8214 Priority Interrupt Control Unit. Figure 11-20 is a diagram of the 8212 I/O port,

and Figure 11-21 describes its use as an input port. (Remember that Volume II of An In-

troduction To Microcomputers describes the 8212 I/O port in detail). Most I/O boards

used in microcomputer systems contain both parallel data ports and serial status ports.

Data Bus

to CPU

8212

Input

Port

Tnt

c

Serial

Input Port

Keyboard

data inputs

The serial port can just be a single D flip-flop which the CPU can address so as to determine its status.

Figure 11-19. I/O Interface For An Encoded Keyboard

11-48

Task: Wait for an active-low strobe signal at the serial status port and then place the

data from the parallel port in the Accumulator.

Note that reading the data from the parallel port clears the SR flip-flop (this circuitry is

part of the 8212). We will assume that the serial status port is attached to bit of the

Data Bus.

Flowchart:

c

Read status port

Read data port

c

STB MD (DSrDS2) Data Out Equals CLR (DSrDS2) STB »SR INT

3 State
1 1

1 3 State 1 1

1

1

1

Data Latch

Data Latch

1

1

1

1

"L
1

1 Data Latch
1 1 1

1

1

1

1

Data In

Data In

1 1 1_ 1

1 1 1 Data In

CLR- Resets Data Latch

Sets SR Rip-Flop

No effect on Output Buffer)

* Internal SR Rip-Flop

Figure 11-20. The 8212 I/O Port

11-49

Device SelectionO dsT-0T""N_

q^ ds2—l>t

[7^ MD-

Q^ STB-

[^ Dlo-

J>Service Request FF

1
D Q
SR

1=^ -ST^O iNf (5^
(Active Low)

-^D

[^ D"1-

[^ Dl2
-

[]> 013-

n^ D15-

|5^ D'6-

(5^ Dl7'

Q^ CLR-

D Q

T^,
D Q

T^,
D Q

^,
D Q

C
D Q

^,
D Q

D̂ Q

C„

T^.
D Q

(Active Low)
-oj>o- 1

Output

Buffer

-^-f- Do G>
1

1

1

1

-^>-{- D
2 0>

I

I

--j>-L-D3 Q§>
I

I

I

I

-"^>-}- D5lS>

I

—t^-[-D6Q9>
I

I

L—l—

i

1

Figure 1 1-20. The 8212 I/O Port (Continued)

11-50

Port Selection

(DS1 • DS2)

To priority CRT

(Active Low)

To CPU

Interrupt Input

Figure 11-21. The 8212 I/O Port As An
Interrupting Input Port

The use of an 8212 as shown in Figure 1 1-21 is that of a system input port that accepts
a strobe from the system input source, which in turn clears the service request flip-flop

and interrupts the processor. The processor then goes through a service routine, iden-

tifies the port, and causes the device selection logic to go true— enabling the system
input data onto the Data Bus.

Source Program:

SRCHS: IN SPORT
RAR
JC SRCHS
IN DPORT

HERE: JMP HERE

Object Program:

READ STATUS PORT
IS THERE NEW KEYBOARD DATA?
NO. KEEP LOOKING
YES, FETCH DATA

Memory Address Instruction Memory Contents
(Hex) (Mnemonic) (Hex)

00 SRCHS: IN SPORT DB
01 SPORT
02 RAR 1F

03 JC SRCHS DA
04 00
05 00
06 IN DPORT DB
07 DPORT
08 HERE: JMP HERE C3
09 08
0A 00

Remember that the status bit is active-low. i.e.. a logic '0' indicates the presence of new
data.

11-51

A Digital-To-Analog Converter

Purpose: Send data to an 8-bit digital-to-analog converter which requires a LOAD
pulse to start the conversion process.

Digital-to-analog converters produce the continuous signals required by motors,

solenoids, relays, actuators, and other electrical and mechanical output devices. Typical

converters consist of switches and resistor ladders with the appropriate resistance

values. Typically, you must provide a reference voltage and some other digital and

analog circuitry, although complete units are becoming available at low cost (see, for

example, A. Mrozowski, "Analog Output Chips Shrink A-D Conversion Software",

Electronics , June 23, 1977, pp. 130-133).

Figure 1 1-22a describes the 8-bit Signetics NE5018 D/A converter, an example of a

device designed to be microprocessor compatible by including an on-chip 8-bit parallel

data input latch. A low level on the LE (latch enable) input passes the Data Bus informa-

tion into the latches, where it remains after LE goes high. Figure 1 1-22b illustrates con-

nection of the device to an 8080 system.

Figure 1 1-23 shows an interface for an 8-bit converter which uses two output ports,

one for the converter data and one for the load pulse. The data output port is unnecess-

ary if the converter has a data input register or latch and if the port selection logic can

be applied directly to a data strobe input of the converter (as on the Signetics NE5018).

In applications where 8 bits of resolution are not enough, 10- to 16-bit converters can

be used. Additional port logic is required to pass all the data bits; some converters pro-

vide part of this logic.

Note that the 8212 port is latched by the device selection logic in the output mode (see

Figure 1 1-24). The data therefore remains stable during and after the conversion. The

converter typically requires only a few microseconds to produce the desired analog out-

put.

11-52

11-53

From Port

Selection Logic

I/O Write Strobe o
> Analog

Output

Figure 1 1 -22b. NE501 8 Connection To 8080 System

Data Bus
(

(from CPU) <

n>

O

Data ^ DAA

Converter
Output

J>
Port

V

Load

i 1

Control

Port

Analog

Output

Figure 1 1-23. Interface For An 8-Bit Digital-To-Analog Converter

The 8212 can be used to transmit data from the

Data Bus to a system output. Selection of the

port and latching of data is controlled by the

device selection logic (DS1 - DS2).

Data Bus

from CPUC=>

DS1 DS2

O +5V

Figure 11-24. The 8212 I/O Port As A Latched Output Port

11-54

Task: Send the data in memory location 40 to the converter. Send the pulse that wil

load the converter.

Flowchart:

(
Start

)

Data = (40)

Send data

to Output

Port Dport

Pulse load

from Output

Port Cport

(
End

)

Source Program:

(The LOAD input oh the DAC is assumed to be attached to Data Bus line 0]

LDA 40H GET DATA
OUT DPORT SEND DATA TO DAC
MVI A.1 PULSE DAC LOAD
OUT CPORT DAC LOAD INPUT HIGH
SUB A
OUT CPORT DAC LOAD INPUT LOW

HERE: . JMP HERE'

Object Program:

Memory Address Instruction Memory Contents
(Hex) (Mnemonic) (Hex)

00 LDA 40H 3A
01 40
02 00
03 OUT DPORT D3
04 DPORT
05 MVI A.1 3E
06 01.

07 OUT CPORT D3
08 CPORT
09 SUB . A

'

97
0A OUT CPORT D3
0B CPORT
OC HERE: JMP HERE C3
0D OC
0E 00

1 1-55

If the other bits of CPORT are in use. the LOAD signal can be sent high by ORing a copy

of the old control data with an appropriate mask. The mask would have a 'V bit in the

LOAD position and zeros elsewhere. For example, if the old control data is in memory

location 40H. the following instruction sequence would apply:

LDA 40H ;GET OLD CONTROL DATA
ORI 00000001 B ;TURNONBIT0
OUT CPORT

The pulse could then be completed by ANDing with a mask which has a '0' bit in the

LOAD position and ones elsewhere. For-example, if the control data is in the Accumula-

tor.

ANI 1111111 OB
OUT CPORT

would bring the LOAD line low.

The LOAD pulse usually must last a minimum length of time. This could be several

clock cycles. When LOAD is low, the analog output remains the same.

The INT signal from the 82 12 device can serve as a "BYTE OUT" or other control signal,

since the device selection logic activates it. Note, however, that the INT pulse is a fairly

brief strobe since it only lasts one clock cycle.

Analog-To-Digital Converter

Purpose: Fetch data from an 8-bit analog-to-digital converter which requires a START

CONVERSION pulse to start the conversion process and has a BUSY line to

- indicate the completion of the process.

Analog-to-digital converters handle the continuous signals produced by various types

of sensors and transducers. The converter produces the digital outpufwhich the com-

puter requires.

One foTm of an analog-to-digital converter is the successive-approximation device,

which makes a direct 1-bit comparison during each clock cycle. Such converters are

fast but have little noise immunity. Dual slope integrating converters are another form

of analog-to-digital converters. These devices take longer but are more resistant to

noise. Other techniques, such as the incremental charge balancing technique, are also

used.

Analog-to-digital converters usually require some external analog and digital circuitry.

Complete units are becoming available at low cost:

Figure 1 1 -25 shows the 8-bit Teledyne Semiconductor 8703 A/D converter. The device

contains a result latch and three-state data outputs. A pulse on the INITIATE CONVER-

SION starts conversion of the analog input; after about two milliseconds the result will

go to the output latches and the BUSY output wi ll indicate this by switching low. Data

is read from the latches by applying a '0' to the ENABLE input.

Figure 1 1-26 shows the interface for an 8-bit converter. (See also D. Guzeman, "Marry

Your fiP to Monolithic A/Ds", Electronic Design . January 18, 1977, pp. 82-86.) The

various ports may be unnecessary if the converter (like the Teledyne 8703) has tristate

outputs and separate enabling circuitry for the various functions. Note that, besides the

input data and status ports, an output control port is necessary to provide the START

CONVERSION pulse. The BUSY signal could also latch the converter data into the input

data port.

Task: Start the conversion process, wait for BUSY to go high, and then read the data

and store it in memory location 40

11-56

Flowchart:

c 3

Pulse Start

Conversion line

Read data from

Data Input Port

(40) = Data

t

(
End

)

Source Program:

(Both the control and status ports are assumed to be connected to bit of the Data
Bus.)

The logical OR and AND operations could be used to pulse the START line.

A delay routine of appropriate length (120 /as for the AD 7570) could replace the ex-
amination of the BUSY signal.

The BUSY signal is assumed to be '0' while the conversion is in progress.

MVI
OUT
SUB
OUT

WTBSY: IN

RAR
JNC
IN

STA
HERE: JMP

A.1

CPORT
A
CPORT
SPORT

WTBSY
DPORT
40H
HERE

.PULSE START CONVERSION
;START CONVERSION = 1

;START CONVERSION =
;IS CONVERSION DONE (BUSY = 1)?

;NO. WAIT
;YES, GET DATA

11-57

B O

I
Aumu, nil

no kcoo>

6 3

~ ™ ffl

I

I
§ 1 € '8

Hi-

2 § O

K

Hi-
o °

5 2 1 £ o

IS i

11-58

Data Bus

(to and £
from CPU)

Data

Input

Port
c

A/D

Converter

Status

Input

Port

O Control

Output

Port

Analog

Input

Figure 1 1-26. Interface For An 8-Bit Analog-To-Digital Converter

11-59

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 MVI A.1 3E

01 01

02 OUT CPORT D3

03 CPORT
04 SUB A 97

05 OUT CPORT D3
06 CPORT
07 WTBSY: IN SPORT DB
08 SPORT
09 RAR 1F

0A JNC WTBSY D2

OB 07

OC 00

OD IN DPORT DB
OE DPORT
OF STA 40H 32

10 40

11 00

12 HERE: JMP HERE C3

13 12

14 00

TTY
INTERFACE

A Teletypewriter (TTY)

Purpose: Transfer data to and from a standard ten-character-per-

second serial teletypewriter.

The standard teletypewriter (Teletype Model ASR-33) transfers

data in an asynchronous serial mode. The procedure is as follows:

1) The line is normally in the MARK or '1' state.

2) A Start bit (a SPACE or '0' bit) precedes each character

3) The character is usually 7-bit ASCII with the least significant bit transmitted first

4) The most significant bit is a Parity bit. which may be even,

odd, or fixed at '0' or 'V.

Two Stop bits (logic '1') follow each character.5)

STANDARD
TTY
CHARACTER
FORMAT

Figure 1 1-27 shows the format. Note that each character actually

requires the transmission of eleven bits, of which only seven con-

tain information. Since the maximum data rate is ten characters per second, the bit rate

is 1 x 1 1 , or 1 1 Baud. Each bit therefore has a width of 1 /1 1 of a second, or 9.

1

milliseconds. This width is an average; the teletypewriter does not maintain it to any

high level of accuracy.

11-60

For a teletypewriter to communicate properly with a computer, the following pro-
cedures are necessary:

RECEIVE (flowcharted in Figure 11-28)

STEP 1) Look for a Start bit, i.e., a logic '0' on the data line.

STEP 2) Center the reception by waiting one-half bit time or 4.55 milliseconds.

STEP 3) Fetch the data bits, waiting one bit time before each one. Enter the data bits

into a word by first shifting the bit to the Carry and then circularly shifting the
data with the Carry.

STEP 4) Generate the Parity and check it against the received
Parity. If they do not match, indicate a "Parity error"

STEP 5) Fetch the Stop bits (waiting one bit time between in-

puts). If they are not correct (i.e.. both Stop bits are not
'1'). indicate a "framing error".

Task: Fetch data from a teletypewriter through a serial input port and place the data in

memory location 60. For procedure see Figure 1 1-28.

TTY
RECEIVE
MODE

Character is ASCII E' with odd parity (45 hex).

Remember that the transmission order is Start bit

CO'), bit 0,-bit 1, bit 2, bit 3, bit 4, bit 5, bit 6, Parity

bit. Stop bit CI'), Stop bit CD.

Figure 1 1-27. Teletypewriter Data Format

11-61

f Start J

Get input data

Count = 8

Data =

Wait one bit time

Get input data

Carry = Input data

Shift data right

with Carry

Count = Count-

1

Generate parity

Parity correct

? ^^^^(i.e., is parity

received parity ?)

Wait one bit time

Get input data

Figure 1 1-28. Flowchart For Receive Procedure

11-62

Source Program:

(Assuming serial port is attached to bit of the Data Bus and
subroutines PRERR and FRERR handle parity and framing errors

respectively.) Parity is odd.

TTY
RECEIVE
PROGRAM

WAIT FOR START BIT

RPORT

WTSTB

CENTER RECEPTION AND MARK DATA WORD

WTSTB: IN

RAR
JC

GET DATA
IS DATA A START BIT CO')?

NO. WAIT

CALL DHALF ;WAIT 1/2 BIT TIME
MVI D.10000000B :MARK DATA WORD

GET SERIAL DATA AND PLACE IN DATA WORD

RCVB. CALL DFULL
IN RPORT
RAR
MOV D.A
RAR
MOV A.D

JNC RCVB

CHECK PARITY AND SAVE DATA

;WAIT 1 BIT TIME
;GET SERIAL DATA

SHIFT SERIAL DATA INTO WORD
HAS MARK TRAVERSED WORD?
NO. KEEP FETCHING CHARACTER BITS

ANA A
JPE PRERR
STA 60H

;FETCH AND CHECK STO

MVI E.2

RCVS: CALL DFULL
IN RPORT
RAR
JNC FRERR
DCR E

JNZ RCVS
HERE: JMP HERE

:SET PARITY BIT

:PARITY ERROR IF RECEIVED PARITY IS EVEN

2 STOP BITS

WAIT 1 BIT TIME
GET SERIAL DATA
IS DATA A 'V?

NO. FRAMING ERROR

;DELAY ROUTINES

DHALF: MVI B.4 Ml BIT TIME
JMP DLY

DFULL: MVI B.8 ;1 BIT TIME
DLY: MVI C.150 ;DELAY 1/8 BIT TIME

DCR C
JNZ DLY1
DCR B

JNZ DLY
RET

11-63

A simple method for checking to see when a complete word has been received is to

place a 'V in the most significant bit of the data word and.'Os' elsewhere. When this ex-

tra "T appears in the Carry, a full word of data has been received and shifted in (to the

right).

The Stack Pointer must be initialized since the delay routines are called as subroutines.

The delay routine can easily provide both the half bit time delay and the full bit time

delay witlrtwo separate entry points.

The 8085's serial input line (SID) could also be used. RIM (Read Interrupt Mask) loads

the Accumulator with the serial input line in bit 7. So. the required changes are:

WAIT FOR START BIT

WTSTB: RIM
RAL
JC WTSTB

GET SERIAL DATA
IS SID A START BIT ('0')?

NO. WAIT

GET SERIAL DATA AND PLACE IN DATA WORD

RCVB: CALL DFULL
RIM
RAL

;WAIT 1 BIT TIME
;GET SERIAL DATA

c
Cany = (starHBtT
Get output data
Shift data left

circularly with Carry

Count = 1 1

Send data to

Output Port

Shift data right

circularly with Carry

Carry = 1 (stop bit)

Wait 1 bit time

Count = Count - 1

Figure 1 1-29. Flowchart For Transmit Procedure

11-64

TRANSMIT (flowcharted in Figure 11-29)

STEP 1} Transmit a Start bit, i.e.. a logic '0'.

STEP 2) Transmit the seven data bits, starting with the least sig-

nificant bit.

TTY
TRANSMIT
MODESTEP 3) Generate and transmit the Parity bit.

STEP 4) Transmit two Stop bits, i.e., logic '1s'.

The transmission routine must wait one bit time between each operation.

These procedures are sufficiently common and complex to merit a | UART|
special LSI device, the UART or Universal Asynchronous
Receiver/Transmitter. (For a discussion of UARTs. see P. Rony et al.. "The Bugbook lla",

E and L Instruments Inc., 61 First St.. Derby. Conn. 06418. or D. G. Larsen et. al.,

"INWAS: Interfacing with Asynchronous Serial Mode". IEEE Transactions on Industrial

Electronics and Control Instrumentation . February 1977. pp. 2-12.) The UART will per-

form the reception procedure and provide the data in parallel form and a DATA READY
signal. It will also accept data in parallel form, perform a transmission procedure, and
provide a PERIPHERAL READY signal when it can handle more data. UARTs may have
many other features, including:

1) Ability to handle various character lengths (usually five to eight bits), parity op-
tions, and numbers of stop bits (usually 1. 1.5. and 2).

2) Indicators for framing errors, parity errors, and "overrun error" (failure to read a

character before another one was received).

3) RS-232 (you can find introductory descriptions of RS-232 in F. W. Etcheverry. "Bin-
ary Serial Interfaces ", EDN , April 20. 1976. pp. 40-43 and in G. Pickles. "Who's
Afraid of RS-232? ", Kilobaud , May 1977. pp. 50-54) compatibility, i.e.. a REQUEST-
TO-SEND (RTS) output signal to indicate the presence of data to communications
equipment and a CLEAR-TO-SEND (CTS) input signal to indicate, in response to
RTS, the readiness of the communications equipment. There may be provisions for

other RS-232 signals such as RECEIVED SIGNAL QUALITY. DATA SET READY or
DATA TERMINAL READY.

4) Tristate outputs and control compatibility with a microprocessor.

5) Clock options which allow the UART to sample incoming data several times to
detect false start bits and other errors.

6) Interrupt facilities and controls.

TTY
TRANSMIT
PROGRAM

UARTs act as four parallel ports — an input data port, an output
data port, an input status port, and an output control port. The
status bits include error indicators as well as Ready flags. The con-
trol bits select various options. UARTs are inexpensive ($5 to $50.
depending on features) and easy to use.

Task: Send data from memory location 60 to a teletypewriter through a serial output
port.

For procedure see Figure 1 1-29.

11-65

Source Program:

(Assuming serial port is attached to bit of the Data Bus and parity is part of data.

GET DATA AND CLEAR START BIT

LDA 40H ;GET DATA
ADD A ;CLEAR START BIT

MVI D.11 ;COUNT = 1 1 BITS

TRANSMIT A BIT AND UPDATE DATA

TBIT: OUT TP0R1
RAR
STC

DELAY 9.1 MS

MVI B,8

DLY: MVI C.150

DLY1: DCR C
JNZ DLY1
DCR B

JNZ DLY

COUNT BITS

DCR D
JNZ TBIT

DONE: JMP DONE

TRANSMIT A BIT

UPDATE FOR NEXT BIT

STOP BIT = 1

;8 TIMES THROUGH
;DELAY 1/8 BIT TIME

;COUNT DOWN 11 BITS

11-66

Object Program:

Memory Address Instruction Memory Contents
(Hex) (Mnemonic) (Hex)

00 LDA 40H 3A
01 40
02 00
03 ADD A 87
04 MVI D.11 16
05 OB
06 TBIT: OUT TPORT D3
07 TPORT
08 RAR 1F
09 STC 37
0A MVI B.8 06
OB 08
OC DLY: MVI C.150 OE
OD 96
OE DLY1: DCR C OD
OF JNZ DLY1 C2
10 OE
11 00
12 DCR B 05
13 JNZ DLY C2
14 OC
15 00
16 DCR D 15
17 JNZ TBIT C2
18 06
19 00
1A DONE: JMP DONE C3
1B 1A
1C 00 1

The coefficients for the delay routine were calculated from the length of the delay and
the execution times of the various instructions at standard 8080 clock rates (i.e 2
MHz).

MVI - 3.5 ms
DCR - 2.5 /jls

JNZ - 5.0 M s

Two registers are necessary, since one cannot provide the full 9. 1 milliseconds with the
simple routine.

The delay routine can easily produce any multiple of 1/8 of a bit time just by varying
the initialization of Register B.

The 8085's serial output line (SOD) could also be used. The SIM instruction loads the
SOD output latch with bit 7 of the Accumulator if bit 6 is set. The other bits of the Ac-
cumulator have interrupt functions and must have appropriate values (see the 8085
User's Manual or the next chapter).

11-67

The new 8085 program is:

GET DATA AND CLEAR START BIT

MVI D.11 ;COUNT = 1 1 BITS

LDA 40H ;GET DATA
ANA A ;CLEAR START BIT

TRANSMIT A SERIAL BIT THROUGH SOD

TBIT: MOV E.A

MVI A.IMASK
RAR
SIM

DELAY 9.1 MS

MVI B.8

DLY: MVI C.243
DLY1: DCR C

JNZ DLY1
DCR B
JNZ DLY

SAVE DATA
GET INTERRUPT MASK
DATA TO SERIAL OUTPUT BIT (BIT 7)

DATA TO SERIAL LATCH

;8 TIMES THROUGH
;DELAY 1/8 BIT TIME

SHIFT DATA AND COUNT BITS

STC ;STOP BIT = 1

MOV A.E ;SHIFT DATA 1 BIT

RAL
DCR D ;COUNT DOWN 1

1

JNZ TBIT

IMASK has a Tin bit 7 to enable loading of the 8085 serial latch (the'T is in bit 6 after

RAL). The coefficients for the delay routine were calculated from the execution times of

the various instructions at the standard 8085 clock rate of 3 MHz. The delay routine

could preserve Registers B and C with a PUSH B instruction at the start and POP B at

the end. High accuracy is unnecessary since the teletypewriter does not maintain high

accuracy and each transmission consists of only 11 bits.

ANA A clears the Carry so the start bit is a '0'; STC sets the Carry so the Stop bits are

'1s'. No other instructions in the program affect the Carry.

11-68

PROBLEMS
1) Separating Closures From An Unencoded Keyboard

""Purpose: The program should read entries from an unencoded 3x3 keyboard and
place them in an array. The number of entries required is in memory location
60, and the array starts in memory location 61.

Separate one closure from the next by waiting for the current closure to end. Remem-
ber to debounce the keyboard (this can simply be a few millisecond wait).

Sample Problem:

(60) = 04

Entries are 7. 2, 2. 4

Result = (61) = 07

(62) = 02
(63) = 02
(64) = 04

2) Read A Sentence From An Encoded Keyboard
Purpose: The program should read entries from an ASCII keyboard (7 bits with a

'0'

•^Parity bit) and place them in an array until it receives an ASCII period (hex
2E). The array starts in memory location 60. Each entry is marked by a strobe,

as in the example given under An Encoded Keyboard.

Sample Problem:

Entries are H, E, L, L, 0.

Result = (60) =48 H
(61) =45 E

(62) = 4C L

(63) = 4C L

(64) = 4F O
(65) = 2E .

3) A Variable Amplitude Square Wave Generator
Purpose: The program should generate a square wave as shown in the next figure

from a D/A converter. Memory location 60 contains the scaled amplitude of
the wave, memory location 61 the length of a half-cycle in milliseconds, and
memory location 62 the number of cycles.

Assume that a digital output of 80 hex to the converter results in an analog output of
volts. For this converter, a digital output of X results in an analog output of
vOUT = X-80/80 x-VREF volts.

Sample Problem:

(60)

(61)

(62)

Result:

+ VREF.I

-»VREF|

Output 4

Voltage _^ (

4

A0 (hex)

04
03

F /rrrr^^prr^^/..

11-69

The base voltage is 80 hex for volts. Full scale is 00 hex for -Vref volts. So for A0 hex,

VOUT - ^-x-Vrep - -^EE

The program produces three pulses of amplitude Vref/4 with a half-cycle length of 4

ms.

4) Averaging Analog Readings

Purpose: The program, should take four readings from an A/O converter' ten millise-

conds apart, and place the average in memory location 60. Assume that the

A/D converter takes less than 1 00 microseconds to convert, so that the con-

version time can be ignored.

Sample Problem:

Readings are. (hex) 86; 89, 81. 84

Result = (60) -85

5) A 30 Characters-Per-Second Terminal

Purpose: Modify the transmit and receive routines of the example given under A
Teletypewriter to handle a 30 characters-per-second terminal which

transfers ASCII data with one stop bit and even parity. How could you write

the routines to handle either terminal depending on a flag bit in memory
location 40, e.g., (40) = for the 30 characters-per-second terminal, (40) = 1

for the 10 characters-per-second terminal?

11-70

Chapter 12
INTERRUPTS

REASONING
BEHIND
INTERRUPTS

Interrupts are serial inputs which the CPU examines as part of each instruction cycle.

These inputs allow the CPU to react to events at the hardware level rather than at the

software level. Interrupts generally require more hardware than ordinary (programmed)
I/O, but provide a faster and more direct response. You may want to review the discus-

sion of interrupts in Volume I of An Introduction to Microcomputers.

Why use interrupts? Interrupts allow events such as alarms, power
failure, the passage of a certain amount of time, and peripherals

having data or being ready to accept data, to get the immediate
attention of the CPU. The programmer does not need to have the

CPU actually check for the occurrence of these events, nor worry about missing them.
An interrupt system is like the bell on a telephone in that it rings when a call is received,

so that you go to the telephone in response to the bell rather than having to check the

line to see if someone is calling. In the same way, the CPU does not have to wait for an
event to occur, but rather responds to the event when it occurs. Of course, this simple
description is complicated (just like a telephone system) when there are many inter-

rupts and tasks which cannot be interrupted.

The implementation of interrupt systems varies greatly.

Among the questions which characterize a particular

system are:

CHARACTERISTICS
OF INTERRUPT
SYSTEMS

1) How many interrupt inputs are there?

2) How many sources of interrupts are there?

'

3) How does the CPU determine the source of an interrupt if the number of sources
exceeds the number of inputs?

4) How does the CPU respond to an interrupt?

5) Can the CPU differentiate between important and unimportant' interrupts?

6) How and when is the interrupt system enabled and disabled?

There are many different answers to these questions. The aim of all the implementa-
tions, however, is to have the CPU respond rapidly to the interrupt,and resume normal
activity after the response.

The number of interrupt, inputs on the CPU chip determines the number of different

responses that the CPU can produce without any additional hardware or software.. Each
input can produce a different internal response. Unfortunately, most microprocessors
have a very small number (one or two, typically) of separate interrupt inputs. ,

The ultimate response of the CPU to an interrupt must be to transfer control to the cor-

rect interrupt service routine and to save the current value of the Program Counter. The
CPU must therefore execute a Jump-To-Subroutine or Call instruction with the begin-
ning of the interrupt service routine as its address. This action will save the return ad-
dress in the Stack and transfer control to the interrupt service routine. The amount of

external hardware required to produce this response varies greatly. Some CPUs inter-

nally generate the instruction and the address; others require external hardware to form
them. The CPU can only generate a different instruction or address for each distinct in-

put.

12-1

VECTORING

If the number of interrupting devices exceeds the number of in- POLLING
puts, the CPU will need extra hardwareor software to identify the

source of the interrupt. In the simplest case, the software can con-

sist of a polling routine which checks the status of the devices

which may be interrupting. The only advantage of such a system over normal polling is

that the CPU knows that at least one input is active. The alternative solution is for addi-

tional hardware to provide a unique data input (or vector) for each source. The two

alternatives can be mixed; the vectors can identify groups of inputs which the CPU can

differentiate by polling.

An interrupt system which can differentiate between important |PRIORITY|

and unimportant interrupts is called a "priority interrupt system".

Internal hardware Gan provide as many priority levels as there are inputs. External hard-

ware can provide additional levels through the use of a priority register and comparator.

The external hardware does not allow the interrupt to get through unless its priority is

higher than the contents of the priority register. A priority interrupt system may need a

special way to handle low-priority interrupts which may be ignored for long periods of

time.

Most interrupt systems can be enabled or disabled. In fact, ENABLING
most CPUs automatically disable interrupts when a RESET is AND
performed (so that the programmer can configure the interrupt DISABLING
system) and on accepting an interrupt (so that the interrupt INTERRUPTS
will not -interrupt its own service routine). The programmer

may wish to disable interrupts while preparing or processing

data, performing a timing loop, or executing a multi-word

operation. An interrupt which cannot be disabled (sometimes

called a "non-maskable interrupt") may be useful as a power fail interrupt

The advantages of interrupts are obvious, but there are also

NON-MASKABLE
INTERRUPT

disadvantages. These include:

DISADVANTAGES
OF INTERRUPTS

large amount of extra1) Interrupt systems may require a

hardware.

2) Interrupts still require data transfers under program control through the CPU.

3) Interrupts are random inputs which make debugging and testing difficult. Errors

may occur sporadically, and therefore may be very hard to find (for a discussion of

designing with interrupts, see Baldridge, R.L., "Interrupts Add Power, Complexity

to /LtC-System Design", EDN, August 5. 1977, pp. 67-73).

12-2

8080
INTERRUPT
RESPONSE

8080 INTERRUPT SYSTEM
The 8080's internal response to an interrupt is very simple. The interrupt system con-
sists of:

1) A single active-high interrupt request input.

2) An interrupt enable flip-flop, the status of which is available as an external output
(INTE).

3) A status bit. INTERRUPT ACKNOWLEDGE (INTA), which the CPU places on Data
Bus line at the start of each machine cycle.

The 8080 checks the interrupt line at the end of each instruction

cycle. If the interrupt request line is active and interrupts are
enabled, the response is as follows (see Volume II of An Introduc-

tion to Microcomputers):

1) The CPU disables the interrupt system.

2) The CPU executes an INTERRUPT ACKNOWLEDGE machine cycle. This cycle is dis-

tinguished by status bit INTA = 1. DBIN is activated during the cycle so that the
CPU will fetch an instruction, but MEMR = so that the CPU will not activate the
memory.

External hardware must provide the rest of the response.

The Restart (RST) Instruction

The 8080 instruction set includes a special instruction, Restart
(RST), intended for use with interrupts. Restart is a one-word CALL
instruction which saves the current value of the Program Counter
in the Stack and jumps to the address specified in the instruction. Table 1 2-1 contains
the various Restart instructions and their destination addresses.

RESTART
INSTRUCTION

Table 12-1. The Restart Instruction

Mnemonic Binary Hexadecimal Destination
Form Form Form Address (Hex)

RSTO 11000111 C7 0000
RST 1 11001111 CF 0008
RST 2 11010111 D7 0010
RST 3 11011111 DF 0018
RST 4 11100111 E7 0020
RST 5 11101111 EF 0028
RST 6 11110111 F7 0030
RST 7 11111111 FF 0038

8085 only (separate inputs)

RST 5.5

RST 6.5

RST 7.5

002C
0034
003C

12-3

RST is useful in interrupt systems for the following reasons:

1) It is a one-word instruction and so requires only one fetch cycle.

2) It provides eight different destination addresses or vectors.

3) Its vectors are far enough apart to allow Jump instructions to reach the actual ser-

vice routines.

4) It is easy to form, since five of the bits are always 'V. An 8-to-3 encoder can provide

the other three bits quite cheaply.

RST has the following disadvantages:

1) It cannot provide more than eight vectors.

2) Its vectors are not far enough apart to allow space for entire interrupt service

routines.

3) Its vectors are in a fixed area of memory.

4) RST has the same destination address as the RESET input and is therefore very

difficult to use. The system needs hardware to differentiate between RESET and

RST 0, since the two cannot be distinguished by software alone.

The designer can produce a single RST instruction (RST 7) by any

of the following methods:

1) Use pullup resistors so that the Data Bus lines are all high

when no sources are driving the bus (see Figure 12-1).

2) Tie the INTA output of an 8228 System Controller to +12V
through a 1KQ resistor (see Figure 12-2).

3) Use an 8212 I/O port as an interrupt instruction port (see Figure 12-3) with its in-

puts tied high and its select line tied to INTA (formed by gating INTA and DBIN).

If there is more than one interrupting device, the interrupt service routine starting at

memory location 38 hex must identify the source by polling just as with ordinary I/O.

An 8-to-3 encoder can provide all eight RST instructions as shown in Figure 12-4.

Remember that the inputs_and outputs of a 74LS148 encoder are active-low. As a

result, a low level on input Ro produces the RST 7 instruction (see Table 1 2-2), and in-

put R7 produces the RST instruction which has the same address as RESET. The en-

coder only differentiates between simultaneous active inputs, and produces an output

which corresponds to the highest priority input.

PRODUCING
A SINGLE
RESTART
INSTRUCTION

+ 5VQ-

D6-

D4_
°3-
D2_
D,.

D -

If no source is driving the Data Bus, its contents will be FF hex (or RST 7).

Figure 12-1. Using Pullup Resistors to Form the RST 7 Instruction

12-4

Data Bus

(To CPU)<=> 8228

Controller

+ 12V

23

With this circuit, the 8228 System Controller will force the Data Bus to FF at the appropri-

ate time in response to INTA = 1.

Figure 12-2. Using the 8228 System Controller to Form the RST 7 Instruction

Data Bus

(To CPU)C
8212

I/O

Port

DSI

? 1
In response to INTA active, the 8212 port places FF hex (RST 7) on the Data Bus.

Figure 12-3. Using an 8212 I/O Port to Form the RST 7 Instruction

Data Bus

(To CPU)C
8212

I/O

Port

? 1

74LS148

Encoder

The priority encoder provides three active-low output bits to an 8212 port. The result is to place

one of the eight RST instructions on the Data Bus to the CPU in response to the INTA signal.

Figure 12-4. Forming Eight RST Instructions with a Priority Encoder

12-5

8085
INTERRUPT
SYSTEM

SIM
INSTRUCTION

8085 INTERRUPT SYSTEM
The 8085 interrupt system differs from the 8080 interrupt system

in that the 8085 has four additional interrupt inputs. The four new
inputs ail take priority over the regular interrupt input (INTR); they

are:

1) RST 5.5, which forces a call to address 2C (hex).

2) RST 6.5, which forces a call to address 34 (hex).

3) RST 7.5. which forces a call to address 3C (hex).

4) TRAP (or non-maskable interrupt), which forces a call to address 24 (hex). This in-

put can be used as a power fail interrupt.

The order of priority (highest to lowest) is TRAP, RST 7.5, RST 6.5, RST 5.5 and INTR

RST 5.5, RST 6.5 and RST 7.5 may be masked (disabled) with a

SIM instruction. SIM utilizes the bits of the Accumulator as

follows:

Bit 7 = Serial Output Data (SOD)

Bit 6 = 1 to enable the serial output data, i.e., load the output latch

Bit 5 is not used

Bit 4 = 1 to reset the RST 7.5 request

Bit 3 = 1 to load the interrupt masks from bits through 2

Bits 0-2 = to enable interrupts RST 5.5 through RST 7.5 respectively

Similarly, the RIM instruction can determine the values of the

masks and tell if there are any interrupts pending. RIM loads the

Accumulator as follows:

• Bit 7 = Serial Input Data (SID)

• Bits 4-6 = 1 for pending requests at levels 5.5, 6.5, and 7.5, respectively

• Bit 3 = 1 to enable the entire interrupt system (except TRAP)

• Bits 0-2 are the current values of the interrupt masks (0 means enabled) for RST 5.5

through RST 7.5, respectively.

8214 PRIORITY INTERRUPT CONTROL UNIT

An 8214 Priority Interrupt Control Unit can provide an almost

complete eight-level vectored interrupt system. This device (see

Figure 12-5) contains:

1) An 8-to-3 priority encoder.

2) A current Status register.

3) A priority comparator.

4) Various inputs and outputs for control and expansion.

RIM
INSTRUCTION

8214
INTERRUPT
CONTROL
UNIT

12-6

Some of the features of the 8214 device are (see also Volume II of An Introduction To
Microcomputers):

1

)

The outputs are active-low; the RST instructions produced are given by Table 1 2-2.

2) The current Status register is also active-low, so that 1 1 1 is the lowest priority and
000 the highest. Table 1 2-3 shows which priorities are allowed by various values in

the Status register.

3) SGS (Status Group Select) is bit 3 of the Status register. If this bit is low, the status
comparison is activated and on ly interrupts above the level given by the Status
register will be accepted. If SGS is high, the status comparison is bypassed so that
interrupts at level will be accepted.

4) The CPU can place a new value in the Status register by addressing it as an output
port via ECS (Enable Current Status, active-low).

5) Since the Status register is only an output port, the CPU cannot directly determine
its contents.

Note that the contents of the 82-14 Status register must be managed. You must place
an initial value in it (typically SGS = 1 , e.g., 0F-| q) before enabling interrupts. As part of
each interrupt service routine, you- must place the correct priority value into the Status
register before re-enabling interrupts and must restore the old priority value to the
Status register before returning to thesinterrupted program.

Table 12-2. RST Instructions Produced by the Various Request Inputs

Highest Input RST Destination
Request Active Instruction Address (hex)

RST 7 0038
1 RST 6 0030
2 RST 5 0028
3 RST 4 0020
4 RST 3 0018
5 RST 2 0010
6 RST 1 0008
7 RSTO 0000

Remember that the encocJer outputs are active-low.

Table 12-3. Interrupts Allowed For Various Status Register Values

Status Register Values

SGS B

1

2

3

4

5

6

7

Any.

Interrupts

Allowed

None
Request 7

Request 6 or above
Request 5 or above
Request 4 or above
Request 3 or above
Request 2 or above
Request 1 or above
All

12-7

(Open Collector)

Figure 12-5. The 8214 Priority Interrupt Control Unit

12-8

SGS must be 'V to enable interrupts at input Rrj. since any priority level only allows in-

terrupts above that level. This procedure is necessary to avoid having a request input

interrupt its own service routine.

Figure 12-6 shows the connections required to form an eight-level interrupt controller

from an 8214 control unit and an 8212 I/O port.

The advantages of the 8214 device are:

1) It provides eight levels of vectored priority interrupts with minimal hardware.

2) It does not require any timing or other circuitry.

3) It contains the priority register and the comparator.

The disadvantages of the 8214 device are:

1) The priority scheme is inflexible.

2) Low-priority interrupts may be ignored.

3) Expansion of the interrupt system beyond eight levels is difficult.

4) The interrupt vectors are in a fixed area of memory.

5) The CPU cannot read the contents of the priority register. Therefore, the program
must retain a copy of the current priority in RAM.

Despite these disadvantages, the 82 14 device is a simple, low-cost, complete controller
for interrupt systems which do not have a large number of inputs.

8259 PROGRAMMABLE INTERRUPT CONTROLLER
The 8259 Programmable Interrupt Controller (see Figure 12-7)

overcomes some of the disadvantages of the 8214 device. This
controller has the following features:

1) It allows several different priority methods, including rotating

priority (i.e.. the priority levels rotate after each servicing), to insure that all inter-

rupts are eventually serviced. The priority method can be changed under program
control.

2) It can place the interrupt vectors anywhere in memory (using either a 32- or 64-
byte area).

3) Up to eight of these devices can be combined to provide 64 vectored interrupt
levels.

The major disadvantages of the 8259 controller are the programming required and its

dependence on the 8228 System Controller to provide the timing pulses which gate a
complete Call instruction onto the Data Bus. Volume II of An Introduction To Microcom-
puters discusses the 8259 device.

8259
INTERRUPT
CONTROLLER

12-9

OOOOOOOO G _ c

4

-»|O|00 X ~ — .- <N

II- o — c* co 1- in <D i-

Is 88888888

OOOOOQaO

o-AA* •-*

£
<MSAAH>

o-VNAr-O

<^^i>

<>-VVSM>

6 " m

mil:

4-4

<: rt

i^wV

o — cNO^intoi— JP.JT..S<lt2 O
oSioc ice ice ioc ice ioc tec |ffiimim|co luuZ IOCIOC ICC

Hi-

" tt*444W
0*-NP)^»fl©ls jOOOOOOOO CC°IOIOCIOC KT ICC IOC ICC ICC IOC

sisanbeu

1 S^ £ ?
° I s

12-10

INTA

i
D7 -DoO Data

Bus

Buffer O Control Logic

RDH^-O

WR

Ao

Read

Write

Logic

CS- I
CASO-

CAS 1-

CAS2-

Cascade

Buffer

Comparator

1 f

r[>

H3
In

Service

Reg

(ISR)

n
c Priority

Resolver <:

H
Interrupt

Request

(IRR)

-IRQ

Interrupt Mask Reg

(IMR)

a
Figure 12-7. The 8259 Programmable Interrupt Controller

EXAMPLES
A Startup Interrupt

Purpose: Have the CPU wait until the startup interrupt occurs. STARTUP
INTERRUPTMany systems remain inactive until the operator actually starts

them or a DATA READY signal is received. When power-on RESET
occurs on such systems, the software must initialize the Stack Pointer, enable interrupts
and execute a HLT instruction. (Remember that a RESET disables the interrupts.) In the
flowchart, the decision as to whether startup is active is made in hardware (i.e., by the
CPU examining the interrupt input internally) rather than in software.

Figure 12-8 shows the circuitry required by the interrupt. Note that the startup input
should be active-high since the 821 2 service request flip-flop responds to a low-to-high
transition on the STB input. Also, the INT output from the 821 2 must be inverted before
being connected to the 8080's active-high interrupt input.

12-11

8080

CPU o

«4

8228

System

Controller

l/OR

<=
8212

Input

Port

rip

1kO

Startup

Input

(-TL)

C=3
Input

Data

+ 12V

The startup input clears the service request flip-flop in the 8212 port and interrupts the

processor. The 8228 controller places the RST 7 instruction on the Data Bus in response

to the INTERRUPT ACKNOWLEDGE signal.

Figure 12-8. A Single Input Interrupt

Flowchart:

c
Initialize

Stack Pointer

Enable interrupts

Note that hardware rather than software determines whether the startup is active.

Source Program:

RESET

HERE:

EQU
ORG
LXI

El

HLT
ORG
IN

LXI

JMP

RESET
SP.100H

INTRP
PORT
SP.100H
HERE

PUT STACK AT END OF MEMORY
ENABLE INTERRUPTS
AND WAIT

;CLEAR INTERRUPT
REINITIALIZE STACK POINTER

12-12

Object Program:

Memory Address Instruction Memory Contents
(Hex) (Mnemonic) (Hex)

00 LXI SP.100H 31
01 00
02 01

03 El FB
04 HLT 76

INTRP IN PORT DB
+ 1 PORT
+2 LXI SP.100H 31
+3 00
+4 01
+5 HERE: JMP HERE C3
+6 INTRP+5
+7

,

The program must initialize the Stack Pointer, since the RST instruction uses the Stack.
Each iteration reinitializes the Stack Pointer so that the Stack doesn't grow.

The program must initialize the Stack Pointer and the buffer pointer before enabling the
interrupts so that the service routine has a place for the data and the return address.

The exact location of the interrupt service routine varies with the
microcomputer. If your microcomputer has no monitor, you can
start the interrupt service routine wherever the external hardware
directs the CPU. Convenient addresses to use are 38 hexadecimal
in 8080 systems (the lowest priority interrupt in 8214-based
systems and the only vector in systems without interrupt con-
trollers) or 3C hexadecimal in 8085 systems (the vector for the RST 7.5 input). These ad
dresses are convenient since there are no vectors above them in memory.

If your microcomputer has a monitor, the monitor will often oc-
cupy the RESET and interrupt service addresses. It will then supply
service addresses at which you must place either the service
routines or the addresses of those routines. A typical monitor
routine would be:

MONIN: LHLD USINT

LOCATION
OF
INTERRUPT
SERVICE
ROUTINE

INTERRUPT
HANDLING
BY
MONITORS

PCHL

;GET USER ADDRESS FOR INTERRUPT
;SERVICE ROUTINE
;AND JUMP TO IT

You must place the address of your service routine in memory locations USINT and
USINT+1. Remember that MONIN is an address in the monitor program.

You can include the loading of memory locations USINT and USINT+1 in your main
program, i.e..

LXI H.INTRP ;GET STARTING ADDRESS OF SERVICE ROUTINE
SHLD USINT ;STORE IT AS USER ADDRESS

These instructions come before the enabling of the interrupts.

In this example, the return address which the 8080 stores in the Stack is not useful.
However, the main program still must initialize the Stack Pointer so that there is a
definite place to put that address. You may not need the LXI SP instruction if the moni-
tor in your microcomputer manages the Stack Pointer.

12-13

The service routine discards the return address by simply reinitializing the Stack

Pointer. An alternative would be to increment the Stack Pointer twice:

INX

INX

SP
SP

Remember that accepting an interrupt automatically disables the interrupt system. This

allows the real startup routine to configure the interrupt system before re-enabling in-

terrupts. Note that you must deactivate the startup interrupt in the service routine (with

the otherwise useless IN PORT instruction) or else it will interrupt again as soon as the

interrupt system is re-enabled.

The implementations of the instructions El (Enable Interrupts) and Dl (Disable Inter-

rupts) differ on the 8080. Dl takes effect immediately after its execution, while El takes

effect after the execution of the following instruction. The reasoning behind this fact is

discussed in Chapter 3 under the description of the El instruction.

A Keyboard Interrupt

Purpose: The computer waits for a keyboard interrupt and places

the data from the keyboard in memory location 60.

Sample Problem:

KEYBOARD
INTERRUPT

Keyboard data

Result

Flowchart:

= 06
= (60) 06

(s»")

Initialize

Stack Pointer

Enable CPU interrupt

No ^^^there data^^.
^Lfrom keyboard^^^

jLYes

(60) = Data

C *-)

12-14

Source Program:

RESET

HERE:

EQU
ORG RESET
LXI SP.100H PUT STACK AT END OF MEMORY
El ENABLE INTERRUPTS
JMP HERE AND WAIT

ORG INTRP
IN PORT GET KEYBOARD DATA
STA 60H SAVE KEYBOARD DATA
El RE-ENABLE INTERRUPTS

Object Program:

Memory Address Instruction Memory Contents
(Hex) (Mnemonic) (Hex)

00 RESET: LXI SP.100H 31

01 00
02 01
03 El FB
04 HERE: JMP HERE C3
05 04
06 00

INTRP IN PORT DB
+ 1 PORT
+2 STA 60H 32
+3 60
+4 00
+5 El FB
+6 RET C9

The JMP HERE is a*jump-to-self instruction which is used to represent the main pro-
gram. After interrupts are enabled in a working system, the main program goes about
its business until an interrupt occurs and then resumes execution after the interrupt
service routine is completed.

The RET instruction at the end of the service routine transfers con-
trol back to the JMP instruction. If you want to avoid this, you can
simply increment the Program Counter in the Stack, e.g..

POP H
INX H
INX H
INX H
PUSH H

The RET instruction w
following the JMP.

;GET RETURN ADDRESS
; INCREMENT RETURN ADDRESS

;PUT IT BACK IN STACK

now transfer control to the instruction

CHANGING
THE
RETURN
ADDRESS

Since the 8080 does not automatically save its registers, you can use them to pass
parameters and results between the main program and the interrupt service routine. So.
you could leave the data in the Accumulator instead of in memory location 60. This is,

however, an extraordinarily dangerous practice which should be avoided in all but the
most trivial systems. In general, no interrupt service routine should ever alter any
register unless that register's contents have been saved prior to its alteration and will be
restored at the completion of the routine.

12-15

Note that you must explicitly re-enable the interrupts at the end of the service routine,

since the processor disables the interrupt system when it accepts an interrupt. Reading

the port deactivates the interrupt.

An alternative would be for the keyboard to keep interrupting until

it received an entire sentence, e.g., ending with a carriage return

CCR'). The main program and the service routine would be:

RESET:

HERE:

INTRP:

ENDB:

LXI SP.100H
LXI H.60H
El

JMP HERE

IN PORT
MOV M.A
CPI CR
JZ ENDB
INX H
El

RET
POP D

STACK TO END OF MEMORY
START BUFFER POINTER
ENABLE. INTERRUPT
AND WAIT

GET KEYBOARD DATA
SAVE IN BUFFER
IS DATA A CARRIAGE RETURN?
YES. END OF SENTENCE
NO, INCREMENT BUFFER POINTER

RE-ENABLE INTERRUPTS

;DISPOSE OF RETURN ADDRESS
JMP KBDCODE CONTINUE WITH INTERRUPTS DISABLED

FILLING
A BUFFER
VIA
INTERRUPTS

When the processor receives a carriage return, it leaves the inter- DOUBLE
rupt system disabled while it handles the sentence. An alternative | BUFFERING

approach would be to fill another buffer while handling the first

one: this approach is called double buffering.

In a real application, the CPU could perform other tasks between interrupts. It could, for

instance, edit, move or transmit a line from one buffer while the interrupt was filling

another buffer.

12-16

A Printer Interrupt

Purpose: The computer waits for a printer interrupt and sends
the data from memory location 60 to the printer.

Sample Problem:

PRINTER
INTERRUPT

(60)

Result

41

Printer receives a 41 (ASCII A)

when it is ready.

Flowchart:

f Start J

Initialize

Stack Pointer

Enable interrupt

Send (60)

to printer

»
f End

)

Source Program:

RESET EQU
ORG RESET
LXI SP.100H
El

HERE: JMP HERE

PUT STACK AT END OF MEMORY
ENABLE INTERRUPTS
AND WAIT

ORG INTRP
LDA 60H
OUT PORT
El

RET

GET DATA
SEND TO PRINTER
RE-ENABLE INTERRUPTS
AND WAIT

12-17

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 RESET:

LXI SP.100H 31

01 00

02 01

03 Et FB

04 HERE: JMP HERE C3
05 04

06 00

INTRP LDA 60H 3A
+ 1 60

+2 00

+3 OUT PORT D3
+4 PORT
+5 El FB

+6 RET C9

Writing data into the interrupting port also deactivates the interrupt.

Here again, you could have theprinter continue to interrupt until it

transferred an entire sentence. The main program and the service

routine would be:

RESET: LXI SP.100H ;STACK TO END OF MEMORY
;START BUFFER POINTER

;ENABLE INTERRUPT
;AND WAITHERE:

INTRP:

ENDB:

LXI SP.100H

LXI H.60H

El

JMP HERE

MOV A.M

OUT PORT
CPI CR

JZ ENDB
INX H

El

RET
POP D
JMP MAIN

EMPTYING
A BUFFER
WITH
INTERRUPTS

GET CHARACTER FROM
BUFFER
SEND CHARACTER TO PRINTER

IS CHARACTER A CARRIAGE
RETURN?
YES, END OF SENTENCE
NO, INCREMENT BUFFER
POINTER
RE-ENABLE INTERRUPTS

:DISPOSE OF RETURN ADDRESS
CONTINUE WITH INTERRUPTS
DISABLED

The service routine leaves the interrupts disabled after completing the.transfer of the

sentence. As before, the CPU could perform other tasks between interrupts.

12-18

A Real-Time Clock Interrupt

Purpose: The computer waits for an interrupt from a real-time clock.

A real-time clock simply provides a regular series of pulses which
can be used as a time reference. Real-time clock interrupts can be
counted to produce any required time interval. A real-time clock
can be obtained by dividing down the CPU clock, by using a separate clock generator or
a programmable timer like the 8253 device for 8080-based microcomputers, or by
using external sources such as the AC line frequency.

REAL-TIME
CLOCK

Note the tradeoffs involved in determining the frequency of the
real-time clock. A high frequency (say 10kHz) allows you to pro-
duce a wide range of time intervals to high accuracy. On the other
hand, the processor time used in counting clock interrupts may be
considerable, and the count will quickly exceed the capacity of a
single 8-bit register or memory location. The choice of frequency depends on the preci-
sion and timing requirements of your application.

FREQUENCY
OF
REAL-TIME
CLOCK

SYNCHRONIZATION
WITH REAL-TIME
CLOCK

;PUT STACK AT END OF MEMORY
.NUMBER OF INTERRUPTS = 1

;SET FLAGS
;ENABLE INTERRUPTS
;WAIT FOR CLOCK INTERRUPT

One problem is synchronizing processor operations with
the real-time clock. Starting at a random point in the clock
period will introduce an error into the timing intervals.

Some ways to synchronize with the clock are:

Start the CPU and clock together. RESET or a startup interrupt can start the clock
and the CPU.

Allow the CPU to start and stop the clock under program control.

Use a high-frequency clock so that an error of one clock period is very small.

Line up the CPU and clock by waiting for a clock edge or interrupt before starting
the count.

A real-time clock interrupt should have very high priority, since
the precision of the timing intervals will be affected by any delay
in servicing the interrupt. The usual practice is to make the real-

time clock the highest priority interrupt except for power failure.

The clock interrupt service routine is generally kept extremely
short so that it does not interfere with other CPU activities.

a) Wait For Real-Time Clock

Source Program:

RESET EQU
ORG RESET
LXI SP.100H
MVI C.2

DCR C
El

WAITC: JNZ WAITC
HERE: JMP HERE

PRIORITY
OF
REAL-TIME
CLOCK

ORG INTRP
IN PORT
DCR C
El

RET

;CLEAR INTERRUPT
;COUNT INTERRUPT
;RE-ENABLE INTERRUPTS

12-19

Object Program:

Memory Address Instruction Memory Contents

(Hex) (Mnemonic) (Hex)

00 RESET:

LXI SP.100H 31

01 00

02 01

03 MVI C.2 OE

04 02

05 DCR C OD
06 El FB

07 WAITC'
JNZ WAITC C2

08 07

09 00

0A HERE: JMP HERE C3

OB OA
OC 00

INTRP IN PORT DB
+ 1 PORT

+2 DCR C OD
+3 El FB

+4 RET C9

The interrupt service routine deactivates the service request flip-flop (with IN PORT),

counts the interrupt, and re-enables the interrupt system. Of course, the routine could

count up instead of down and could include carries if the counts were too large for a

single register. Generally, a few RAM locations are reserved for the real-time clock. Note

that A cannot be used for the counter since it is used by the IN PORT instruction which

deactivates the interrupt. With the real-time clock, the CPU does not have to execute

timing loops or activate a timer. The software is extremely simple and you can obtain

any desired timing interval.

12-20

b) Wait For 10 Real-Time Clock Interrupts

Source Program:

RESET EQU
ORG RESET
LXI SP.100H

MVI C.11

DCR C
El

WAITC: JNZ WAITC
HERE: JMP HERE

ORG INTRP

IN PORT
DCR C
El

RET

PUT STACK AT END OF MEMORY
NUMBER OF INTERRUPTS = 1

1

SET FLAGS
ENABLE INTERRUPTS
WAIT FOR 10 INTERRUPTS

CLEAR INTERRUPT
COUNT INTERRUPT
RE-ENABLE INTERRUPTS

MAINTAINING
REAL TIME

The only change is the new starting value in Register C. Note that you must clear the

Zero flag before the CPU executes JNZ WAITC the first time.

A more general real-time clock interrupt routine may maintain

time in several RAM locations. For example, we might use a

100 Hz external clock and keep time as follows in memory
starting at address RTCLK:

RTCLK - hundredths of seconds
RTCLK+1 - seconds
RTCLK+2 - minutes

RTCLK+3 - hours

12-21

Flowchart:

f Start)

Save registers

Clear interrupt

Hundredths =

Hundredths + 1

Hundredths =

Seconds = Seconds

+ 1

Seconds =0

Minutes = Minutes

+ 1

Minutes =

Hours = Hours + 1

Restore registers

Enable interrupts

}

12-22

The interrupt service routine would be:

ORG INTRP
PUSH PSW
PUSH H
IN PORT
LXI H.RTCLK
INR M
MVI A, 100
CMP M
JNZ DONE
MVI M.O
INX H
INR M
MVI A.60
CMP M
JNZ DONE
MVI M.O
INX H
INR M
CMP M
JNZ' DONE
MVI M,0
INX H
INR M

DONE: El

POP H
POP PSW
RET

Now the main program coul

LXI H.RTCLK
MOV A.M
ADI 30
CPI 100
JC WT30
SUI 100

WT30: CMP M
JNZ WT30

;SAVE REGISTERS

;CLEAR REAL-TIME CLOCK INTERRUPT

;UPDATE HUNDREDTHS OF SECONDS

IS THERE A CARRY TO SECONDS?
NO. DONE
YES, HUNDREDTHS =

;UPDATE SECONDS

IS THERE A CARRY TO MINUTES?
NO. DONE
YES. SECONDS = 0.

UPDATE MINUTES
IS THERE A CARRY'TO HOURS?
NO. DONE
YES. MINUTES =

UPDATE HOURS
RE-ENABLE INTERRUPTS
RESTORE REGISTERS

GET PRESENTTIME (HUNDREDTHS OF SECONDS)
DESIRED TIME IS 30 COUNTS LATER
MOD 100

;WAIT UNTIL DESIRED TIME

Of course, the program could perform other tasks and only check the elapsed time oc-
casionally. How would you. produce a delay of seven seconds? Three minutes?

A Teletypewriter Interrupt

Purpose: The processor waits for data to be received from
a teletypewriter and stores the data in memory
location 60.

TELETYPEWRITER
INTERRUPT

UART
INTERRUPTS

Using a UART

The receive program is the same as the keyboard interrupt

program. The transmit program is the same as the printer in-

terrupt program. An 8080-compatible UART like the 8251 Programmable Com-
munication Interface has TRANSMITTER READY and RECEIVER READY outputs
which can be tied to the 8080 or 8085 interrupt inputs. These bits are automat-
ically cleared when the CPU transfers data to and from the UART.

12-23

START BIT

INTERRUPT

EQU
ORG RESET
LXI SP,100H

El

JMP HERE

ORG INTRP

IN PORT
CALL TTYRCV
STA 60H
El

RET

2) Using 8212 Devices

An interrupt-driven receive routine must have the received

data tied both to an 8212 data input and through an inverter

to the 8212 STROBE input. The inverter is necessary since the start bit provides a

high-to-low transition while the 8212 only recognizes low-to-high transitions.

Source Program:

RESET
ORG RESET

;PUT STACK AT END OF MEMORY
;ENABLE INTERRUPTS

HERE: JMP HERE ;WAIT FOR TTY

;CLEAR START BIT INTERRUPT

;GET CHARACTER FROM TTY
;SAVE CHARACTER
;RE-ENABLE INTERRUPTS

Subroutine TTYRCV is the TTY receive routine shown in the previous chapter without

the start bit recognition routine.

The edge used to cause the interrupt is very important here. The transition from the

normal MARK or '1' state to the SPACE or '0' state must cause an interrupt, since this

transition identifies the start of the character transmission. The '0' to T transition will

not occur until a non-zero data bit is received.

The service routine must deactivate the start bit interrupt and leave the interrupts dis-

abled until an entire character has been received. Otherwise, each 'V to '0' transition in

the character will cause an interrupt. Note that the ignored transitions will still clear the

8212 service request flip-flop. However, reading the data bits from the port will set the

flip-flop without causing an interrupt. You must re-enable the interrupts after the entire

character has been read.

MORE GENERAL SERVICE ROUTINES
More general service routines that are part of a complete interrupt-

driven system must handle the following tasks:

1) Saving all registers in the Stack so that the interrupted pro-

gram can be correctly resumed.

Remember that the 8080 Push instruction transfers a register

pair to the Stack. PUSH PSW (PSW is the Processor Status Word) transfers the Ac-

cumulator and flags to the Stack.

2) Establishing the priority of the interrupt, perhaps by writing the complement of the

priority into the 8214 Status register.

The rest of the interrupt system can then be re-enabled. Remember that in order to

restore the old priority correctly you must save it in the Stack as well. A copy of the

current priority must be held in RAM. since the 8214 Status register is write-only.

3) Restoring the old priority, all the registers, and the status of the interrupt system

before returning to the interrupted program.

The service routine should be transparent as far as the interrupted program is con-

cerned, i.e., it should have no incidental effects.

Any standard subroutines which are used by an interrupt service routine must be re-

entrant. If some subroutines cannot be made re-entrant, the interrupt service routine

must have separate versions to use.

TASKS FOR
GENERAL
SERVICE
ROUTINES

12-24

Priority systems using an 8214 Controller can handle up to eight interrupt sources.

Each interrupt entry point except the one with the lowest priority must contain a jump
to the actual service routine, since only a few memory locations are available without

running into the next entry point.

If the highest priority interrupt is used, the system must have some USING
way to differentiate this input from RESET. A status flip-flop (port RST
STAT) which holds the highest level interrupt input (i.e., INT from

""""""*"

the highest priority 8212 port) will do the job. The program is the following:

ORG RESET
:ENTRY FOR RESET OR HIGHEST INTERRUPT

;SAVE A IN CASE OF INTERRUPT
;IS ENTRY CAUSED BY INTERRUPT?

JMP INTO

ORG INTO

STA TEMP
IN STAT
ORA A
JNZ START
LDA TEMP

;NO. GOTO RESET ROUTINE
;YES, RESTORE A

HIGHEST PRIORITY SERVICE ROUTINE

Note that A cannot be saved in the Stack since RESET does not initialize the Stack
Pointer. The alternative is to not use the highest interrupt level.

12-25

in general, you must be careful. when an interrupt may disturb a program. Obviously,

timing loops and other routines with precise timing relationships cannot be interrupted.

Nor can startup routines or routines that initialize parameters for the service routines.

Not only must the service routine save the contents of registers and flags, it must also

not interfere with partially completed operations. For example, note that a transfer to or

from a buffer with interrupt-driven input/output may not be interrupted. Otherwise, the

output routine might be interrupted and have the byte of data it was about to send

replaced by a new byte from the input routine. Be particularly cautious when you are

handling several words of data. An interrupt could disturb the data and result in part of

it being updated and part not. Such mixtures can result in debugging nightmares. More

general service routines must save all the registers and the old priority in the Stack on

entering, and restore them before returning. Standard procedures are'

SAVING REGISTERS AND PRIORITY

PUSH
PUSH
PUSH
PUSH
LDA
PUSH
MVI
STA
OUT
El

PSW -

B

D
H
PRTY
PSW
A.PRTYN
PRTY
PRREG

;SAVE REGISTERS

;SAVE OLD PRIORITY

;SET NEW PRIORITY

SAVING AND
RESTORING
REGISTERS
AND PRIORITY

RESTORING REGISTERS AND PRIORITY

POP
STA
OUT
POP
POP
POP
POP

PSW
PRTY
PRREG
H
D
B

PSW

;RESTORE OLD PRIORITY

;RESTORE REGISTERS

If an 8214 device is used, a copy of the old priority, is necessary for more than two levels

since the 8214 priority register is write-only and the return must restore the correct

level.

Of course, the old priority at the lowest level need not be saved or restored since it must

have been the lowest possible. Note that the program must write the old priority back

into the 8214's Status register before returning.

12-26

PROBLEMS
1) A Test Interrupt

Purpose: The computer waits for an interrupt to occur and then executes the test in-

struction:

HERE: JMP HERE

until the next interrupt occurs.

2) A Keyboard Interrupt

Purpose: The computer waits for a four-digit entry from a keyboard and places the

digits in memory locations 60 through 63 (first one received in 60). Each digit

entry causes an interrupt. The fourth entry should also result in the disabling

of the interrupt system.

Sample Problem:

Keyboard data = 04. 06, 01, 07
Result = (60) =04

(61) =06
(62) =01
(63) = 07

3) A Printer Interrupt

Purpose: The computer sends four characters from memory locations 60 to 63 (60

first) to the printer. Each character is requested by an interrupt. The fourth

transfer also disables the interrupt system.

4) A Real-Time Clock Interrupt

Purpose: The computer clears memory location 60 to start and then waits for the real-

time clock interrupt. Each time the real-time interrupt occurs, the program
complements memory location 60. How would you change the program so
that it complements memory location every ten interrupts? How would you
change the program so that memory location 60 is zero for ten clock periods,

FF (hex) for five clock periods, and so on continuously? You may want to use
a display rather than memory location 60 so that it will be easier to see.

5) A Teletypewriter Interrupt

Purpose: The computer receives TTY data from an interrupting UARTand stores the

characters in a buffer starting in memory location 60. When the computer
receives a carriage return character (0D hex), it disables the interrupt system
and stops receiving characters. How would you change your program to use
an 821 2 I/O port? Assume that subroutine TTYRCV is available as in the ex-

ample.

12-27

Chapter 13
PROBLEM DEFINITION AND

PROGRAM DESIGN

THE TASKS OF SOFTWARE DEVELOPMENT
In the previous chapters, we have concentrated on the writing of short programs in as-

sembly language. While this is an important topic, it is only a small part of the total

problem of software development. Although writing assembly language programs
seems like a major task to the newcomer, it soon becomes relatively simple. By now,
you should be familiar with most of the standard methods for programming in assembly
language on the 8080 microprocessor. The next four chapters will describe how to for-

mulate tasks as programs and how to put short programs together to form a working
system.

Software development consists of many stages. Figure 13-1 is STAGES OF
a flowchart of the software development process. Its stages SOFTWARE
are DEVELOPMENT
•Problem definition

•Program design

• Coding

• Debugging

• Testing

•Documentation

•Maintenance and re-design

Each of these stages is important in the construction of a working system. Note that
coding, the writing of programs in a form that the computer understands, is only one of

seven stages.

In fact, coding is usually the easiest stage to define and perform.
The rules for writing computer programs are relatively easy to

learn. They vary somewhat from computer to computer, but the
basic techniques remain the same. Few software projects run into

trouble because of the coding stage; indeed, the coding stage is not the most signifi-

cant part of software development. Experts estimate that a programmer can write one
to ten fully debugged and documented statements per day. Clearly, the mere coding of

one to ten statements is hardly a full day's effort. On most software projects, coding oc-
cupies less than 25% of the programmer's time.

RELATIVE
IMPORTANCE
OF CODING

MEASURING
PROGRESS
IN STAGES

Measuring progress in the other stages is difficult. You can say
that half of the program has been written, but you can hardly say
that half of the errors have been removed or half of the problem
has been defined. Clear timetables in such stages as program
design, debugging, and testing are difficult to produce. Many days or weeks of effort

may result in no clear progress. Furthermore, an incomplete job in one stage may result
in tremendous problems later. For example, poor problem definition or program design
can make debugging and testing very difficult. Time saved in one stage may be spent
many times over in later stages.

13-1

C Start J

Problem definition

Program design

Coding

Debugging

Testing

Documentation

Maintenance and

redesign

CZEZD

Figure 13-1. Flowchart Of Software Development

13-2

PROBLEM
DEFINITION

DEFINITION OF THE STAGES
Problem definition is the formulation of the task in terms of the

requirements it places on the computer. For example, what is

necessary to make a computer control a tool, run a series of

electrical tests or handle communications between a central controller and a remote in-

strument? Problem definition requires that you determine the form and rate of inputs
and outputs, the amount and speed of processing that is needed, and the types of

possible errors and their handling. Problem definition takes a vaguely defined idea of

building a computer-controlled system and defines the tasks and requirements for the
computer.

PROGRAM
DESIGN

Program design is the outline of the computer program which will

perform the tasks that have been defined. In the design the tasks

are described in a way that can easily be converted into a pro-

gram. Among the useful techniques in this stage are flowcharting, structured program
ming, modular programming and top-down design.

Coding is the writing of the program in a form that the computer [CODING I

can either directly understand or translate. The form may be
"""""

machine language, assembly language or a-high-level language.

Debugging, also called program verification, is making the pro- |DEBUGGING|
gram do what the design specified that it would do. In this stage,

l————

I

you use such tools as breakpoints, traces, simulators, logic analyzers and in-circuit

emulators. The end of the debugging stage is hard to define, since you never know
when you have found the last error.

Testing, also referred to as program validation, is ensuring that the
|
TESTING]

program performs the overall system tasks correctly. The designer
uses simulators, exercisers and various statistical techniques to get some measure of

the program's performance.

Documentation is the description of the program in the proper
\ DOCUMENTATION

|

form for users and maintenance personnel. Documentation •——————•
also allows the designer to develop a program library so that subsequent tasks will be
far simpler. Flowcharts, comments, memory maps and library forms are some of the
tools used in documentation.

Maintenance and re-design are the servicing, improvement and MAINTENANCE
extension of the program. Clearly, the designer must be ready to AND
handle field problems in computer-based equipment. Special RE-DESIGN
diagnostic modes or programs and other maintenance tools may ———————
be required. Upgrading or extension of the program may be necessary tomakethe pro-
gram meet new requirements or handle new tasks.

The rest of this chapter will consider only the problem definition and program design
stages. Chapter 14 will discuss debugging and testing, and Chapter 15 will discuss
documentation, extension. and re-design. We will. bring all the stages together in some
-simple systems examples in Chapter 16.

PROBLEM DEFINITION
Typical microprocessor tasks require a lot of definition. For example, what must a pro-
gram do to control a scale, a cash register or a signal generator? Clearly, we have a long
way to go just to define the tasks involved.

DEFINING THE INPUTS
How do we start the definition? The obvious place to begin is with the inputs. We
should begin by listing all the inputs that the computer may receive in this application.

13-3

FACTORS
IN INPUT

Examples of inputs are:

• Data blocks from transmission lines

• Status words from peripherals

• Data from A/D converters

Then, we may ask the following questions about each input:

1) What is its form, i.e., what signals will the computer actually

receive?

2) When is the input available and how does the processor know it is available? Does

the processor have to request the input with a strobe signal? Does the input pro-

vide its own clock?

3) How long is it available?

4) How often does it change, and how does the processor know that it has changed?

5) Does it provide a sequence or block of data? Is the order important?

6) What should be done if the data contains errors? These may include transmission

errors, incorrect data, sequencing errors, extra data, etc.

7) Is the input related to other inputs or outputs?

DEFINING THE OUTPUTS
The next step to define is the output. We should begin by listing all the outputs that the

computer must produce. Examples of outputs include:

•Data blocks to transmission lines

• Control words to peripherals

• Data to D/A converters

Then we may ask the following questions about each output:

1) What is its form. i.e.. what signals must the computer produce?

2) When must it be available, and how does the peripheral know it is available?

3) How long must it be available?

4) How often must it change, and how does the peripheral know that it has changed?

5) Is there a sequence of outputs? Is the order important?

6) What should be done to avoid transmission errors or to sense and recover from pe-

ripheral failures?

7) How is the output related to other inputs and outputs?

PROCESSING SECTION
Between the reading of input data and the sending of output results is the processing

section. Here we must determine exactly how the computer must process the input

data. The questions are:

1

)

What is the basic procedure (algorithm) for transforming input

data to output results?

2) What time constraints exist? These may include data rates,

delay times, the time constants of input and output devices, etc.

3) What memory constraints exist? Do we have limits on the amount of program

memory or data memory, or on the size of buffers?

4) What standard programs or tables must be used? What are their requirements?

5) What special cases exist, and how should the program handle them?

6) How accurate must the results be?

13-4

FACTORS IN

PROCESSING

ERROR
CONSIDERATIONS

ERROR HANDLING
An important factor in many applications is the handling of errors. Clearly, the designer

must make provisions for recovering from common errors and for diagnosing malfunc-

tions. Among the questions which the designer must ask at the definition stage are:

1) What errors could occur?

2) Which errors are most likely? If a person operates the

system, human error is the most common. Following

human errors, communications or transmission errors are more common than

mechanical, electrical, or processor errors.

3) Which errors will not be immediately obvious to the system? A special problem is

the occurrence of errors which the system or operator may not immediately recogn-

ize.

4) How can the system recover from errors with a minimum loss of time and data, and

yet be aware that an error has occurred?

5) Which errors or malfunctions cause the same system behavior? How can these er-

rors or malfunctions be separated for diagnostic purposes?

6} Which errors involve special system procedures? For example, do parity errors re-

quire re-transmission of data?

Another question is: How can the field technician systematically find the source of

malfunctions without being an expert? Built-in test programs (see, for example, V.P.

Srini, "Fault Diagnosis of Microprocessor Systems", Computer , January 1977, pp.

60-65), special diagnostics or signature analysis can help. For a description of signature

analysis, see Gordon, G. and H. Nadig, "Hexadecimal Signatures Identify Trouble-spots

in Microprocessor Systems", Electronics , March 3, 1977, pp. 89-96. There is also an Ap-

plication Note (#222) entitled "A Designer's Guide to Signature Analysis" available

from Hewlett-Packard.

HUMAN FACTORS
Many microprocessor-based systems involve human interaction.

Human factors must be considered throughout the development
process for such systems. Among the questions which the

designer must ask are:

1) What input procedures will be most natural for the human operator?

2) How will an operator know where to begin, continue and end the input operation?

3) How will the operator be informed of procedural errors and equipment malfunc-

tions?

4) What errors is the operator most likely to make?

5) How does the operator know that data has been entered correctly?

6) Are displays in a form that the operator can easily read and understand?

7) Is the response of the system adequate for the operator?

8) Is the system easy for the operator to use?

9) Are there guiding features for an inexperienced operator?

10) Are there shortcuts and reasonable options for the experienced operator?

Building a system for people to use is difficult. The microprocessor can make the

system more powerful, more flexible and more responsive. However, the designer still-

must add the human touches which can greatly increase the usefulness and attractive-

ness of the system and the productivity of the human operator.

13-5

OPERATOR
INTERACTION

DEFINING
SWITCH
AND
LIGHT
SYSTEM

SWITCH AND
LIGHT INPUT

EXAMPLES
Response To A Switch
Figure 13-2 shows a simple system in which the input is from a

single SPST switch and the output is to a single LED display. In

response to a switch closure, the processor turns the display on for

one second. Surely, this system should be easy to define.

Let us first examine the input and answer each of the questions
previously presented:

1) The form of the input is a single bit which may be either
'0'

(switch closed) or "T (switch open).

2) The input is always available and need not be requested.

3) The input is availableforat least several milliseconds after the closure.

4) The input will seldom change more than once every few seconds. The processor

only has to handle the bounce in the switch. The processor must monitor the

switch to determine when it is closed.

5) There is no sequence of inputs.

6) The obvious input errors are switch failure, failure in the input circuitry, and the

operator attempting to close the switch again before a sufficient amount of time
has elapsed. We will discuss the handling of these errors later.

7) The input does not depend on. any other inputs or outputs.

The next requirement in defining the system is to examine the output. The answers to

our questions are:

1) The form of the output is a single bit which is '0', to turn the

display on, T to turn it off.

2) There are no time constraints on the output. The peripheral

does not need to be informed of the availability of data.

If the display is an LED, -the data need only be available for a

few milliseconds at. a pulse rate of about 100 times per second. The observer will

see a continuously lit display.

The data must change after one second, i.e., go off.

There is no sequence of outputs

SWITCH
AND
LIGHT
OUTPUTS

3)

4)

5)

6) The possible output errors axe display failure and failure in the output circuitry

7) The output depends only on the switch-input and time.

O +5VCPU

Input

Port
r~

•

k-^ Output

PortV

The switch

switch is

cathode of

input is a 'V if the sv

closed. The CPU app

the LED: a 0' lights th

witch

ies tr

e disp

s

e

ay

jpen, '0'

output t

if the

o the

Figure 13-2. The Switch And Light System

13-6

SWITCH AND
LIGHT ERROR
HANDLING

The processing section is extremely simple. As soon as the switch input becomes a
logic '0'. the CPU turns the light on (a logic '0') for one second. No time or memory con-
straints exist.

Let us now look at the possible errors and malfunctions. These
are:

1) Another switch closure before one second has elapsed.

2) Switch failure.

3) Display failure.

4) Computer failure.

Surely the first error is the most likely. The simplest solution is for the processor to ig-

nore switch closures until one second has elapsed. This brief unresponsive period will

hardly be noticeable to the human operator. Furthermore, ignoring the switch during
this period means that no debouncing circuitry or software is necessary, since the
system will not react to the bounce anyway.

Clearly, the last three failures can produce unpredictable results. The display may stay
on, stay off or change state at random. Some possible ways to isolate the failures would
be:

1) Lamp-test hardware to check the display, i.e., a button which would turn the light
on independently of the processor.

2) A direct connection to the switch to check its operation.

3) A diagnostic program which would exercise the input and output circuits.

If both the display and switch are working, the computer is at fault. A field technician
with proper equipment can determine the cause of the failure.

A Switch-Based Memory Loader
Figure 13-3 shows a system which allows the user to enter
data into any memory location in a microcomputer. One input
port, DPORT. reads data from eight toggle switches. The other
input port, CPORT, is used to read control information. There
are three momentary switches, HIGH ADDRESS, LOW ADDRESS and DATA. The output
is the value of the last completed entry from the data switches; eight ^ED displays are
used for the display.

The system will also, of course, require various resistors, buffers and drivers.

We shall first examine the inputs. The characteristics of the switches are the same as in

the previous example; however, here there is a distinct sequence of inputs as follows:

1) The operator must set the data switches according to the eight most significant
bits of an address, then

2) press the HIGH ADDRESS button. The high address bits will appear in the lights,
and the program will interpret the data as the high byte of the address.

3) Then the operator must set the data switches with the value of the least significant
byte of the address and

4) press the LOW ADDRESS button. The low address bits will appear in the lights, and
the program will consider the data to be the low byte of the address.

5) Finally, the operator must set the desired data into the data switches and
6) press the DATA button. The display will now show the data, and the program

stores the data in memory at the previously entered address.

The operator may repeat the process to enter an entire program. Clearly, even in this
simplified situation, we will have many possible sequences to consider. How do we
cope with erroneous sequences and make the system easy to use?

13-7

DEFINING A
SWITCH-BASED
MEMORY LOADER

Data Switches

Figure 1 3-3. The Switch-Based Memory Loader

13-8

Output is no problem. After each input, the program sends to the displays the comple-
ment (since the displays are active-low) of the input bits. The output data remains the
same until the next input operation.

The processing section remains quite simple. There are no time or memory constraints.

The program can debounce the switches by waiting for a few milliseconds, and must
provide complemented data to the displays.

MEMORY
LOADER
ERROR
HANDLING

The most likely errors are operator mistakes. These include:

1) Incorrect entries.

2) Incorrect order.

3) Incomplete entries, e.g.. forgetting the data.

The system must be able to handle these problems in a reasonable
way. since they are certain to occur in actual operation.

The designer must also consider the effects of equipment failure. Just as before, the
possible difficulties are:

1) Switch failure.

2) Display failure.

3) Computer failure.

In this system, however, we must pay more attention to how these failures affect the
system. A computer failure will presumably cause very unusual behavior by the system,
and will be easy to detect. A display failure may not be immediately noticeable; here a
LAMP TEST feature will allow the operator to check the display operation. Note that we
would like to test each display separately, in order to diagnose the case in which output
lines are shorted together. In addition, the operator may not immediately detect switch
failure; however, the operator should soon notice it and establish which switch is faulty
by a process of elimination.

OPERATOR
ERROR
CORRECTION
IN MEMORY
LOADER

Let us look at some of the possible operator errors. Typical er-

rors will be:

1) Erroneous data.

2) Wrong order of entries or switches.

3) Trying to go on to the next entry without completing the
current one.

The operator will presumably notice erroneous data as soon as it appears on the dis-

plays. What is a viable recovery procedure for the operator? Some of the options are:

1) The operator must complete the entry procedure, i.e.. enter LOW ADDRESS and
DATA if the error occurs in the HIGH ADDRESS. Clearly, this procedure is wasteful
and would only serve to annoy the operator.

2) The operator may restart the entry process by returning to the high address entry
steps. This solution is useful if the error was in the HIGH ADDRESS, but forces the
operator to re-enter earlier data if the error was in the LOW ADDRESS or DATA
stage.

3) The operator may enter any part of the sequence at any time simply by setting the
DATA switches with the desired data and pressing the corresponding button. This
procedure allows the operator to make corrections at any point in the sequence. It

also makes the DATA button a master switch which must be pressed to complete
an entry. This adds a definite concluding step to each entry process.

This type of procedure should always be preferred over one that does not allow im-
mediate error correction, has a variety of concluding steps, or enters data into the
system without allowing the operator a final check. Any added complication in hard-
ware or software will be justified in increased operator efficiency. You should always

13-9

prefer to let the microcomputer do the tedious work and recognize arbitrary sequences;

it never gets tired and never forgets what was in the operating manual.

A further helpful feature would be status lights that would define the meaning of the

display. Three status lights marked HIGH ADDRESS. LOW ADDRESS and DATA would

let the operator know what had been entered without having to remember which but-

ton was pressed. The processor would have to monitor the sequence, but the added

complication in software would simplify the operator's tasks.

We should note that, although we have emphasized human interaction, machine or

system interaction has many of the same characteristics. The microprocessor should do

the work. If complicating the microprocessor's task makes error recovery simple and the

causes of failure obvious, the entire system will work better and be easier to maintain.

Note that you should not leave consideration of system use and maintenance until the

end of the software development process; instead, you should include it right in the

problem-definition stage.

A Verification Terminal

Figure 13-4 is a block diagram of a simple credit-verification DEFINING A
terminal. One input port derives data from a keyboard (see VERIFICATION
Figure 13-5); the other input port accepts verification data TERMINAL
from a transmission line. One output port sends data to a set of

displays (see Figure 13-6); another sends the credit card number to the central com-

puter. A third output port turns on one light whenever the terminal is ready to accept an

inquiry, and another light when the operator sends the information. The BUSY light

turns off when the response returns. Clearly, the input and output of data will be more

complex than in the previous case, although the processing is still fairly simple.

b

b

O

Keyboard

Input Port

Display

Output Portls)

XMIT

Output Port

RCV

Input Port

Status Light

Output Port

C=3
Keyboard Strobe

Keyboard Data

>

-^^ Peripheral Ready Strobe

y To Central Computer

C=3
Data Strobe

From Central Computer

BUSY Display

• READY Display

Figure 13-4. Block Diagram Of A Verification Terminal

13-10

1

7 8

1 '
1

1

'
1 1

'
1 1

'
1

1 CLEAR 1

1
' 1 1

*
1 1 '

1

1 SEND 1

1 1

The digit keys allow digit entries.

CLEAR deletes the entire entry.

SEND transmits the entry to the central computer.

Figure 13-5. Verification Terminal Keyboard

READY BUSY

BBBBBBBBBB
The displc

register, t

ay consists of ten 7-segment displays, which may be multiplexed, controlled by a shift

>r addressed separately. Two additional lights, READY and BUSY, are also present.

Figure 13-6. Verification Terminal Display

Additional displays may be useful to emphasize the meaning of the response. Many ter-
minals use a green light for YES, a red light for NO, and a yellow light for CONSULT
STORE MANAGER. Note that these lights will still have to be clearly marked with their
meanings to handle the case where the operator is color-blind.

Let us first look at the keyboard input. This is, of course.
different from the switch input since the CPU must have some
way of distinguishing new data. We will assume that each key
closure provides a unique hexadecimal code (we can code all

the keys into one digit since there are 12 keys) -and a strobe. The program will have to
recognize the strobe and fetch the hexadecimal number that identifies the key. There is

a time constraint, since the program cannot miss any data or strobes. The constraint is

not serious, since keyboard entries will be at least several milliseconds apart.

VERIFICATION
TERMINAL
INPUTS

13-11

VERIFICATION
TERMINAL
OUTPUTS

The transmission input similarly consists of a series of characters, each identified by a

strobe (perhaps from a UART). The program will have to recognize each strobe and

fetch the character. The data being sent across the transmission lines is usually

organized into messages. A possible message format is:

1) Header.

2) Terminal destination address.

3) Coded yes or no.

4) Trailer.

The terminal will check the header, read the destination address, and see if the

message is intended for it. If the message is for the terminal, the terminal accepts the

data. The address could be (and often is) hard-wired into the terminal so that the ter-

minal only receives messages intended for it. This approach simplifies the software at

the cost of some flexibility.

The output is also more complex than in the earlier examples. If

the displays are multiplexed, the processor must not only send

the data to the display port but must also direct the data to a

particular display. We will need either a separate control port

or a counter and decoder to handle this. Note that hardware blanking controls can

blank leading zeros as long as the first digit in a multi-digit number is never zero. Soft-

ware can also handle this task. Time constraints include the pulse length and frequency

required to produce an apparent continuous display for the operator.

The communications output will consist of a series of characters with a particular for-

mat. The program will also have to consider the time required between characters. A
possible format for the output message is:

1) Header.

2) Terminal address.

3) Credit card number.

4) Trailer.

A central communications computer may be used to poll the terminals, checking for

data ready to be sent.

The processing in this system involves many new tasks, such as:

1) Identifying the control keys by number and performing the proper actions.

2) Adding the header and trailer to the outgoing message.

3) Recognizing the header and trailer in the returning message.

4) Checking the incoming terminal address.

Note that none of the tasks involve any complex arithmetic or

any serious time or memory constraints.

The number of possible errors in this system is, of course,

much larger than in the earlier examples. Let us first consider

the possible operator errors. These include:

1) Entering the credit card number incorrectly.

2) Trying to send an incomplete credit card number.

3) Trying to send another number while the central computer is processing one.

4) Clearing non-existent entries.

Some of these errors can be easily handled by correctly structuring the program. For ex-

ample, the program should not accept the SEND key until the credit card number has

been completely entered, and it should ignore any additional keyboard entries until the

13-12

VERIFICATION
TERMINAL
ERROR
HANDLING

CORRECTING
KEYBOARD
ERRORS

response comes back from the central computer. Note that the operator will know that

the entry has not been sent, since the BUSY light will not go on. The operator will also

know when the keyboard has been locked out (the program is ignoring keyboard en-

tries), since entries will not appear on the display and the READY light will be off.

Incorrect entries are an obvious problem. If the operator recogn-

izes an error, he or she can use the CLEAR key to make corrections.

The operator will, however, make a certain number of errors with-

out recognizing them. Most credit card numbers include a self-

checking digit; the terminal could check the number before permitting it to be sent to

the central computer. This step would save the central computer from wasting precious

processing time checking the number.

This requires, however, that the terminal have some way of informing the operator of

the error, perhaps by flashing one of the displays or by providing some other special in-

dicator that the operator is sure to notice. Some terminals simply unlock after a max-
imum time delay. The operator notes that the BUSY light has gone off without an
answer being received. The operator is then expected to try the entry again.

Many equipment failures are also possible. Beside the displays, keyboard and pro-

cessor, there now exist the problems of communications errors or failures and central

computer failures.

The data transmission will probably have to include some kind of error checking and
correcting procedures. Some possibilities are:

CORRECTING
TRANSMISSION
ERRORS

1

)

Parity provides an error detection facility but no correction

mechanism. The receiver will need some way of request-

ing re-transmission, and the sender will have to save a

copy of the data until proper reception is acknowledged.
Parity is, however, very simple to implement.

2) Short messages may use more elaborate schemes. For example, the yes/no
response to the terminal could be coded so as to provide error detection and cor-

rection capability.

3) An acknowledgment and a limited number of retries could trigger an indicator

which would inform the operator of a communications failure (inability to transfer a

message without errors) or central computer failure (no response at all to the

message within a certain period of time). Such a scheme, along with the LAMP
TEST, would allow fairly simple failure diagnosis.

A communications or central computer failure indicator should also "unlock" the ter-

minal, i.e.. allow it to accept another entry. This is necessary if the terminal will not ac-

cept entries while a verification is in progress. The terminal may also unlock after a cer-

tain maximum time delay. Certain entries could be reserved for diagnostics, i.e., certain

credit card numbers could be used to check the internal operation of the terminal and
test the displays.

REVIEW OF PROBLEM DEFINITION
Problem definition is as important a part of software development as it is of any other

engineering task. Note that it does not require any programming or knowledge of the

computer, rather, it is based on an understanding of the system and sound engineering

judgment. Microprocessors can offer flexibility which the designer can use to provide a

range of features which were not previously available.

Problem definition is independent of any particular computer, computer language or

development system. It should, however, provide guidelines as to what type or speed of

computer the application will require, and what kind of hardware/software trade-offs

the designer can make. The problem definition stage is in fact really independent of

13-13

BASIC
PRINCIPLES
OF PROGRAM
DESIGN

whether a computer is used at all, although a knowledge of the capabilities of the com-
puter can help the designer in suggesting possible implementations of procedures.

PROGRAM DESIGN

Program design is the stage in which the problem definition is formulated as a program.

If the program is small and simple, this stage may involve little more than the writing of

a one-page flowchart If the-program is larger or more complex, the designer may wish

to consider more elaborate methods.

We will discuss flowcharting, modular programming, structured programming and top-

down design. We will try to indicate the reasoning behind these methods/and their ad-

vantages and.disadvantages. We will not, however, advocate any particular method,
since there is no evidence that one methodsis always superior to all the others. You
should remember that the goal is to produce- a good working system, not to follow

religiously the tenets of one methodology or another.

All the methodologies do, however, have some obvious princi-

ples in common. Many of these are the same principles that

apply to-any kind of design, such as:

1) Proceed in small steps.. Do not try to do too much at one
time.

2) Divide large jobs into small, logically separate tasks.

3) Keep the flow of control as simple as possible so as to make it easier to find errors.

4) Use pictorial or graphic descriptions as much as possible. They are easier to visual-

ize than word descriptions. This is the great advantage of flowcharts.

5) Emphasize clarity and simplicity at first. You can improve performance (if necess-

ary) once the system is working.

6) Proceed in a thorough and systematic manner. Use checklists and standard pro-

cedures. .

7) Do not tempt fate. Either do not use methods that you are not sure of, or use them
very carefully. Watch for situations that might-cause confusion, and clarify them as

soon as possible.

8) Keep in mind that the system must be debugged, tested and maintained. Plan for

these later stages.

8) Keep in mind that the system must be debugged, tested and maintained. Plan for

these later stages.

9) Use simple and consistent terminology and methods. Repetitiveness is no fault in

program design, nor is complexity a virtue.

10) Have your design completely formulated before you start coding. Resist the tempta-

tion to start writing down instructions; it makes no more sense than making parts

lists or laying out circuit boards before you know exactly what will be in the system.

FLOWCHARTING
Flowcharting is certainly the best-known of all program design methods. Programming
textbooks describe how programmers first write complete flowcharts and -then start,

writing the actual program. In fact, few programmers have ever worked this way, and

flowcharting has often been more of a joke or a nuisance to programmers than a design

method. We will try to describe both the advantages and disadvantages of'flowcharts,

and show the place of the technique in program design.

13-14

The basic advantage of the flowchart is that it is a pictorial ADVANTAGES OF
representation. People find such representations much more FLOWCHARTING
meaningful than written descriptions. The designer can visual-

ize the whole system and see the relationships of the various parts. Logical errors and
inconsistencies often stand out instead of being hidden in a printed page. At its best,

the flowchart is a picture of the entire system.

Some of the more specific advantages of flowcharts are:

1) Standard symbols exist (see Figure 13-7) so that flowcharting forms :<-c widely
recognized.

2) The flowchart may be understood by someone without a programming back-
ground.

3) The flowchart can be used to divide the entire project into sub-tasks. The flowchart
can then be examined to measure overall progress.

4) The flowchart shows the sequence of operations and therefore can aid in locating
the source of errors.

5) Flowcharting is a technique well-known in other areas besides programming

O Input-Output

Processing arithmetic

and data movement

Decision logic

CD
o

c J>

Connector point

Connector arrows

Terminal point

Figure 13-7. Standard Flow Diagram Symbols

13-15

DISADVANTAGES
OF
FLOWCHARTING

These advantages are all important. There is no question that

flowcharting will continue to be a widely used technique. But

we should stop and look at some of the disadvantages of

flowcharting as a program design method, e.g.:

1) Flowcharts are difficult to design, draw or change in all except the simplest situa-

tions.

2) There is no easy way to debug or test a flowchart.

3) Flowcharts tend to become cluttered. Designers find it difficult to balance between

the amount of detail needed to make the flowchart useful and the amount which

makes the flowchart little better than a program listing.

4) Flowcharts only show the program organization. They do not show the organization

of the data or the structure of the input/output modules.

5) Flowcharts do not help with hardware or timing problems or give hints as to where

these problems might occur.

Thus, flowcharting is a helpful technique which you should not try to extend too far.

Flowcharts are useful as program documentation, since they have standard forms and

are comprehensible to non-programmers. As a design tool, however, flowcharts cannot

provide much more than a starting outline; the programmer cannot debug a detailed

flowchart and the flowchart is often more difficult to design than the program itself.

EXAMPLES
Response To A Switch

This simple task, in which a single switch turns on a light for

one second, is easy to flowchart. In fact, such tasks are typical

examples for flowcharting books, although they form a small

part of most systems. The data structure here is so simple that

it can be safely ignored.

Figure 13-8 is the flowchart. There is little difficulty in deciding on the amount of detail

required. The flowchart gives a straightforward picture of the procedure which anyone

could understand.

Note that the most useful flowcharts may ignore program variables and ask questions

directly. Of course, compromises are often necessary here. Two versions of the

flowchart are sometimes helpful — one general version in layman's language, which

will be useful to non-programmers, and one programmer's version in terms of the pro-

gram variables, which will be useful to other programmers.

FLOWCHARTING
SWITCH AND
LIGHT SYSTEM

13-16

(
Start

)

No
switch on

^•^^ ? ^^
i Yes

Turn light on

No X'nasV^
1 second

. elapsed

JLYes

Turn light off

t

c
End

)

FLOWCHARTING
THE SWITCH-
BASED
MEMORY LOADER

Figure 13-8. Flowchart Of One-Second Response To A Switch

The Switch-Based Memory Loader
This system (refer to Figure 13-3) is considerably more com-
plex than the previous example, and involves many more deci-

sions. The flowchart (see Figure 13-9) is more difficult to write
and not as straightforward as the previous example. In this ex-
ample, we run into the problem that there is no way to debug
or test the flowchart.

The flowchart in Figure 13-9 includes the improvements we suggested as part of the
problem definition. Clearly, this flowchart is beginning to get cluttered and lose its ad-
vantages over a written description. Adding other features which define the meaning of
the entry with status lights and allow the operator to check entries after completion
would make the flowchart even more complex. Writing the complete flowchart from
scratch could quickly become a formidable task. However, once the program has been
written, the flowchart is useful as documentation.

13-17

Lights = Switches Lights = Switches

DATA = Switches

Lights = Switches

Figure 13-9. Flowchart Of Switch-Based Memory Loader

13-18

FLOWCHARTING
THE CREDIT
VERIFICATION

The Credit-Verification Terminal

In this application (see Figures 13-4 through 13-6), the

flowchart will be even more complex than in the switch-based
memory loader case. Here, the best idea is to flowchart sec-

tions separately so that the flowcharts remain manageable.
However, the presence of data structures (as in the multi-digit

display and the messages) will make the gap between
flowchart and program much larger.

Let us look at some of the sections. Figure 13-10 shows the keyboard entry process for

the digit keys. The program must fetch the data after each strobe and place the digit in

the display array if there is room for it. If there are already ten digits in the array, the pro-

gram simply ignores the entry.

FLOWCHARTING
SECTIONS

C Start |

Clear Entry Array

Key Pointer = Start

of Entry Array

Key Counter =

Key = Keyboard

Input Data

(Key Pointer) = Key

Key Pointer =
Key Pointer + 1

Key Counter =

Key Counter + 1

c

Figure 13-10. Flowchart Of Keyboard Entry Process

13-19

The actual program will have to handle the displays at the same time. Note that either

software or hardware must de-activate the keyboard strobe after the processor reads a

digit.

Figure 1 3-1 1 adds the SEND key. This key. of course, is optional. The terminal could just

send the data as soon as the operator enters a complete number. However, that pro-

cedure would not give the operator a chance to check the entire entry. The flowchart

with the SEND key is more complex because there are two alternatives:

1) If the operator has not entered ten digits, the program must ignore the SEND key

and place any other key in the entry.

2) If the operator has entered ten digits, the program must respond to the SEND key

by transferring control to the SEND routine, and ignore all other keys.

Note that the flowchart has become much more difficult to organize and to follow.

There is also no obvious way to check the flowchart.

c 1

Clear Display Array

Key Pointer = Start

of Display Array

Key Counter =0

lKe7PointefT=Te^
Kev Pointer =

Key Pointer + 1

Key Counter =
Key Counter + 1

c Send J

Figure 13-11. Flowchart Of Keyboard Entry Process

With SEND Key

13-20

Figure 13-12 shows the flowchart of the keyboard entry process with all the function
keys. In this example, the flow of control is by no means simple Clearly, some written
description is necessary. The organization and layout of complex flowcharts requires
careful planning. We have followed the process of adding features to the flowchart one
at a time, but this still results in a large amount of redrawing. Again we should remem-
ber that, throughout the keyboard entry process, the program must also refresh the dis-

plays if they are multiplexed and not controlled by shift registers or other hardware.

c
Clear Display Array

Key Pointer = Start

of Display Array

Key Counter =

Key = Keyboard

Input Data

Key CLEAR

^^Key Counter 1C^
Yes

JLNo

V^V Yes No ^^s
^T Key SEND _^ KeyS
^^^. ? ^^r^ i t

S^^^ ?

JLNo

(Key Pointer) = Key

Key Pointer =

Key Pointer + 1

w

c D

Figure 13-12. Flowchart Of Keyboard Entry Process
With Function Keys

13-21

G>
C }
Header flag =
Parity Error flag =
Address Match flag=0

Address Pointer = Start

of terminal address
Address Counter =
Nmess =

Messg (Nmess) =

Character

Nmess = Nmess + 1

Figure 13-13. Flowchart Of Receive Routine

Figure 13-13 is the flowchart of a receive routine. We assume that the serial/parallel

conversion and error checking is done in hardware (e.g., by a UART). The processor

must:

1) Look for the header (we assume it is a single character).

2) Read the destination address (we assume it is three characters long) and see if the

message is meant for this terminal, i.e., if the three characters agree with the ter-

minal address.

3) Wait for the trailer character.

4) If the message is meant for the terminal, turn off the BUSY light and go to DISPLAY

ANSWER routine.

5) In the event of any errors, request re-transmission by going to RTRAN routine.

13-22

This routine involves a large number of decisions, and the flowchart is neither simple
nor obvious.

Clearly, we have come a long way from the simple flowchart (Figure 13-8) of the first

example. A complete set of flowcharts for the transaction terminal would be a major
task. It would consist of several inter-related charts with complex logic, and would re-

quire a large amount of effort. Such an effort would be just as difficult as writing a
preliminary program and not as useful, since you could not check it on the computer.

MODULAR PROGRAMS
Once programs become large and complex, flowcharting is no longer a satisfactory
design tool. However, the problem definition and the flowchart can give you some idea
as to how to divide the program into reasonable sub-tasks. The division of the entire
program into sub-tasks or modules is called "modular programming". Clearly, most of
the programs we presented in earlier chapters would typically be modules in a large
system program. The problems which the designer faces in modular programming are
how to divide the program into modules and how to put the modules together.

The advantages of modular programming are obvious:

1) A single module is easier to write, debug and test than an
entire program.

2) A module is likely to be useful in many places and in other
programs, particularly if it is reasonably general and performs a common task. You
can build up a library of standard modules.

3) Modular programming allows the programmer to divide tasks and use previously
written programs.

4) Changes can be incorporated into one module rather than into the entire system.

5) Errors can often be isolated and then attributed to a single module.

6) Modular programming gives an idea of how much progress has been made and
how much of the work is left.

ADVANTAGES
OF MODULAR
PROGRAMMING

DISADVANTAGES
OF MODULAR
PROGRAMMING

The idea of modular programming is such an obvious one that
its disadvantages are often ignored. These include:

1) Fitting the modules together can be a major problem, par-
ticularly if different people write the modules.

2) Modules require very careful documentation, since they may affect other parts of
the program such as data structures used by all the modules.

3) Testing and debugging modules separately is difficult, since other modules may
produce the data used by the module being debugged and still other modules may
use the results. You may have to write special programs (called "drivers") just to
produce sample data and test the programs. These drivers require extra program-
ming effort which adds nothing to the total system.

4) Programs may be very difficult to modularize in any reasonable way. If you
modularize the program poorly, integration will be very difficult, since almost all er-
rors and the resulting changes will involve several modules.

5) Modular programs often require extra time and memory, since the separate
modules may repeat functions.

Therefore, while modular programming is certainly an improvement over simply trying
to write the entire program from scratch, it does have some disadvantages as well.

13-23

MODULARIZING
THE SWITCH
AND LIGHT
SYSTEM

MODULARIZING
THE SWITCH-
BASED MEMORY
LOADER

EXAMPLES
Response To A Switch

This simple program can be divided into two modules:

Module 1 waits for the switch to be turned on and turns the

light on in response.

Module 2 provides the one-second delay.

Module 1 is likely to be specific to the system, since it will de-

pend on how the switch and light are attached. Module 2 will be generally useful, since

many tasks require delays. Clearly, it would be advantageous to have a standard delay

module which could provide delays of varying lengths. The module will require careful

documentation so that you will know how to specify the length of the delay, how to call

the module, and what registers and memory locations the module affects.

A general version of Module 1 would be far less useful, since it would have to deal with

different types and connections of switches and lights.

You would probably find it simpler to write a module for a particular configuration of

switches and lights rather than try to use a standard routine. Note the difference bet-

ween this situation and Module 2.

The Switch-Based Memory Loader

The switch-based memory loader is difficult to modularize,

since all the programming tasks depend on the hardware con-

figuration and the tasks are so simple that modules hardly

seem worthwhile. The flowchart in Figure 13-9 suggests that

one module might be the one that waits for the operator to

press one of the three pushbuttons.

Some other modules might be:

1) A delay module which provides the delay required to debounce the switches.

2) A switch and display module which reads the data from the switches and sends it

to the displays.

3) A LAMP TEST module.

Such highly system-dependent modules are unlikely to be generally useful. This exam-

ple is not one in which modular programming offers great advantages.

The Verification Terminal

The verification terminal, on the other hand, lends itself very

well to modular programming. The entire system can easily be

divided into three main modules:

1) Keyboard and display module.

2) Data transmission module.

3) Data reception module.

A general keyboard and display module could handle many keyboard- and display-

based systems. The sub-modules would perform such tasks as:

1) Recognizing a new keyboard entry and fetching the data.

2) Clearing the array in response to a CLEAR key.

3) Entering digits into storage.

4) Looking for the terminator or SEND key.

b'> Displaying the digits.

MODULARIZING
THE
VERIFICATION
TERMINAL

RULES FOR
MODULAR
PROGRAMMING

Although the key interpretations and the number of digits will vary, the basic entry,

data storage and data display processes will be the same for many programs. Such
function keys as CLEAR would also be standard. Clearly, the designer must consider
which modules will be useful in other applications, and pay careful attention to those
modules.

The data transmission module could also be divided into such sub-modules as:

1) Adding the header character.

2) Transmitting characters as the output line can handle them.

3) Generating delay times between bits or characters.

4) Adding the trailer character.

5) Checking for transmission failures, i.e., no acknowledgment or inability to transmit
without errors.

The data reception module could include sub-modules which:

1) Look for the header character.

2) Check the message destination address against the terminal address.

3) Store and interpret the message.

4) Look for the trailer character.

5) Generate bit or character delays.

REVIEW OF MODULAR PROGRAMMING
Modular programming can be very helpful if you abide by the
following rules:

1) Use modules of 20 to 50 lines. Shorter modules are usually

a waste of time, while longer modules are seldom general
and may be difficult to integrate.

2) Try to make modules reasonably general. Differentiate between common features
like ASCII code or asynchronous transmission formats, which will be the same for

many applications and key identifications, and number of displays or number of

characters in a message, which are likely to be unique to a particular application.

Make the changing of the latter parameters simple. Major changes like different

character codes should be handled by separate modules.

3) Take extra time on modules like delays, display handlers, keyboard handlers, etc.,

which will be useful in other projects or in many different places in the present
program.

4) Try to keep modules as distinct and logically separate as possible.

5) Do not try to modularize simple tasks where rewriting the entire task may be easier

than assembling or modifying the module.

STRUCTURED PROGRAMMING
How do you keep modules distinct and stop them from interacting with one another?
How do you write a program which has a clear sequence of operations so that you can
isolate and correct errors? One answer is to use the methods known as "structured pro-
gramming", whereby each part of the program consists of elements from a limited set
of structures and each structure has a single entry and a single exit.

Figure 13-14 shows a flowchart of an unstructured program. If an error occurs in

Module B, we have five possible sources for that error. Not only must we check each
possible sequence, but we also have to make sure that any changes made to correct the
error do not affect any of the other sequences. The usual result is that debugging the
program becomes like trying to hang on to an octopus. Every time you think the situa-

tion is under control, there is another loose tentacle somewhere.

13-25

The answer to this problem is to establish a clear sequence of

operations so that you can isolate errors. Such a clear se-

quence uses single-entry, single-exit modules. The basic

modules that are needed are:

BASIC
STRUCTURES
OF
STRUCTURED
PROGRAMMING

Figure 13-14. Flowchart Of An Unstructured Program

1) An ordinary sequence, i.e.. a linear structure in which

statements or structures are executed consecutively. In the sequence:

P1

P2
P3

the computer executes P1 first, P2 second and P3 third. PL P2 and P3 may be

single instructions or entire programs.

2) A conditional structure.

The common one is "if A then P1 else P2". where A is a condition and P1 and P2

are programs. The computer executes P1 if A is true, and P2 if A is false. Figure

13-15 shows the logic of this structure. Note that the structure has a single

entrance and a single exit; there is no way to enter or leave P1 or P2 other than

through the structure.

3) A loop structure.

The common loop structure is "do P while A", where A is a condition and P is a pro-

gram. The computer checks A and executes P if A is true. This structure (see Figure

13-16) also has a single entrance and a single exit. Note that the computer will not

execute P at all if A is originally false, since the value of A is checked before the ex-

ecution of P.

13-26

Note the following features of structured programming:

1) Only the three basic structures are permitted.

2) Structures may be nested to any level of complexity so that any program can. in

turn, contain any of the structures.

3) Each structure has a single entrance and a single exit.

Figure 13-15. Flowchart Of The If-Then-Else Structure

Figure 13-16. Flowchart Of The Do-While Structure

13-27

Some examples of the conditional structure illustrated in Figure

13-15 are:

EXAMPLES
OF
STRUCTURES

1) P2 included:

if X > then NPOS = NPOS+1
else NNEG = NNEG+1

Both P1 and P2 are single statements.

2) P2 omitted:

if X*0 then Y = 1/X

Here no action is taken if A (X ^ 0) is false. P2 and "else" can be omitted in this case.

Some examples of the loop structure illustrated in Figure 13-16 are:

1) Form the sum of integers from 1 to N.

I
=0
SUM =
do while I < N

1
= 1+1

SUM =SUM+I
end

The computer executes the loop as long as I < N. If N = 0. the program within the "do-

while" is not executed at all.

2) Count characters in an array SENTENCE until you find an ASCII period.

NCHAR =
do while SENTENCE (NCHAR) * PERIOD

NCHAR = NCHAR+1
end

The computer executes the loop as long as the character in SENTENCE is not an ASCII

period. The count is zero if the first character is a period.

ADVANTAGES OF
STRUCTURED
PROGRAMMING

The advantages of structured programming are:

1) The sequence of operations is simple to trace. This allows

you to test and debug easily.

2) The number of structures is limited and the terminology is

standardized.

3) The structures can easily be made into modules.

4) Theoreticians have proved that the given set of structures is complete, i.e., all pro-

grams can be written in terms of the three structures.

5) The structured version of a program is partly self-documenting and fairly easy to

read.

6) Structured programs are easy to describe with flowcharts or other graphic

methods.

7) Structured programming has been shown in practice to increase programmer pro-

ductivity.

Structured programming. basically forces much more discipline on the programmer

than does modular programming. The result is more systematic and better-organized

programs.

13-28

DISADVANTAGES
OF
STRUCTURED
PROGRAMMING

The disadvantages of structured programming are:

1) Only a few high-level languages (e.g., PL/M, PASCAL) will

directly accept the structures. The programmer therefore

has to go through an extra translation stage to convert the

structures to assembly language code. The structured ver-

sion of the program, however, is often useful as documentation.

2) Structured programs often execute slower and use more memory than unstruc-

tured programs.

3) Limiting the structures to the three basic forms makes some tasks very awkward to

perform. The completeness of the structures only means that all programs can be
implemented with them; it does not mean that a given program can be imple-

mented efficiently or conveniently.

4) The standard structures are often quite confusing, e.g.. nested "if-then-else" struc-

tures may be very difficult to read since there may be no clear indication of where
the ones inside end. A series of nested "do-while" loops can also be difficult to

read.

5) Structured programs only consider the sequence of program operations, not the

flow of data. Therefore, the structures may handle data awkwardly.

6) Few programmers are accustomed to structured programming. Many find the stan-

dard structures awkward and restrictive.

We are neither advocating nor discouraging the use of structured programming. It is

one way of systematizing program design. In general, it is most useful in the following

situations:

WHEN TO USE
STRUCTURED
PROGRAMMING

1) Larger programs, perhaps exceeding 1000 instructions.

2) Applications where memory usage is not critical.

3) Low-volume applications where software development
costs, particularly testing and debugging, are important
factors.

4) Applications which do not involve complex data structures.

5) Applications involving string manipulation, process control or other algorithms,

rather than simple bit manipulations.

6) Applications where a high-level language is being used.

In the future we expect the cost of memory to decrease, the average size of

microprocessor programs to increase, and the cost of software development to in-

crease Therefore, methods like structured programming, which decrease software
development costs for larger programs but use more memory, will become more valua-
ble.

EXAMPLES
Response To A Switch
The structured version of this example is:

SWITCH = OFF
do while SWITCH = OFF
READ SWITCH
end

LIGHT = ON
DELAY 1

LIGHT = OFF

ON and OFF must have the proper definitions for the switch and light. We assume that
DELAY is a module that provides a wait given by its parameter in seconds.

13-29

STRUCTURED
PROGRAMMING
IN THE
SWITCH AND
LIGHT SYSTEM

A statement in a structured program may actually be a subroutine. However, in order to

conform to the rules of structured programming, the subroutine cannot have any exits

other than the one that returns control to the main program.

Since "do-while" checks the condition before executing the loop, we set the variable

SWITCH to OFF before starting. The structured program is straightforward, readable,

and easy to check by hand. However, it would probably require somewhat more memo-

ry than an unstructured program, which would not have to initialize SWITCH and could

combine the reading and checking procedures.

The Switch-Based Memory Loader

The switch-based memory loader is a more complex structured

programming problem. We may implement the flowchart of

Figure 13-9 as follows (an * indicates a comment):

STRUCTURED
PROGRAMMING
FOR THE
SWITCH-BASED
MEMORY LOADER

'INITIALIZE VARIABLES

HIADDRESS =-0

LOADDRESS =
DATA =

'THIS PROGRAM USES A DO-WHILE CONSTRUCT THAT HAS A CONDITION

•WHICH IS ALWAYS TRUE. THEREFORE. THE SYSTEM CONTINUALLY
'EXECUTES THE PROGRAM CONTAINED IN THIS DO-WHILE LOOP.

do while 1 = 1

*TEST FOR HIADDRESS BUTTON; PERFORM THE REQUIRED PROCESSING

•IF IT IS ON,

if HIADDRBUTTON = 1 then

HIADDRESS = SWITCHES
LIGHTS = SWITCHES
DELAY (DEBOUNCETIME)

do while HIADDRBUTTON = 1

DELAY (DEBOUNCETIME)

end

•TEST FOR LOADDRESS BUTTON; PERFORM LO ADDRESS PROCESSING IF

*IT IS ON.

if LOADDRBUTTON = 1 then

LOADDRESS = SWITCHES
LIGHTS = SWITCHES
DELAY (DEBOUNCETIME)

do while LOADDRBUTTON = 1

DELAY (DEBOUNCETIME)

end

13-30

•TEST FOR DATABUTTON. AND STORE DATA INTO MEMORY IF IT

*ISON

if DATABUTTON = 1 then

DATA = SWITCHES
LIGHTS = SWITCHES
(HIADDRESSLOADDRESS) = DATA
DELAY (DEBOUNCETIME)
do while DATABUTTON = 1

DELAY (DEBOUNCETIME)
end

end

*THE ABOVE END TERMINATES THE
* do while 1 = 1 LOOP.

Structured programs are not easy to write, but they can give a great deal of insight into
the overall program logic. You can check the logic of the structured program by hand
before writing any actual code.

The Credit-Verification Terminal

Let us look at the keyboard entry for the transaction terminal.

We will assume that the display array is ENTRY, the keyboard
strobe is KEYSTROBE, and the keyboard data is KEYIN. The
structured program without the function keys is:

NKEYS = 10

STRUCTURED
PROGRAM FOR
THE CREDIT-
VERIFICATION
TERMINAL

STRUCTURED
KEYBOARD
ROUTINE

'CLEAR ENTRY TO START

do while NKEYS >0
NKEYS = NKEYS - 1

ENTRY(NKEYS) =
end

•FETCH A COMPLETE ENTRY FROM KEYBOARD

do while NKEYS < 10
if KEYSTROBE = ACTIVE then
KEYSTROBE = INACTIVE
ENTRY(NKEYS) = KEYIN
NKEYS = NKEYS+1

end

Adding the SEND key means that the program must ignore extra digits after it has a
complete entry, and must ignore the SEND key until it has a complete entry. The struc-
tured program is:

NKEYS = 10

•CLEAR ENTRY TO START

do while NKEYS >
NKEYS = NKEYS - 1

ENTRY(NKEYS) =
end

13-31

#WAIT FOR COMPLETE ENTRY AND SEND KEY

do while KEY * SEND OR NKEYS ? 10

if KEYSTROBE = ACTIVE then

KEYSTROBE = INACTIVE
KEY = KEYIN

*GET DIGIT IF COMPLETE ENTRY NOT PRESENT

if NKEYS 5* 10 AND KEY * SEND then

ENTRY (NKEYS) = KEY
NKEYS = NKEYS+1

end

Adding the CLEAR key allows the program to clear the entry originally by simulating a

voiding, i.e.. by setting NKEYS to 10 and KEY to CLEAR before starting. The structured

program must also only clear digits which have previously been filled. The new struc-

tured program is:

•SIMULATE COMPLETE CLEARING

NKEYS = 10

KEY = CLEAR

•WAIT FOR COMPLETE ENTRY AND SEND KEY

do while KEY * SEND OR NKEYS ^ 10

•CLEAR WHOLE ENTRY IF CLEAR KEY STRUCK

if KEY = CLEAR then

KEY=0
do while NKEYS >
NKEYS = NKEYS - 1

ENTRY(NKEYS) =
end

*GET DIGIT IF ENTRY INCOMPLETE

if KEYSTROBE = ACTIVE then

KEYSTROBE = INACTIVE
KEY = KEYIN
if KEY < 10 AND NKEYS ^ 10 then

ENTRY(NKEYS) = KEY
NKEYS = NKEYS+1

end

Note that the program clears the CLEAR key so that it only carries out the voiding pro-

cess once.

13-32

STRUCTURED
RECEIVE
ROUTINE

We can similarly build a structured program for the receive

routine. An initial program could just look for the header and
trailer characters. We will assume that RSTB is the indicator that a

character is ready. The structured program is:

'CLEAR HEADER FLAG TO START

HFLAG =

'WAIT FOR HEADER AND TRAILER

do while HFLAG = OR CHAR ^TRAILER

*GET CHARACTER IF READY. LOOK FOR HEADER

if RSTB = ACTIVE then

RSTB = INACTIVE
CHAR = INPUT
if CHAR = HEADER then

HFLAG = 1

end

Now we can add the section that checks the message address against the three digits

in TERMINAL ADDRESS (TERMADDR). If any of the corresponding digits are not equal,

the ADDRESS MATCH flag (ADDRMATCH) is set to 1

.

"CLEAR HEADER FLAG. ADDRESS MATCH FLAG, ADDRESS COUNTER TO
"START

HFLAG =
ADDRMATCH =
ADDRCTR =

•WAIT FOR HEADER, DESTINATION ADDRESS AND TRAILER

do while HFLAG - OR CHAR ^TRAILER OR ADDRCTR ^ 3

•GET CHARACTER IF READY

if RSTB = ACTIVE then

RSTB = INACTIVE
CHAR = INPUT

"CHECK FOR TERMINAL ADDRESS AND HEADER

if HFLAG = 1 AND ADDRCTR * 3 then

if CHAR ^TERMADDR(ADDRCTR) then ADDRMATCH = 1

ADDRCTR = ADDRCTR+1
if CHAR = HEADER then HFLAG = 1

end

The program must now wait for a header, a three-digit identification code, and a trailer.

You must be careful of what happens during the iteration when the program finds the
header, and of what happens if an erroneous identification code character is the same
as the trailer.

13-33

A further addition can store the message in MESSG. NMESS is the number of characters

in the message; if it is not zero at the end. the program knows that the terminal has

received a valid message. We have not tried to minimize the logic expressions in this

program.

•CLEAR FLAGS, COUNTERS TO START

HFLAG =
ADDRMATCH =
ADDRCTR =
NMESS =

*WAIT FOR HEADER, DESTINATION ADDRESS AND TRAILER

do while HFLAG = OR CHAR * TRAILER OR ADDRCTR * 3

*GET CHARACTER IF READY

if RSTB = ACTIVE then

RSTB = INACTIVE

CHAR = INPUT

*READ MESSAGE IF DESTINATION ADDRESS = TERMINAL ADDRESS

if HFLAG = 1 AND ADDRCTR = 3 then

if ADDRMATCH = AND CHAR * TRAILER then

MESSG(NMESS) = CHAR
NMESS = NMESS+1

•CHECK FOR TERMINAL ADDRESS

if HFLAG = 1 AND ADDRCTR * 3 then

if CHAR * TERMADDR(ADDRCTR) then ADDRMATCH = 1

ADDRCTR = ADDRCTR+1

•LOOK FOR HEADER

if CHAR = HEADER then HFLAG = 1

end

The program only checks for the identification code if it found a header during a pre-

vious iteration. It only accepts the message if it has previously found a header and a

complete, matching destination address. The program must work properly during the

iterations when it finds the header, the trailer and the last digit of the destination ad-

dress. It must not try to match the header with the terminal address or place the trailer

or the final digit of the destination address in the message. You might try adding the

rest of the logic from the flowchart (Figure 13-13) to the structured program. Note that

the order of operations is often critical. You must be sure that the program does not

complete one phase and start the next one during the same iteration.

REVIEW OF STRUCTURED PROGRAMMING
Structured programming brings discipline to program design. It forces you to limit the

types of structures you use and the sequence of operations. !t provides single-entrance,

single-exit structures which you can check for logical accuracy. Structured program-

ming often makes the designer aware of inconsistencies or possible combinations of in-

puts. Structured programming is not a cure-all. but it does bring some order into a pro-

13-34

cess that can be chaotic. The structured program should also aid in debugging, testing

and documentation.

Structured programming is not simple. The programmer must not only define the prob-
lem adequately, but must also work through the logic carefully. This is tedious and
difficult, but it can result in a clearly written, working program.

The particular structures we have presented are not ideal and are

often awkward. In addition, it can be difficult to distinguish where
one structure ends and another begins, particularly if they are

nested. Theorists may provide better structures in the future, or

designers may wish to add some of their own. Some kind of terminator for each struc-

ture seems necessary, since indenting does not always clarify the situation. "End" is a

logical terminator for the "do-while" loop. There is no obvious terminator, however, for

the "if-then-else" statement; some theorists have suggested "endif" or "fi" ("if" back-
wards), but these are both awkward and do not contribute to tha readability of the pro-

gram.

TERMINATORS
FOR
STRUCTURES

We suggest the following rules for applying structured program-
ming:

1) Begin by writing a basic flowchart to help define the logic of

the program.

Start with the "if-then-else" and "do-while"

RULES FOR
STRUCTURED
PROGRAM-
MING

2)

3)

4)

5)

constructs. They are known -to be a

complete set, i.e., any program can be written in terms of these structures.

Indent each level a few spaces so that you will know which statements belong
where.

Use terminators for each structure, e.g., "end" for the "do-while" and "endif" or

"fi" for the ."if-then-else". The terminators plus the indentation should make the
program reasonably clear.

Emphasize simplicity and readability. Leave lots of spaces, use meaningful names,
and make expressions as clear as possible. Do not try to minimize the logic at the
cost of clarity.

6) Comment the program in an organized manner.

7) Check the logic. Try all the extreme cases or special conditions and a few sample
cases. Any logical errors you find at this level will not return to plague you later.

TOP-DOWN DESIGN
The remaining problem is how to check and integrate modules or

structures. Certainly we want to divide a large task into sub-tasks.

But how do we check the sub-tasks in isolation and put them
together? The standard procedure, called "bottom-up design", requires extra work in

testing and debugging and leaves the entire integration task to the end. What we need
is a method that will allow testing and debugging to occur in the actual program en-
vironment and will subdivide the system integration into a series of modular tasks.

This method is "top-down design". Here we start by writing the
overall supervisor program. We replace the undefined sub-pro-
grams by program "stubs", temporary programs which may either

record the entry, provide the answer to a selected test problem, or

do nothing. We then test the supervisor program to see that its

logic is correct.

BOTTOM-UP
DESIGN

TOP-DOWN
DESIGN
METHODS

PROGRAM
STUBS

13-35

ADVANTAGES
OF
TOP-DOWN
DESIGN

DISADVANTAGES
OF
TOP-DOWN
DESIGN

We proceed by expanding the stubs. Each stub will often contain EXPANDING
sub-tasks, which we will temporarily represent as stubs. This pro- PROGRAM
cess of expansion, debugging and testing continues until all the STUBS
stubs are replaced by working programs., Note that testing and in-

tegration occur at each level, rather than all at the end. No special

driver or data generation programs are necessary. We get a clear

idea of exactly where we are in the design. Top-down design

assumes modular programming, and is compatible with structured

programming as well.

The disadvantages of top-down design are:

1) The overall design may not mesh well with system hard-

ware.

2) It may not take good advantage of existing software.

3) A suitable stub may be difficult to write, particularly if the

same stub must work correctly in several different places.

4) Top-down design may not result in generally useful modules.

5) Errors at the top level can have catastrophic effects, whereas errors in bottom-up

design are usually limited to a particular module.

In large programming projects, top-down design has been shown to greatly improve

programmer productivity. However, almost all of these projects have used some bot-

tom-up design in cases where the top-down method would have resulted in a large

amount of extra work.

Top-down design is a useful tool which need not be followed to extremes. It provides

the same discipline for system testing and integration that -structured programming

provides for module design. The method, however, has more general applicability since

it does not really assume the use of programmed logic, However, top-down design may

not result in the most efficient implementation.

EXAMPLES
Response To A Switch

The first structured programming example actually demonstrates

top-down design as well. The program was:

TOP-DOWN
DESIGN
OF SWITCH
AND LIGHT
SYSTEM

SWITCH = OFF
do while SWITCH = OFF
READ SWITCH
end

LIGHT = ON
DELAY 1

LIGHT = OFF

Almost all of these statements are really stubs, since none of them is fully defined. For

example, what does READ SWITCH mean? If the- switch were one bit of input port

SPORT, rt really, means

SWITCH = SPORT AND SMASK

where SMASK has a T bit in the appropriate position. .

Similarly, DELAY 1 actually means (if the processor itself provides the delay):

REG = COUNT
do while REG ^0

REG.= REG -.1

end

13-36

TOP-DOWN
DESIGN OF
SWITCH-BASED
MEMORY
LOADER,

COUNT is the appropriate number to provide a one-second delay. The expanded ver-

sion of the program is:

SWITCH =
do while SWITCH =
SWITCH = SPORT AND MASK
end

LIGHT = ON
REG = COUNT
do while REG ^0
REG = REG - 1

end
LIGHT = NOT (LIGHT)

Certainly this program is more explicit, and could more easily be translated into actual

instructions or statements.

The Switch-Based Memory Loader

This example is more complex than the first example, so that

we must proceed more systematically. Here again, the struc-

tured program really contains stubs.

For example, if the HIGH ADDRESS button is one bit of input

port CPORT, "if HIADDRBUTTON = 1" really means;

1) Input from CPORT.

2) Complement

3) Logical AND with HAMASK;

where HAMASK has a '1' in the appropriate bit position and '0s' elsewhere. Similarly,

the condition "if DATABUTTON = 1" really means:

1) Input from CPORT.

2) Complement.

3) Logical AND with DAMASK.

So, the initial stubs could just assign values to the buttons, e.g.,

HIADDRBUTTON =
UOADDRBUTTON =
DATABUTTON =

A run of the supervisor program should show that it takes the implied "else" path

through the "if-then-else" structures, and never reads the switches. Similarly, if the

stub were

HIADDRBUTTON = 1

the supervisor program should stay in the "do while HIADDRBUTTON = 1 " loop waiting

for the button to be released. These simple runs check the overall logic

Now we can start expanding each stub and seeing if the expansion produces a reasona-

ble overall result. Note how debugging and testing proceed in a straightforward and
modular manner. We expand the HIADDRBUTTON = 1 stub to

READ CPORT
HIADDRBUTTON = NOT (CPORT) AND HAMASK

The program should wait for the HIGH ADDRESS-

button to be closed. The program
should then place the. contents of the switches in the lights. This run checks for the
proper response to the HIGH ADDRESS button.

13-37

We then expand the LOW ADDRESS button module to

READ CPORT
HIADDRBUTTON = NOT (CPORT) AND LAMASK

With the LOW ADDRESS button in the closed position, the program should place the

contents of the switches in the lights. This run checks for the proper response to the

LOW ADDRESS button.

Similarly, we can expand the DATA button module and check for the proper response

to that button. The entire program will then have been tested in a systematic manner.

When all the stubs have been expanded, the coding, debugging and testing stages will

all be complete. Of course, we must know exactly what results each stub should pro-

duce. However, many logical errors will become obvious at each level without any

further expansion.

The Transaction Terminal

This example, of course, will have more levels of detail. We
could start with the following program (see Figure 13-17 for a

flowchart):

TOP-DOWN
DESIGN OF
VERIFICATION
TERMINALKEYBOARD

ACK =
do while AGK =
TRANSMIT
RECEIVE
end

DISPLAY

Here KEYBOARD, TRANSMIT, RECEIVE and DISPLAY are program stubs which will be

expanded later. KEYBOARD, for example, could simply place a ten-digit verified num-
ber in the appropriate buffer.

EXPANDING
THE
KEYBOARD
ROUTINE

The next stage of expansion could produce the following program
for KEYBOARD (see Figure 13-18):

VER =

do while VER =
COMPLETE =

do while COMPLETE =
KEYIN

KEYDS
end

VERIFY

end

Here VER = means that an entry has not been verified; COMPLETE = means that

the entry is incomplete. KEYIN and KEYDS are the keyboard input and display routines

respectively. VERIFY checks the entry. A possible stub for KEYIN would simply place a

random entry (from a random number table or generator) in the buffer and set COM-
PLETE to 1

.

We would continue by similarly expanding, debugging and testing TRANSMIT,

RECEIVE and DISPLAY. Note that you should expand each program by one level so that

you do not perform the integration of an entire program at any one time. You must use

your judgment in defining levels. Too small a step wastes time, while too large a step

gets you back to the problems of system integration which you want to avoid.

13-38

f Start

)

Keyboard

*

ACK =0

s^^w^ Mo
^*^"l

^^^^ ? ^^
Xybs

1

Transmit

Receive
Display

t

(
End

3
i

Figure 13-17. Initial Flowchart For Transaction Terminal

REVIEW OF TOP-DOWN DESIGN
Top-down design brings discipline to the testing and integration phases of program
design. It provides a systematic method for expanding a flowchart or problem definition

to the level required to actually write a program. Together with structured program-
ming, it forms a complete set of design techniques.

Like structured programming, top-down design is not simple. The designer must have
defined the problem carefully and must work systematically through each level. Here
again the methodology may seem tedious, but the payoff can be substantial if the
designer really follows the rules.

FORMAT
FOR
TOP-DOWN
DESIGN

We recommend the following approach to top-down design:

1) Start with a basic flowchart.

Make the stubs as complete and as separate as possible.

Define precisely all the possible outcomes from each stub and
select a test set.

Check each level carefully and systematically.

Use the structures from structured programming.

Expand each stub by one level. Do not try to do too much in one step.

Watch carefully for common tasks and data structures.

Test and debug after each stub expansion. Do not try to do an entire level at a time.

Be aware of what the hardware can do. Do not hesitate to stop and do a little bot-
tom-up design where that seems necessary.

13-39

c)

Complete = c

Verify
KEYIN

KEYDS

Figure 13-18. Flowchart For Expanded KEYBOARD Routine

REVIEW OF PROBLEM DEFINITION AND PROGRAM DESIGN
You should note that we have spent an entire chapter without mentioning any specific

microprocessor or assembly language, and without writing a single line of actual code.

Hopefully, though, you now know a lot more about the examples than you would have

if we had just asked you to write the programs at the start. Although we often think of

the writing of computer instructions as a key part of software development, it is actually

one of the simplest stages.

Once you have written a few programs, most of the methodology will become simple.

You will soon learn the instruction set, recognize which instructions are really useful,

and remember the common sequences that make up the major part of most programs.

You will then find that many of the other stages of software development remain

difficult and have few clear rules.

We have suggested here some ways to systematize the important early stages. In the

problem definition stage, you must define all the characteristics of the system— its in-

puts, outputs, processing, time and memory constraints, and error handling. You must

particularly consider how the system will interact with the larger system of which it is a

part, and whether that larger system includes electrical equipment, mechanical equip-

ment or human operator. You must start at this stage to consider how to make the

system easy to use and maintain.

13-40

In the program-design stage, several techniques can help you to systematically specify

and document the logic of your program. Modular programming forces you to divide

the total program into reasonably sized modules. Structured programming provides a

systematic way of defining the logic of those modules, while top-down design is a

systematic method for integrating and testing them. Of course, no one can compel you
to follow all of these techniques; they are. in fact, guidelines more than anything else.

But they do provide a unified approach to the definition and design stages, and you
should consider them a basis on which to develop your own approach.

REFERENCES

1. Hughes, J.L. and J.I. Michtom. A Structured Approach to Programming, Prentice-

Hall. Englewood Cliffs. N.J.. 1977.

2. Leventhal, L.A., "Can Structured Programming Help the Bench Programmer?", IEEE

Workshop on Bench Programming of Microprocessors , Philadelphia. PA., June
1977.

3. Ulrickson. R.W.. "Software Modules are the Building Blocks", Electronic Design ,

February 1, 1977, pp. 62-66.

4. Ulrickson, R.W., "Solve Software Problems Step-by-Step". Electronic Design , Janu-
ary 18. 1977. pp. 54-58.

5. Yourdon. E.U., Techniques of Program Structure and Design , Prentice-Hall.

Englewood Cliffs. N.J.. 1975.

13-41

Chapter 14
DEBUGGING AND TESTING

As we noted at the beginning of the previous chapter, debugging. and testing are

among the most time-consuming stages in software development. Even though such
methods as modular programming, structured programming and top-down design can.-

reduce the frequency of errors and simplify testing, debuggingand testing still are

difficult because they are such poorly-defined tasks. Many textbooks have been written

about designing and coding programs. Very little has been written about how to debug
and test programs. The selection of an adequate set of test data is seldom a clear or

scientific process: Finding errors sometimes seems like a game of "pin the tail on the
donkey", except that the donkey is moving and the programmer must position the tail

by remote control. Surely, few tasks are as frustrating as debugging programs.

This chapter will first describe the tools available for debugging. It will then discuss the

basic debugging procedure, describe the common types of errors and show some ex-

amples of program debugging. The last sections will describe how to select test data
and test programs.

We will not do much more than describe the purpose of most debugging tools. There is

very little standardization in this area and not enough space to discuss all of the devices
and programs available on the market. The examples should give you some idea as to

when and why particular hardware or software will be helpful.

SIMPLE DEBUGGING TOOLS
The simplest debugging tools available are:

1) A single-step facility

2) A breakpoint facility

3) A register dump program (or utility)

4) A memory dump program

The single-step facility simply allows you to execute the program |SINGLE-STEPJ
one step at a time. Most Intel 8080-based microcomputers have
this ability since the circuitry is quite simple. Of course, the only things you will be able

to see when you execute a single-step are the states of the output lines which you are

monitoring. The most important lines are:

1) Data. Bus

2) Address Bus

3) Status latch outputs

4) Control lines

If you monitor these lines (either in hardware or software), you will be able to see the ad-
dresses, instructions and data appear as the program executes. You will be able to tell

what kinds of operations the CPU is performing by examining these lines at appropriate
times. This information will be sufficient to inform you of such errors as incorrect Jump
instructions, omitted or incorrect addresses, erroneous operation codes or incorrect
data values. However, you cannot see the contents of registers and flags without some
additional debugging facility or a special sequence of instructions. Therefore, much of
the logic of the program may remain invisible.

14-1

There are many errors which a single-step mode cannot find. LIMITATIONS
These include timing errors and errors in the interrupt or DMA OF
systems. Furthermore, the single-step mode is very slow, typically SINGLE-STEP
running at less than one millionth of the speed of the processor it- MODE
self. Therefore, to single-step through one second of real processor

time would take more than ten days. Clearly, single-stepping is only useful to check the

logic of short instruction sequences.

A breakpoint is an address at which the program will automat-
|
BREAKPOINT

{

ically halt or otherwise stop its normal routine so that you can ex-

amine the current status of the system. The program will usually not start again until

you clear the breakpoint. The breakpoint allows you to check or pass through an entire

section of a program. Thus, to see if an entire initialization routine is correct, you can

place a breakpoint at the end of the initialization and run the program. You can then

check the status of memory locations and registers to see if the entire section is correct.

Breakpoints complement the single-step mode. You can use the breakpoint either to

localize the error or to pass through sections which you know are correct. You can then

do the detailed debugging in the single-step mode. Breakpoints do not usually affect

the timing of the program, so they can be used to check input/output and interrupts.

Breakpoints often take advantage of part or all of the RST AS A
BREAKPOINTmicroprocessor interrupt system. Some micros have a special

SOFTWARE INTERRUPT or TRAP facility which can act as a break-

point. On the Intel 8080, if you are not already using all the interrupt vectors in your

program, you can use the RST (Restart) instruction as a breakpoint. Table 14-1 gives the

destination addresses for the various RST instructions. Chapter 1 2 describes the RST in-

struction in more detail. The breakpoint routine can print register and memory contents

or just wait in place (HLT or a conditional or unconditional jump to itself) until the user

allows the machine to proceed. But remember that the RST instruction uses the Stack

and Stack Pointer to store the return address. Figure 14-1 shows a routine where RST 3

results in an endless loop. The programmer would have to clear this breakpoint with a

RESET or interrupt signal.

ORG 18H
RST3 EQU 18H

JMP RST3 ;WAIT IN PLACE

Figure 14-1. A Simple Breakpoint Routine

A more powerful facility could allow you to enter an address to which the processor

would transfer control. Another possibility would be a return dependent on a switch:

RST3
ORG 18H
EQU 18H
PUSH PSW ;SAVE A
IN SPORT ;WAIT FOR SWITCH = 1

ANI MASK
JZ WAITS
POP PSW ;RESTORE A
RET

WAITS:

Monitor programs and development systems will generally provide some kind of useful

breakpoint facility.

14-2

Table 14-1. Intel 8080 Restart Addresses

Instruction

(Mnemonic)
(Hex)

Destination Address

(Hex)

RSTO C7 0000
RST 1 CF 0008
RST 2 D7 0010
RST 3 DF 0018
RST 4 E7 0020
RST 5 EF 0028
RST 6 F7 0030
RST 7 FF 0038

REGISTER
DUMP

A register dump utility on a microcomputer is a program which
will display the contents of all the CPU registers. The following

routine will display the contents of the registers if we assume
PRNT displays the contents of the Accumulator as two hexadecimal digits.

Figure 14-2 is a flowchart of the program and Figure 14-3 shows a typical result.

PLACE ALL REGISTER CONTENTS IN STACK

;PC ALREADY ON STACK

;SAVE REGISTERS IN STACK

USE STACK POINTER AS STARTING ADDRESS

;GET STACK POINTER
;COMPUTE VALUE OF ORIGINAL SP

;SAVE ORIGINAL STACK POINTER

PRINT CONTENTS OF REGISTERS
ORDER IS PC (HIGH), PC (LOW). A, FLAGS, B, C, D, E, H, L SP
(HIGH). SP (LOW)

PUSH PSW
PUSH B

PUSH D
PUSH H

LXI - H.O

DAD SP
LXI D.10

DAD D
PUSH H

PRNI
MVI C.12

DCX H
MOV A.M
CALL PRNT
DCX H
DCR C
JNZ PRN1

;NUMBEROF BYTES = 12

;GET A BYTE FROM STACK
;AND PRINT IT

RESTORE REGISTERS FROM STACK

;RESTORE REGISTERS FROM STACKPOP H
POP H
POP D
POP B

POP PSW
RET

14-3

Note that calling the register dump routine places the old Program Counter in the

Stack.

T Start
J

Store all registers

in Stack
COUNT = Number
of registers = 12

*

Data Pointer =

Stack Pointer + 10

Store Data Pointer

in Stack

»+^T
Print (Data Pointer)

as 2 hex digits

Data Pointer =

Data Pointer - 1

COUNT = COUNT-

1

No .^^Is^N^
^^ COUNT ^^
^^^^ ?'^^^^

jTyos

Restore all registers

from Stack

Figure 14-2. Flowchart Of Register Dump Program

14-4

3E (PROGRAM COUNTER)
FC

86 (PSW)

1D (A)

07 (B)

3E (0
23 (D)

01 (E)

17 (H)

F0 (L)

FC (STACK POINTER)

3F

Figure 14-3. Results Of A Typical Register Dump

A memory dump is a program which can display the contents of MEMORY
an entire section of memory. This is much more efficient for ex- DUMP
amining arrays or blocks than single locations. However, very large

memory dumps are generally not useful (except to produce scrap paper) because of the

sheer mass of information which they produce. They may also take a long time to

generate on a slow printer. Small dumps may. however, provide the programmer with a

reasonable amount of information which can be observed as a unit. Relationships such
as regular repetitions of data patterns or offsets of entire arrays may become obvious. A
general dump may be rather difficult to write. The programmer should be careful of the

following situations:

1

)

The size of the memory area exceeds 256 bytes, so a single counter will not suffice.

2) The ending location is an address smaller than the starting location. This should be
treated as an error, since the user would seldom want to print the entire memory
contents in an unusual order.

1000 23 1F 60 54 37 38 3E 00
1008 6E 43 38 17 59 44 98 37
1010 47 36 23 81 E1 FF FF 5A
1018 34 ED BC AF FE FF 27 02

Figure 14-4. Results Of A Typical Memory Dump

14-5

Since the speed of the memory dump is usually dependent on printer speed, which is

always much slower than processor speed, the efficiency of the routine seldom matters.

The following program will reject cases where the starting address is after the ending

address, and will handle blocks of any length. We assume that the starting address is in

Registers H and L, the ending address is in Registers D and E:

LOOK FOR END BEFORE START

DUMP:

;EXAMINE MSBs OF ADDRESS

THROUGH IF START LARGER
OKAY IF START SMALLER
IF MSBs EQUAL. LOOK AT LSBs

;THROUGH IF START LARGER

GET 1 LOCATION
AND PRINT IT

EXAMINE MSBs OF ADDRESS

CONTINUE IF NOT EQUAL TO LIMIT

;EXAMINE LSBs OF ADDRESS

;DONE IF AT LIMIT

CONT:

DONE:

Figure 14-4 shows the output from a dump of memory location 1000 to 101F. This

routine correctly handles the case in which the starting and ending locations are the

same. The user will have to interpret the results carefully if the dump area involves the

Stack, since the dump subroutine will itself use the Stack. PRNT may also change parts

of the memory.

MORE ADVANCED DEBUGGING TOOLS
The more advanced debugging tools that are most widely used are:

1) Simulator programs to check software.

2) Logic analyzers to check signals and timing.

Many variations of both these tools exist, and we shall only discuss the standard

features.

MOV A.D

CMP H

JC DONE
JNZ DUMP
MOV A,E

CMP L

JC
LOCATK

DONE

MOV A.M
CALL PRNT
MOV A.D
CMP H
JNZ CONT
MOV A.E

CMP L

JZ DONE
INX H
JMP DUMP
JMP DONE

The simulator is the computerized equivalent of the pencil-and- jStMULATOR |

paper computer. It is a computer program which goes through the

operating cycle of another computer program keeping track of the contents of all the

registers, flags, and memory locations. We could, of course, do this by hand, but it

would require an unacceptably large amount of effort and close attention to the exact

effect of each instruction. The simulator program, on the other hand, never gets tired or

confused, forgets an instruction or runs out of paper. Most simulators are large

FORTRAN programs. You can purchase them or use them on the time-sharing services.

The 8080 simulator is available in several versions from different sources.

14-6

Typical simulator features are:

1

)

A breakpoint facility- Breakpoints can usually be set to occur after a particular num-
ber of cycles, when a memory location or one of a set of memory locations is

referenced, when- the contents of a location or one of a set of locations is altered, or

on other conditions that are specific to the particular simulator.

2) Register and memory dump facilities which can display the values of memory loca-

tions, registers and I/O ports.

3) A trace facility which will print the contents of particular registers or memory loca-

tions, whenever the program changes or references them.

4) A load facility which allows the user to set values initially or change them during

the simulation.

Some simulators can also simulate input/output, interrupts, and even direct memory
access.

The simulator has many advantages:

1) It can provide a complete description of the status of the computer, since the pro-

gram is not restricted by pin limitations or other problems.

2) It can provide breakpoint, dump, trace and other facilities which do not involve the

processor memory. These facilities will therefore not interfere with the user pro-

gram.

3) Programs, starting points and other conditions are easy to change.

4) All the facilities of large computers, including peripherals and software, are availa-

ble to the microprocessor designer.

On the other hand, the simulator is limited by its software base and its separation from
the real computer. The major limitations are:

1) The simulator usually cannot help with timing problems.

2) The simulator cannot fully re-create the input/output system.

3) The simulator is usually quite slow. Recreating one second of processor time may
take hours of computer time. Using the simulator can be quite expensive.

The simulator represents the software side of debugging; it has the typical advantages
and limitations of a wholly software approach. Basically, the simulator can provide in-

sight into program logic and other software problems but cannot help with timing, I/O

and other hardware problems.

The logic or microprocessor analyzer is the hardware solution to

debugging. (For more complete information see Runyon. "Focus
on Logic and £iP Analyzers" Electronic Design , Feb. 1, 1977, pp.

40-50). Basically, the analyzer is a parallel digital version of the standard oscilloscope.

The analyzer displays information in binary or hexadecimal on a video display, and has
a variety of triggering events, thresholds, and inputs. Most analyzers also have a memo-
ry so that they can display the past contents of the busses.

The standard procedure is to set a triggering event, such as the occurrence of a particu-

lar address on the Address Bus or instruction on the Data Bus in a particular address, or
the execution of an input or output instruction. One may then look at the sequence of

events that preceded or follow the breakpoint. Common problems you can find this way
include short noise spikes (or glitches), incorrect signal sequences, overlapping
waveforms, and other timing or signal errors. Of course, a software simulator could not
provide any hint as to the existence of those errors any more than a logic analyzer could
effectively warn the programmer of errors in program logic.

14-7

LOGIC
ANALYZER

IMPORTANT
FEATURES
OF LOGIC
ANALYZERS

The logic analyzer can also be useful in checking the proper operation of the microcom-

puter. (See Farnbach. WA., "Bring up Your /uP" Electronic Design , July 19, 1976, pp.

80-85).

Logic analyzers vary in many respects. Some of these are:

1) Number of input lines. At least 24 are necessary to monitor an

8-bit Data Bus and a 16-bit Address Bus. Still more are

necessary for control signals, clocks, and other important in-

puts.

2) Amount of memory. Each state that is saved will require

several words.

3) Maximum frequency. It must be several MHz to handle the fastest processors.

4) Minimum signal pulse width (important for catching glitches).

5) Type and number of triggering events allowed.

6) Methods of connecting to the microcomputer. This may require a rather complex

interface.

7) Number of display channels.

8) Binary, hexadecimal or mnemonic displays.

9) Display formats.

10) Signal hold time requirements

1 1) Probe capacitance.

1 2) Single or dual thresholds, adjustable thresholds.

All of these factors are important in comparing logic and microprocessor analyzers,

since the entire field is new and unstandardized. A tremendous range of products is

already available, and this range will expand in the future.

Logic analyzers, of course, are only necessary for systems with complex timing. Simple

applications with low-speed peripherals have few hardware problems which the

designer cannot handle with a standard oscilloscope.

DEBUGGING WITH CHECKLISTS
The designer cannot, of course, possibly check an entire program by hand. But there

are certain trouble spots which the designer can check easily. You can use systematic

hand-checking to find a large number of errors without resorting to any debugging

tools.

The question is where to place the effort. The answer is on points WHAT TO
that can be handled with either a yes-no answer or with a simple INCLUDE IN

arithmetic calculation. Do not try to do complex arithmetic, follow CHECKLIST
all the flags, or try every conceivable case. Limit your hand check-

ing to matters which can be settled easily. Leave the complex matters to the various

debugging tools. Insure, however, that you proceed systematically; build your checklist

and make sure that the program does the basic processing correctly.

The first thing to do is compare the flowchart or structured program and the actual

code. Make sure that every element that appears in one also appears in the other. A
simple checklist will do the job. It is easy to simply omit a branch or a processing sec-

tion.

Next concentrate on the program loops. Make sure that all registers and memory loca-

tions used inside the loop have been initialized before they are used. This is a common
source of errors; once again a simple checklist will suffice.

14-8

Now look at each conditional branch. Select a sample case that should produce a

branch and one that should not; try both of them. Is the branch correct or reversed? If

the branch involves checking if a number is above or below a threshold, try the equality

case. Does it branch the right way? Make sure that your choice is consistent with the
problem definition.

Look at the loops as a whole. Try the first and last iterations by hand; these are often

troublesome special cases. What happens if the number of iterations is zero. i.e.. there

is no data or the table has no elements? Does the program work correctly? Programs
often will start performing one iteration of the loop before testing for completion of the
task or. even worse, decrement counters past zero before checking them.

Check off everything down to the last statement. Do not assume (hopefully) that the
first error is the only one in the program. Hand-checking will allow you to get the max-
imum benefit from debugging, since you will get rid of many simple errors ahead of

time.

A quick review of the hand-checking questions;

1) Is every element of the program design in the program (and

vice-versa for documentation purposes)?

2) Are all registers and memory locations used inside loops in-

itialized before they are used?

3) Are all conditional branches correct?

4) Do all loops start and end properly?

5) Are equality cases handled correctly?

6) Are trivial cases handled correctly?

LOOKING FOR ERRORS
Of course, despite all these precautions (or if you skip over some of them), programs
almost never work the first time they are executed. The designer is left with the prob-
lem of where to start looking for the mistake. The hand checklist provides a starting

place if you did not use it earlier; some of the errors you may not have eliminated are:

HAND-
CHECKING
QUESTIONS

Failure to initialize variables such as counters, pointers, sums,
etc. Do not assume anything is necessarily zero when you
start.

COMMON
ERRORS

2) Inverting thejogic of a conditional jump, e.g., using Jump-On-Carry when you
meant Jump-On-Not Carry>Remember the effects of a comparison or subtraction:

(A is the contents of the Accumulator, M the contents of the register or memory
location.)

ZERO = 1 if A = M
= if A * M

CARRY = 1 if A < M
= if A > M

Note particularly that CARRY = if A = M, i.e., in the equality case. So, Jump-On-
Carry means jump if A < M, Jump-On-Not Carry means jump if A > M. If you want
the equality case on the other side, try either reversing the role of A and M or
adding 1 to M. For example, if you want a jump if A > 10, use

CPI 10

JNC ADDR
If, on the other hand, you want a jump if A < 10, use

CPI 11

JNC ADDR

14-9

3) Updating the counters and pointers in the wrong place or not at all. Be sure there

are no paths through a loop which either skip or repeat the updating instructions.

4) Failing to fall through correctly in trivial cases such as no data in a buffer, no tests

to be run, or no entries in a transaction. Do not assume that these will never happen

unless the program has specifically eliminated them.

Other problems to watch for are:

5) Reversing the order of operands. Remember that the MOV instruction moves the

second operand into the first operand. For example. MOV B.A moves A to B, not the

other way around.

6) Changing condition flags before you use them.

Remember that INR
(

and DCR affect all the ffags except the Carry, while shifts and

DAD affect the Carry. Remember also that POP PSW changes all the flags and logi-

cal instructions clear the Carry.

7) Failing to change condition flags when you intended to.

The Zero or Sign flags may not represent the current status of the Accumulator,

since many instructions (e.g. MOV, LDA, MVI) do not change. the flags. Remember
also that INX, DCX and CMA affect no flags at all.

8) Confusing values and addresses.

Remember that LXI H.1000H loads HL with the number 1000 (hex) while LHLD
1000H loads HL with the contents of locations 1000 and 1001,.A similar distinction

applies to LDA COUNT and MVI A.COUNT.

9) Accidentally re-initializing a register or memory location.

Make sure that the jump addresses are placed so that no extra initialization is per-

formed.

10) Confusing numbers and characters.

Remember that the ASCII representations of digits differ from the digits them-

selves, e.g., ASCII 7 is 37 hex; 07 is the ASCII Bell character.

1 1) Confusing binary and decimal.

Remember that the BCD representation of a number is different from its binary

representation; e.g.. BCD 36 is represented by the binary number 001 101 10. Note

that the decimal equivalent of this binary number is 54, not the original BCD 36.

12) Performing subtraction the wrong way around. Be careful also with other. opera-

tions (like division) that do not commute.

Remember that SUB M and CMP M produce A-M, not M-A.

13) Ignoring the effects of subroutines and macros..

Do not assume that calls to subroutines or references to macros do not change,

flags, registers or memory locations. Be sure of exactly what effects they have. Note

that it is very important to document these effects.

14) Using the Shift instructions improperly.

Remember the precise effects of RAR, RAL, RLC, and RRC. They are all 1 -bit circular

shifts which affect only the Carry. Note that there is no arithmetic shift (preserving

the sign bit) and no right logical shift (ADD A is a left logical shift).

15) Counting the length of an array incorrectly.

Remember that there are five, not four, memory locations included in addresses

100 through 104 inclusive.

14-10

16) Forgetting that certain transfers always use the Accumulator.

These are LDA. STA. IN. OUT. LDAX, and STAX. Be especially careful with the last

two, which use the specified register pair as an address but use the Accumulator as

the source or destination of the data. For example, LDAX B loads the Accumulator
with the data from the address in register pair B.

17) Confusing registers and register pairs.

Remember that LXI. LHLD, DCX, INX, DAD. SHLD. POP and PUSH affect pairs of

registers, not single registers. On the other hand. MVI, MOV, OCR and INR affect

single registers.

18) Forgetting to initialize the Stack.

Remember that you must initialize the Stack Pointer before calling any subroutines

or performing any stack operation.

19) Changing a register or memory location before using it.

Remember that MOV, LDA, MVI. etc. change the contents of the destination (but

not the source).

Interrupt-driven programs are particularly difficult to debug since DEBUGGING
errors may occur randomly. If, for example, the program enables INTERRUPT-
the interrupts a few instructions too early, an error will only occur DRIVEN
if an interrupt is received while the program is executing those PROGRAMS
few instructions. In fact, you can usually assume that randomly
occurring errors are caused by the interrupt system. (See Weller, U.J., Assembly Level

Programming for Small Computers, Lexington Books, Lexington, Mass., 1975)'.

Typical errors in interrupt-driven programs are:

1) Forgetting to re-enable the interrupt after accepting one and servicing it.

The processor disables the interrupt system automatically on RESET or on accept-

ing an interrupt. Be sure that no possible sequences fail to enable the interrupt

system.

2) Using the Accumulator before saving it; i.e.. PUSH PSW must come before any in-

put or output operations.

3) Forgetting to save the Accumulator and flags.

4) Restoring registers in the wrong order.

If the order in which they were saved was

PUSH PSW,
PUSH B

PUSH D
PUSH H

the order of restoration should be

POP H
POP D
POP B

POP PSW

5) Enabling interrupts before establishing all the necessary conditions such as

priority, flags, etc.

A checklist can aid here.

6) Leaving results in registers and destroying them in the restoration process.

7) Forgetting that RST leaves an address in the Stack whether you use it or not.

You may have to re-initialize or update the Stack Pointer.

8) Not disabhng the interrupt during multi-word transfers or instruction sequences.

14-11

Hopefully, these lists will at least give you some ideas as to where to look. Unfor-

tunately, even the most systematic debugging can still leave some truly puzzling prob-

lems.

DEBUGGING EXAMPLES
Decimal To 7-Segment Conversion

The program converts a decimal number in memory location .40 to

a-7-segment code in memory location 41. It blanks the display if

memory location 40 is. not a decimal number.

Initial Program: (from flowchart in Figure 14-5)

DEBUGGING
A CODE
CONVERSION
PROGRAM

LDA 40H ;GET DATA
CPI 9

JC DONE THROUGH IF DATA > 9

LHLD SSEG ;GET ADDRESS OF 7-SEGMENT
TABLE

MOV D.A
DAD D :FJND ELEMENT BY INDEXING
MOV A,M

DONE: STA 41H ;GET 7-SEGMENT CODE
HERE: JMP HERE
SSEG: DB 3FH-,06H,5BH,4FH,69H

DB .6DH,70H,07H,7DH,6FH

Using the checklist procedure, we were able to find the following errors:

1) The block which cleared RESULT had been omitted.

2) The conditional branch was incorrect.

For example, if the data is 00, CPI 9 sets the Carry since < 9. However, the jump on

the opposite condition, i.e. JNC DONE, still did not produce the correct result. Now, the

equality case failed since, if the data was 9, CPI 9 cleared the Carry and caused a jump.

The. correct version is

CPI

JNC

Second Program:

10

DONE THROUGH IF DATA > 9

DONE:
HERE:

SSEG:

MVI
LDA
CPI

JNC
•LHLD
MOV
DAD
MOV
STA
JMP
DB
DB

B.O

40H
10

DONE
SSEG
TJ,A

D
A,M
41H
HERE
3FH.06H.5BH.4FH.69H
6OH.7DH.07H.7DH.6FH

; BLANK DISPLAY
;GET DATA

THROUGH IF DATA > 9

;GET ADDRESS OF 7-SEGMENT TABLE

;FIND TABLE ENTRY BY INDEXING
;GET 7-SEGMENT CODE

This version was hand-checked successfully. Since the program was simple, the next

stage was to single-step through it with real data. The data selected for the. trials was:

(the smallest number)

09 (the largest number)

10 (a border case)

6B (hex) (random)

14-12

The first trial was with zero in location 40 (hex). The program moved along with no ap-

parent errors until it tried to execute the MOV A,M instruction.

The contents of the Address Bus during the data fetch was 0647, an address that did

not even exist in the system. Clearly, something had gone wrong.

It was now time for some more hand-checking. Since we knew JNC did the right thing,

the error was clearly subsequent to that instruction but before MOV A.M. A hand check

showed:

c

Data = (40)

Result =

(SSEG + data)

I

Result =

m

—

c j

Figure 14-5. Flowchart Of Decimal To 7-Segment Conversion

14-13

1) LHLD SSEG places 3F (hex) in L. 06 (hex) in H.

This is clearly wrong. We want LXI. not LHLD, i.e.. we want the address SSEG, not the

contents of that address.

2) MOV D.A places in D.

This is wrong — the data should go in E, since we want to add it to the least significant

bits of the table address. In fact, an instruction should clear D, since the other half of

register pair D was not getting initialized at all.

Third Program:

MVI B.O

LDA 40H
CPI 10

JNC DONE
LXI H.SSEG
MOV E.A

MVI D.O

DAD D
MOV A.M

DONE: STA 41

H

HERE: JMP HERE
SSEG: DB 3FH, 06H.

DB

;BLANK DISPLAY
;GET DATA

;THROUGH IF DATA > 9

;GET ADDRESS OF 7-SEGMENT TABLE

USE DATA AS 16-BIT INDEX
FIND TABLE ENTRY BY INDEXING
GET 7-SEGMENT CODE

5BH, 4FH, 69H
6DG. 7DH, 07H, 7DH, 5FH

This program produced the following result:

DATA RESULT

3F

9 6F

10 10

6B 6B

The program was not clearing the result if the data was invalid, i.e., greater than 10.

The program never transferred the blank code in Register B to the Accumulator.

Therefore, we altered the program by replacing the MOV A.M instruction with MOV
B,M. Thus, at DONE, Register B contains either a) the appropriate 7-segment code if a

number between and 9 is present at location 40, or b) if a number other than

through 9 is present at location 40. For this reason, a MOV A,B instruction is included at

DONE to move the correct data into the Accumulator when the STA 41 H instruction is

performed. Since the program was simple, it could be tested for all the decimal digits.

The results were:

DATA RESULT

3F

1 06
2 5B
3 4F

4 69

5 6D
6 7D
7 07

8 7D
9 6F

Note that number 8 is wrong — it should be 7F. Since everything else is right, the error

is almost surely in the table. In fact, entry 8 in the table had been miscopied.

14-14

The final program is:

DECIMAL TO 7-SEGMENT CONVERSION

DONE:

SSEG:

MVI
LDA
CPI

JNC
LXI

MOV
MVI
DAD
MOV
MOV
STA
HLT
DB
DB

B.O

40H
10

DONE
H.SSEG
E.A

D.O

D
B.M
A.B

41H

; BLANK DISPLAY
;GET DATA

;THROUGH IF DATA > 9

;GET ADDRESS OF 7-SEGMENT TABLE

USE DATA AS 16-BIT INDEX
FIND TABLE ENTRY BY INDEXING
GET 7-SEGMENT CODE

3FH. 06H. 5BH. 4FH. 69H
6DH. 7DH. 07H. 7FH. 6FH

The errors encountered in this program are typical of the ones Intel 8080 assembly

language programmers should anticipate. They include:

1) Failing to initialize variables.

2) Inverting conditional branches.

3) Branching incorrectly in the equality case.

4) Confusing immediate and direct addressing, i.e., data and addresses.

5) Forgetting the distinction between 8-bit data and 16-bit addresses.

6) Branching to the wrong place so one path through the program is incorrect.

7) Copying lists of numbers incorrectly.

Note that straightforward instructions like ADD, SUB, JMP, etc. seldom produce any

problems.

Sort Into Decreasing Order

The program sorts an array of unsigned 8-bit binary numbers into decreasing order. The
array begins in memory location 41, and its length is in memory location 40.

Initial Program: (from flowchart in Figure 14-6)

INTERCHANGE FLAG =0
;COUNT = LENGTH OF ARRAY

MVI B.O

LDA 41H
MOV C.A

LXI H.42H
PASS: MOV A,M

INX H
CMP M
JC CNT
MOV M.A

INX H
CNT: DCR C

JNZ PASS
DCR B
JM PASS

DEBUGGING
A SORT
PROGRAM

;POINT TO START OF ARRAY
;GET Kth ELEMENT

COMPARE TO (K-M)th ELEMENT
NO INTERCHANGE IF Kth LARGER
INTERCHANGE IF (K-M)th

GREATER

;IS PASS COMPLETE?
;YES.

;IS INTERCHANGE FLAG 0?

;NO, MAKE ANOTHER PASS
THROUGH ARRAY

DONE: JMP DONE

14-15

The hand check shows that all the blocks in the flowchart exist in

the program and that all the registers have been initialized. The

conditional branch must be examined carefully. The internal branch JC CNT must force

a branch if the new value is less than or equal to the old value. Note that the equality

case must not result in an interchange, since this will create an endless loop with the

two equal elements being switched back and forth.

Try an example:

(41) =
(42) =

30
37

c 3

Interchange flag =
Count = Length

of array
Pointer = Start

of array

Interchange (Pointer)

= (Pointer + 1)

Interchange Flag = 1

Pointer = Pointer + 1

Count = Count - 1

Figure 14-6. Flowchart Of Sort Program

14-16

CMP M results in the calculation of 30-37. The Carry is 1. This example should result in

an interchange but does not. JNC CNT will provide the proper branch in this case. If the

two numbers are equal, the comparison will clear the Carry and JNC CNT is again cor-

rect.

How about JM PASS at the end of the program? If there are no interchanges. B will be

zero so the branch is wrong. It should be JP PASS.

Now try the first time-through. The initialization results in the following:

(B) =
(A) = COUNT
(C) = COUNT

(HL) = 42

The effects of the loop instructions are:

MOV A.M (A) = (42)

INX H (HL)=43

CMP M (42)'= (43)

JNC CNT
MOV M.A (43) = (42)

INX H (HL)=44

DCR C (C)=COUNT-1

Note that we have already checked the conditional Jump instructions.

Clearly, the logic is incorrect. If the first two numbers are out of order, the results after

the first iteration should be:

(42) = OLD (43)

(43) = OLD (42)

(HL) = 43
(C) = COUNT-1

Instead, they are:

(42) = UNCHANGED
(43) = OLD (42)

(HL) = 44
(C) = COUNT-1

The error in HL is easy to correct. The second INX H is unnecessary and should be omit-

ted. The interchange requires a bit more care and a temporary register, i.e.

MOV D.M
MOV M.A
DCX H
MOV M.D
INX H

An interchange always requires a temporary location where one number can be stored

while the other one up is being transferred.

14-17

MVI B.O

LDA 41H
MOV C.A
LXI H.42H

PASS: MOV A,M
INX H
CMP M
JNC CNT
MOV D,M
MOV M.A
DCX H
MOV M.D
INX H

CNT: DCR C
JNZ PASS
DCR B

JP PASS
DONE: JMP DONE

All of these changes require a new copy of the program, i.e.

; INTERCHANGE FLAG =
;COUNT = LENGTH OF ARRAY

;POINT TO START OF ARRAY
;GET Kth ELEMENT

COMPARE TO (K+1)th ELEMENT
NO INTERCHANGE IF Kth LARGER
INTERCHANGE ELEMENTS

IS PASS COMPLETE?
YES
IS INTERCHANGE FLAG 0?

NO. MAKE ANOTHER PASS THROUGH ARRAY

How about the last iteration? Let's say there are three elements.

(41) = 03
(42) = 02

(43) = 04

(44) = 06

Each time through, the program increments HL by 1. So. at the start of the third itera-

tion,

(HL) = 42+2=44

The effects of the loop instruction are:

;(A) = (44)

;(HL) =45
;(44) = (43)

This is incorrect; the program has tried to move beyond the end of the data. The pre-

vious iteration should, in fact, have been the last one, since the number of pairs is one

less than the number of elements. The correction is to reduce the number of iterations

by 1, i.e., place DCR C after MOV C.A.

How about the trivial cases? What happens if the array contains no elements at all or

only one element? The answer is that the program does not work correctly, and without

any warning may change a whole block of data improperly (try it!). The corrections for

handling the trivial cases are simple but essential; the cost is only a few memory loca-

tions to avoid problems that could be very difficult to find later.

MOV A.M
INX H
CMP M

14-18

The new program is:

MVI B.O

LDA 41H
CPI 2

JC DONE
MOV C.A

DCR C
LXI H.42H

PASS: MOV A.M
INX H
CMP M
JNC CNT
MOV D.M
MOV M,A
DCX H
MOV M.D
INX H

CNT: DCR C
JNZ PASS
DCR B

JP PASS
DONE: JMP DONE

INTERCHANGE FLAG =
COUNT = LENGTH OF ARRAY
IS COUNT 2?

NO, NO ACTION NECESSARY

NO. OF PAIRS = COUNT-1
POINT TO START OF ARRAY
GET Kth ELEMENT

COMPARE TO (K+1)th ELEMENT
NO INTERCHANGE IF Kth LARGER
INTERCHANGE ELEMENTS

IS PASS COMPLETE?
YES
IS INTERCHANGE FLAG 0?

NO, MAKE ANOTHER PASS THROUGH ARRAY

Now it's time to check the program on the computer or on the simulator. A simple set of

data is:

(41) = 02

(42) = 00

(43) = 01

This set consists of two elements in the wrong order. The program should take two
passes. The first pass should rearrange the elements, producing

(42) = 01

(43) = 00

(B) = 01

The second pass should complete the operation and produce

(B) = 00

This program is somewhat long for single-stepping, so we will use breakpoints instead.

Each breakpoint will halt the computer and print the contents of all the registers. The
breakpoints will come:

1) After LXI H.42H to check the initial conditions.

2) After CMP M to check the comparison.

3) After the second INX H (i.e.. just before CNT label) to check the interchange.

4) After DCR B to check the completion of a pass through the array.

The contents of the registers after the first breakpoint were:

REGISTER CONTENTS
A 2

B

C 1

H
L 42

These are all correct, so the program is calculating the initial conditions correctly in this

case.

14-19

The results at the second breakpoint were:

REGISTER CONTENTS

A
B

C
H
L

CARRY

1

43
1

These results are also correct. The results at the third breakpoint were:

REGISTER CONTENTS

A
B

C
D
H
L *

Checking memory showed:

(42) = 01

(43) = 00

The results at the fourth breakpoint were:

1

1

43

REGISTER CONTENTS

A
B

C
D 1

H
L 43

Here. Register B is not correct— its value should be 1 to indicate that an interchange

occurred. In fact, a look at the program shows that no instruction ever changes B to

mark the interchange. The correction is to place the instruction MVI B,1 after JNC CNT.

Now the procedure is to load Register B with the correct value and continue. The sec-

ond iteration of the second breakpoint gives:

REGISTER CONTENTS

A
B

C
H
L 44

CARRY 1

Clearly, the program has proceeded incorrectly without re-initializing the registers (par-

ticularly HL). The conditional jump after checking the interchange flag should transfer

control all the way back to the start of the program, not to the label PASS.

14-20

The final version of the program is:

SORT: MVI B.O

LDA 41H
CPI 2

JC DONE
MOV C.A

DCR C
LXI H.42H

PASS: MOV A.M
INX H
CMP M
JNC CNT
MVI B,1

MOV D.M
MOV M.A
DCX H
MOV M,D
INX H

CNT: DCR C
JNZ PASS
DCR B

JP SORT
DONE: JMP DONE

INTERCHANGE FLAG =
COUNT = LENGTH OF ARRAY '

IS COUNT > 2?

NO. NO ACTION NECESSARY

NO OF PAIRS = COUNT-1
POINT TO START OF ARRAY
GET Kth ELEMENT

COMPARE TO (K+1)th ELEMENT
NO INTERCHANGE IF Kth LARGER
SET INTERCHANGE FLAG
INTERCHANGE ELEMENTS

IS PASS COMPLETE?
YES
IS INTERCHANGE FLAG 0?

NO, MAKE ANOTHER PASS THROUGH ARRAY

Clearly, we cannot check all the possible cases for this routine. Two other simple sets of

data for debugging purposes are:

1) Two equal elements

(41) = 02

(42) = 00
(43) = 00

2) Two elements already in decreasing order

(41) = 02

(42) = 01

(43) = 00

INTRODUCTION TO TESTING
Program testing is, clearly, closely related to program debugging. Surely some of the

test cases will be the same as the test data used for debugging, i.e.:

1) Trivial cases such as no data or a single element.

2) Special cases which the program singles out for some reason

3) Simple examples which exercise particular parts of the pro-

gram.

In the case of the decimal to 7-segment conversion program, these cases cover all the

possible situations. The test data consists of

1) The numbers through 9.

2) Boundary case 10

3) The random case 6B

The program does not distinguish any other cases. Here debugging and testing are vir-

tually the same thing.

In the sorting case, the problem is more difficult. The number of elements could range
from to 255, and each of the elements could lie anywhere in that range. The number
of cases is therefore enormous. Furthermore, the program is moderately complex. How

USING TEST
CASES FROM
DEBUGGING

14-21

do we select test data which will in some sense give us a degree of confidence in that

program? Here testing requires some design decisions. The testing problem is particu-

larly difficult if the program depends on sequences of real-time data. How do we select

the data, generate it, and present it to the microcomputer in a realistic manner?

TOOLS FOR TESTING
Most of the tools mentioned earlier for debugging are helpful in TESTING
the testing stage also. Logic or microprocessor analyzers can help AIDS
check the hardware; software simulators can help check the soft-

ware. Other tools can also be of assistance, e.g.:

1) I/O simulations which can simulate a variety of devices from a single input and a

single output device.

2) In-circuit emulators which allow you to attach the prototype and test it from a

development system or control panel.

3) ROM simulators which have the flexibility of a RAM but the timing of the particular

ROM or PROM that will be used in the final system.

4) Real-time operating systems which can provide inputs or interrupts at specific

times (or perhaps randomly) and mark the occurrence of outputs. Real-time break-

points and traces may also be allowed.

5) Emulations (often on microprogrammable computers) which may provide real-time

execution speed and programmable I/O.

6) Interfaces which allow another computer to control the I/O system and test the

microcomputer program.

7) Testing programs which check each branch in a program for logical errors.

8) Test generation programs which can generate random data or other distributions.

Formal testing theorems exist, but their applicability is usually limited to very small pro-

grams.

You must be careful that the testing equipment does not change the environment so as

to invalidate the test. Often testing equipment may buffer, latch, or condition input and

output signals. The actual system may not do this, and may therefore behave quite

differently.

Furthermore, extra software in the testing environment may use some of the memory
space or part of the interrupt system. It may also provide error recovery and other

features which will not exist in the final system. A software test bed must be just as

realistic as a hardware test bed, since software failure can be just as critical as hardware

failure.

Emulations and simulations are, of course, never precise. They are usually adequate for

checking logic, but can seldom help test an interface or timing. On the other hand, real-

time systems do not provide much of an overview of the logic and may affect the inter-

facing and timing.

SELECTING TEST DATA
Very few real programs can be checked in all cases. The designer must choose a sam-

pling that in some sense describes the entire range of possibilities.

STRUCTURED
TESTING

Testing should, of course, be part of the total development pro-

cess. Top-down design and structured programming provide for

testing as part of the design. This is called "structured" testing

(see E. Yourdon, Techniques of Program Structure and Design, Prentice-Hall,

Englewood Cliffs, N.J., 1976.), whereby each module within a structured program is

separately checked. Testing, as well as programming, should be modular, structured,

and top-down.

14-22

TESTING
SPECIAL
CASES

That leaves the question of selecting test data for a module. The designer must first list

all special cases which a program recognizes. These may include:

1) Trivial cases

2) Equality cases

3) Special situations

The test data should include all of these.

You must next determine each class of data which statements within the program may
distinguish.

These may include:

1) Positive or negative numbers

2) Numbers above or below a particular threshold

3) Data which does or does not include a particular sequence or

character

4) Data which is or is not present at a particular time

If each module is small enough, the total number of classes should still be fairly small

even though they are multiplicative; i.e., two two-way decisions result in four data

classes.

FORMING
CLASSES
OF DATA

You must now distinguish whether the program produces a SELECTING
different result for each entry in the class (as in a table) or pro- TEST
duces the same result for each entry (e.g.. as in a warning that a DATA
parameter is above a threshold). In the discrete case, one may in- FROM
elude each element if the number is small or sample if the number CLASSES
of elements is large. The sample should include all boundary cases

and at least one case selected randomly. Note that random number tables are available

in books and random number generators are part of most computer facilities.

The designer must be careful of distinctions which may not seem obvious. For example,

the Intel 8080 will regard an 8-bit unsigned number greater than 127 as negative; the

programmer must consider this when using the Jump instructions JM and JP. The pro-

grammer must also watch for instructions which do not affect flags, overflow in signed

arithmetic, and the distinctions between address length (16-bit) quantities and data

length (8-bit) quantities.

TESTING EXAMPLES
Sort Program

The special cases here are obvious:

1) No elements in the array

2) One element, the magnitude of which may be selected ran-

domly.

The other special case to be considered is one in which elements

are equal.

There may be some problem here with signs and data length. Note that the array itself

must be less than 256 elements in length. The use of the instruction MVI B.1 rather

than INR B to set the interchange flag means that there will be no difficulty if the num-
ber of elements or interchanges exceeds 128.

We could check the effects of the sign by picking half the regular test cases with num-
bers of elements between 128 and 255 and half between 2 and 127. All magnitudes

should be chosen randomly so as to avoid unconscious bias as much as possible.

14-23

TESTING
A SORT
PROGRAM

TESTING AN
ARITHMETIC
PROGRAM

RULES FOR
TESTING

Self-Checking Numbers
Here we will presume that a prior validity check has ensured that

the number is the right length and consists of valid digits. Since

the program makes no other distinctions, test data should be
selected randomly. Here a random number table or random num-
ber generator will prove ideal; the range of the random numbers is to 9.

TESTING PRECAUTIONS
The designer can simplify the testing procedure by sensible program design. You
should use the following rules:

1) Try to eliminate trivial cases as early as possible without in-

troducing unnecessary distinctions.

2) Minimize the number of special cases. Each special case

means additional testing and debugging time.

3) Consider performing validity or error checks on the data prior to processing.

4) Be careful of inadvertent and unnecessary distinctions, particularly in handling

signed numbers or using operations that refer to signed numbers.

5) Check boundary cases by hand. These are often a source of errors. Be sure that the

problem definition specifies what is to happen in these cases.

6) Make the program as general as reasonably possible. Each distinction and separate

routine increases the required testing.

7) Separate and structure the modules so that testing can proceed in steps in con-

junction with the other phases of software development.

CONCLUSIONS
Debugging and testing are the stepchildren of the software development process. Most
projects leave far too little time for them and most textbooks neglect them. But desig-

ners and managers often find that these stages are the most expensive and time-con-

suming. Progress may be very difficult to measure or produce. Debugging and testing

microprocessor software is particularly difficult because of the limited tools that are

available.

The designer should plan debugging and testing carefully. We recommend the follow-

ing procedure:

1) Try to write programs that can easily be debugged and tested. Modular program-
ming, structured programming, and top-down design are all useful techniques.

2) Prepare a debugging and testing plan as part of the program design. Decide early

what data you must generate and what equipment you will need.

3) Debug and test each module as part of the top-down design process.

4) Debug each module's logic systematically. Use checklists, breakpoints, and single-

step mode. If the logic is complex, consider the software simulator.

5) Check each module's timing systematically if this is a problem. An oscilloscope can
solve many problems if you plan the test properly. If the timing is complex, consider

a logic or microprocessor analyzer.

6) Be sure that the test data is a representative sample. Watch for any classes of data

which the program may distinguish.

7) If the program handles each element differently or the number of cases is large,

select the test data randomly.

8) Record all test results as part of the documentation.

14-24

REFERENCES

1. Collected Algorithms from ACM , ACM Inc., PO Box 12105, Church Street Station,

New York 10249

2. Chen, T.C., "Automatic Computation of Exponentials, Logarithms, Ratios, and
Square Roots" IBM Journal of Research and Development , Vol 16, pp. 380-388,

July 1972.

3. H. Schmid, Decimal Computation, Wiley-lnterscience, New York, 1974

4. Knuth, D.E., The Art of Computer Programming, Vol. 1 : Fundamental Algorithms ,

Addison-Wesley, Reading, Mass., 1967

5. Knuth, D.E., The Art of Computer Programming, Vol. 2: Seminumerical Algorithms ,

Addison-Wesley, Reading, Mass., 1969

6. Knuth, D.E., The Art of Computer Programming, Vol. 3: Sorting and Searching , Ad-

dison'-Wesiey, Reading, Mass., 1973

7. Carnahan, B., et. al.. Applied Numerical Methods, Wiley, New York, 1969

8. , Despain, A.M., "Fourier Transform Computers Using CORDIC Iterations", IEEE Tran-

sactions on Computers, October 1974, pp. 993-1001.

14-25

Chapter 15
DOCUMENTATION

AND
RE-DESIGN

A working program which is driving a computer system does not constitute the end of

the software development cycle. Adequate documentation is also an important part of a

software product. Not only will documentation help the designer in the testing and
debugging stages, it is also essential for later use and extension of the program. A
poorly documented program will be difficult to maintain, use, or extend.

Occasionally, the first version of a program does not meet essential requirements of ex-

ecution time or memory usage. The designer must then consider ways to improve the

program. This stage is called re-design, and requires concentration on those parts of the

program which can yield the most improvement.

SELF-DOCUMENTING PROGRAMS
Although no program is ever completely self-documenting, some of the rules we have
mentioned earlier can help. These include:

RULES FOR
SELF-DOCUMENTING
PROGRAMS

1) Clear, simple structure with as few transfers of control

(i.e.. jumps) as possible.

2) Use of meaningful names and labels.

3) Use of names for I/O devices, parameters, numerical

factors, etc.

4) Emphasis on simplicity rather than on minor savings in memory I'sage, execution
time, or typing.

For example, the following simple program sends a string of characters to a

teletypewriter:

W:

LDA 2000H
LXI H.1000H
MOV B.A

MOV A.M
OUT 6

CALL XXX
DCR B

INX H
JNZ W
HLT

15-1

Even without adding comments, we can improve the program as follows:

MESSG EQU 1000H
COUNT EQU 2000H
TTY EQU 6

LDA COUNT
MOV B.A

LXI H.MESSG
OUTCH: MOV A,M

OUT TTY
CALL BITD

INX H
DCR B

JNZ OUTCH
HLT

Clearly, this program is more comprehensible than the earlier version. Even without

adding further documentation, you could probably guess at the functionxif the program

and the meaning of most of the variables. Other documentation techniques are no
substitute for self-documentation.

Some further notes on choosing names: CHOOSING
USEFUL
NAMES1) Use the obvious name when it is available; for example, TTY

or CRT for output devices, START or RESET for addresses,

DELAY or SORT for subroutines, COUNT or LENGTH for data.

2) Avoid acronyms like S16BA for SORT 16 BIT ARRAY . This kind of label seldom

means anything to anyone but the creator.

3) Use full words or close to full words when possible, e.g., DONE, PRINT, SEND.

COMMENTS
The most obvious form of additional documentation is the comment. However, very few

programs (including most of those in books) have really effective comments. You
should consider the following guidelines for good comments:

1) Do not repeat the meaning of the instruction code. Explain

what the purpose of the instruction is in the program.

Comments like:

DCR B ;B=B-1

add nothing to documentation. Instead, include comments like:

DCR B ;LINE NUMBER=LINE NUMBER-1
* Remember that you know what the operation codes mean and that any other user

can look their meanings up in the manual. The essential purpose of documentation
- is to explain what the program is doing.

2) Make the comments as clear as possible. Do not use abbreviations or shorthand

unless they are really obvious. Avoid comments like:

DCR B ;LN=LN-1

COMMENTING
GUIDELINES

DCR B ;DEC. LN BY 1

The extra typing simply is not all that expensive.

15-2

3) Comment every important or obscure point. Be particularly careful to mark opera-

tions which may not be obvious, such as:

ANI 11011111 :TAPE READER BIT OFF

or

DAD D ;INDEX GRAY CODE TABLE

Clearly, I/O operations often require extensive comments. If you are not exactly

sure of what an instruction does or you have to think about it, write out the function

it performs. The comment will save you time later and will be helpful in documenta-
tion.

4) Do not comment the obvious. A comment on each line simply makes it difficult to

find the important points. Standard sequences like:

INX H
DCR B

JNZ SRCH

need not be marked if the purpose of the sequence is obvious due to prior docu-

mentation, e.g., if this sequence appeared in a subroutine which added a series of

unsigned bytes. One comment will often suffice for several lines. For example:

RRC ;SWAP DIGITS

RRC
RRC
RRC
MOV A.C EXCHANGE MOST SIGNIFICANT AND LEAST

SIGNIFICANT BYTES
MOV C.B

MOV B.A

5) Place comments on the line to which they refer or at the start of a sequence.

6) Keep your comments up-to-date. If you change the program, change the com-
ments. Outdated or erroneous comments are worse than none at all.

7) Use standard forms and terms in commenting. Do not worry about repetitiveness;

varied names for the same thing are confusing even if it is just COUNT and
COUNTER, START and BEGIN, DISPLAY and LEDS, PANEL and SWITCHES. There is

no real gain in being inconsistent. The variations may seem obvious to you now but

may not be so obvious later; others may be confused from the very beginning.

8) Keep improving your comments. If you come to a comment that you cannot read or

understand, take the time to change it. If you find that the listing is getting

crowded, add some blank lines. The comments will not improve themselves; in

fact, they will just seem to get worse as you leave the task behind and forget ex-

actly what you did.

The bottom line to remember is that comments are important. Good ones will save you
time and effort. Put some work into them and try to make them as effective as possible.

15-3

COMMENTING EXAMPLES
Multiple-Precision Addition

The basic program is:

LDA 40H
MOV B.A

LXI H.41H
LXI D.61H
ANA A

ADDW: LDAX D
ADC M
MOV M.A
INX D
INX H
DCR B

JNZ ADDW
HERE: JMP HERE

COMMENTING
EXAMPLES

First, comment the important points. These are typically initializations, data fetches,

and processing operations. Do not bother with standard sequences like updating poin-

ters and counters if you have made clear that the registers incremented/decremented

are pointers/counters. Remember that names are clearer than numbers, so use them

freely.

The new version of the program is:

;COUNT=LENGTH OF NUMBERS

;START AT LSBs OF 1ST NUMBER
;START AT LSBs OF 2ND NUMBER

;GET 8 BITS OF 2ND NUMBER
;ADD 8 BITS OF 1ST NUMBER
;STORE RESULT IN 1ST NUMBER

LENG EQU 40H
NUMB1 EQU 41H
NUMB2 EQU 61H

LDA LENG
MOV B.A

LXI H.NUMB1
LXI D.NUMB2
ANA A

ADDW: LDAX D
ADC M
MOV M.A
INX D
INX H
DCR B

JNZ ADDW
HERE: JMP HERE

Second, look for any instructions which might not have an obvious QUESTIONS
function, and mark them. Here, the purpose of ANA A is to clear FOR
the Carry. That purpose certainly is not evident from the instruc- COMMENTING
tion.

Third, ask yourself whether the comments tell you what you would need to know if you

wanted to use the program, e.g.:

1) What parameters are necessary and what are their starting values?

2) What operations does the program perform?

3) Where does it get the data?

4) Where does it store the results?

5) What special cases does it consider?

6) What does the program do about errors?

7) How does it exit?

15-4

Some of the questions may not be relevant to a particular program and some of the

answers may be obvious. Just make sure that you will not have to sit down and go
through the program to determine the answers. Is there anything you would add to or

subtract from this listing? If so. go ahead; you're the one who has to feel that the com-
menting is adequate and reasonable.

LENGTH OF NUMBERS
LSBs OF 1ST NUMBERS AND RESULT
LSBs OF 2ND NUMBER
COUNT=LENGTH OF NUMBERS

START AT LSBs OF 1ST NUMBER
START AT LSBs OF 2ND NUMBER
CARRY= TO BEGIN
GET 8 BITS OF 2ND NUMBER
ADD 8 BITS OF 1ST NUMBER
STORE RESULT IN 1ST NUMBER

LENG EQU 40H
NUMB1 EQU 41H
NUMB2 EQU 61H

LDA LENG
MOV B.A

LXI H.NUMB1
LXI D.NUMB2
ANA A

ADDW: LDAX D
ADC M
MOV M.A
INX D
INX H
DCR B
JNZ ADDW

HERE: JMP HERE

Teletypewriter Output

The basic program is:

LDA 40H
ANA A
RAL
MVI D.11

TBIT: OUT
RAR
STC

TPORT

CALL BITD
DCR D
JNZ TBIT

HERE: JMP HERE

Commenting the important points and adding names gives:

NBITS EQU 11 NUMBER OF BITS PER CHARACTER
TDATA EQU 40H CHARACTER TO BE TRANSMITTED

LDA TDATA GET A CHARACTER
ANA A START BIT=0
RAL
MVI D.NBITS COUNT=NUMBER OF BITS IN CHARACTER

TBIT: OUT TPORT BIT TO TTY
RAR SERIAL OUTPUT=NEXT BIT

STC STOP BIT=1
CALL BITD WAIT 1 BIT TIME
DCR D
JNZ TBIT

HERE: JMP HERE

Note how simple it would be to change this program so that it would transfer a whole
string of data, starting at the address in locations DPTR and DPTR+1, and ending with
an "04" character. Furthermore, make the terminal a 30 characters-per-second device
with one stop bit (we'll have to change BITD). Try making the changes before looking at

the listing.

15-5

ENDCH EQU 4

NBITS EQU 10

DPTR EQU 40H
LHLD DPTR

TCHAR: MOV A,M
CPI NDCH
JZ DONE
ANA A
RAL
MVI D.NBITS

TBIT: OUT
RAR
STC

TPORT

CALL BITD

DCR D
JNZ TBIT

INX H
JMP TCHAR

DONE: JMP DONE

ENDING CHARACTER
NUMBER OF BITS PER CHARACTER
(DPTR)=STARTING ADDRESS
GET STARTING ADDRESS OF MESSAGE
GET A CHARACTER
IS IT ENDING CHARACTER?
YES DONE
START BIT=0

COUNT=NUMBER OF BITS IN CHARACTER
BIT TO TERMINAL
SERIAL OUTPUT=NEXT BIT

STOP BIT=1

WAIT 1 BIT TIME

Good comments can make it simple for you to change a program to meet new require-

ments. For example, try changing the last program so that it:

1) Starts each message with ASCII STX followed by a 3-digit identification code

stored in memory locations 30 through 32.

2) Adds no start or stop bits.

3) Waits 1 ms between bits.

4) Transmits 40 characters starting with the one address in the DPTR and DPTR+1.

5) Ends each message with two consecutive ASCII ETX's.

FLOWCHARTS AS DOCUMENTATION
We have already described the use of flowcharts as a design tool in Chapter 13.

Flowcharts also are useful in documentations, particularly if:

1) They are not so detailed as to be unreadable.

2) Decision points are clearly explained and marked.

3) The flowchart includes all branches.

4) The flowchart corresponds to the actual program listing.

Flowcharts are helpful if they give an overall picture of the program. They are not

helpful if they are just as difficult to read as an ordinary listing.

STRUCTURED PROGRAMS AS DOCUMENTATION
Structured programs (see Chapter 13) can also serve as part of the documentation if:

1) You describe the purpose of each section in the comments.

2) You make the range of each conditional or loop structure clear by indentation and

ending markers.

3) You make the total structure as simple as possible.

4) You use a consistent, well-defined language.

The structured program can help you to check the logic or improve it. Furthermore,

since the structured program is machine-independent, it will ease the implementation

of the same task on another computer.

HINTS FOR
USING
FLOWCHARTS

15-6

TYPICAL
MEMORY
MAP

MEMORY MAPS
A memory map is simply a list of all the memory assignments in a program. The map
allows you to determine the amount of memory needed, the locations of data or

subroutines, and the parts of memory not allocated. The map is a handy reference for

finding storage locations and entry points and for dividing memory between different

routines or programmers. The map will also give easy access to data and subroutines if

you need them in later extensions or in maintenance.

A typical map would be:

Program Memory

Address Routine - Purpose

0-2 RESET TRANSFERS CONTROL TO MAIN PRO-
GRAM IN LOCATION 40 HEX

38-3A INTRPT ' TRANSFERS CONTROL TO INTER-

RUPT SERVICE IN LOCATION 300 HEX

40-265 MAIN MAIN PROGRAM l

270-280 DELAY DELAY PROGRAM
280-290 DSPLY DISPLAY CONTROL PROGRAM
300-340 KEYIN INTERRUPT CONTROL PROGRAM FOR

KEYBOARD

Data Memory

1000 NKEYS NUMBER OF KEYS
1001-1002 KPTR KEYBOARD BUFFER POINTER
1003-1041 KBFR KEYBOARD BUFFER
1042-1051 DBFR DISPLAY BUFFER
1052-105F TEMP TEMPORARY STORAGE
10E0-10FF STACK RAM STACK

The map may also list additional entry points and include a specific description of the

unused parts of memory.

PARAMETER AND DEFINITION LISTS

Parameter and definition lists at the start of the program and each subroutine make un-

derstanding and changing the program far simpler. The following rules can help:

1) Separate RAM locations, I/O units, parameters, definition, and
memory system constants from each other in the lists.

2) Arrange lists alphabetically when possible, with a description

of each entry.

3) Give each parameter that might change a name and include it in the lists. Such
parameters may include timing constants corresponding to particular keys or func-

tions, control or masking patterns, starting or ending characters, thresholds, eta

4) Make the memory system constants into a separate list. These constants will in-

clude RESET and interrupt service addresses, the starting address of the program
RAM areas, stack areas, etc.

5) Give each separate I/O device a name even though two or more may occupy the

same physical port in the current system. The separation will make expansion or

reconfiguration much simpler.

RULES FOR
DEFINITION
LIST

15-7

A typical list of definitions will be: TYPICAL
DEFINITION

;MEMORY SYSTEM CONSTAN"

EQU

rs
LIST

RESET RESET ADDRESS
INTRP EQU 38H INTERRUPT ENTRY
START EQU 40H START OF MAIN PROGRAM
KEYIN EQU 300H KEYBOARD INTERRUPT PROGRAM
RAMST EQU 1000H START OF DATA STORAGE
STPTR EQU 1100H START OF STACK

;l/0 UNITS

DSPLY EQU 3 DISPLAY OUTPUT PORT
KBDIN EQU 3 KEYBOARD INPUT PORT
KBDOT EQU 3 KEYBOARD OUTPUT PORT
TTY EQU 1 TTY DATA PORT
TTYST EQU TTY STATUS PORT

;RAM MEMORY

ORG RAMST
NKEYS DS 1 NUMBER OF KEYS
KPTR DS 2 KEYBOARD BUFFER POINTER
KBFR DS 40H KEYBOARD INPUT BUFFER
DBFR DS 10H DISPLAY DATA BUFFER
TEMP DS 14H TEMPORARY STORAGE

PARAMETERS

BOUNCE EQU 2 DEBOUNCING TIME IN MS
GOKEY EQU 10 IDENTIFICATION OF 'GO' KEY
MSCNT EQU 133 COUNT FOR 1 MS DELAY
OPEN EQU OFH PATTERN FOR OPEN KEYS
TPULS EQU 1 PULSE LENGTH FOR DISPLAYS IN MS

DEFINITIONS

ALL1 EQU OFFH ALL 1'S PATTERN
STCON EQU 80H START CONVERSION PUSH

Of course, the RAM entries will usually not be in alphabetical order since the designer

must order these so as to minimize the number of address changes required in the pro-

gram.

LIBRARY ROUTINES
Standard documentation of subroutines will allow you to build up a library of useful

programs. The idea is to make these programs as easily accessible as possible. A stan-

dard format will allow you or anyone else to see in a glance what the program does. The

best procedure is to make up a standard form and use it consistently. Save these pro-

grams in a well-organized manner, e.g., according to processor, language, and type of

program, and you will soon have a useful set of subroutines. Remember, however, that

without organization and proper documentation, using the library may be more difficult

than rewriting the program from scratch. Remember that debugging requires a precise

understanding of all the effects of each subroutine.

15-8

STANDARD
PROGRAM
LIBRARY
FORMS

Among the information you will need in a standard form is:

1) Purpose of the program.

2) Processor used.

3) Language used.

4) Parameters required and how they are passed to the

subroutine.

5) Results produced and how they are passed to the main program.

6) Number of bytes of memory used.

7) Number of clock cycles required. This number may be an average or typical figure,

or it may vary widely. Actual execution time will, of course, depend on the pro-

cessor clock rate.

8) Registers affected.

9) Flags affected.

10) A typical example.

1 1) Error handling.

1 2) Special cases.

13) Documented program listing.

If the program is at all complex, the standard library form should also include a general

flowchart or a structured program.

As we have mentioned before, a library program is most likely to be useful if it performs

a single distinct function in a reasonably general manner.

LIBRARY EXAMPLES
Sum of Data

Purpose: The program SUM8 computes the sum of a set of 8-bit unsigned binary num-
bers.

Language: Intel 8080 assembler.

Initial Conditions: Starting address of the set of numbers to be added in Registers H
and L, length of set in A.

Final Conditions: Sum in A.

Requirements:

Memory - 9 bytes.

Time - 19+27N clock cycles, where N is the length of the set.

Registers - A.B.H.L

All flags affected.

Typical Case: (all data in hexadecimal):

Start:

(HL) = 60
(A) = 03

(60) = 27

(61) = 3E

(62) = 26

End:

(A) = 8B

Error Handling: Program ignores all carries. Carry bit only reflects the last operation.

Initial contents of A must be 1 or more.

15-9

Listing:

;SUM OF 8-BIT DATA

SUM8: MOV B.A ;COUNT=LENGTH OF DATA BLOCK
SUB A ;SUM=0

ADD8: ADD M ;SUM=SUM+DATA
INX H
DCR B

JNZ ADD8
RET

Decimal to 7-Segment Conversion

Purpose: The program SEVEN converts a decimal number to a 7-segment display

code.

Language: Intel 8080 assembler. •

Initial Conditions: Data in A.

Final Conditions: 7-segment code in A.

Requirements:

Memory - 27 bytes including 7-segment table SSEG.

Time - 78 clock cycles if the data is valid.

Registers - A. B. D. E. H, L.

All flags affected.

Typical Case: (data in hexadecimal):

Start:

(A) = 05
End:

(A) = 66

Error Handling: Program returns OFFH if data is not a decimal digit.

Listing:

DECIMAL TO 7-SEGMENT CONVERSION

GET ERROR CODE
IS DATA DECIMAL?
NO. NO CONVERSION NEEDED
GET BASE ADDRESS OF 7-SEGMENT TABLE
MAKE DATA INTO 16-BIT INDEX

DONE:

SSEG:

MVI B.OFFH

CPI 10

JNC DONE
LXI D.SSEG
MVI H.O

MOV AL
DAD D
MOV B.M
MOV A.B

RET
DB 3FH.06h

DB 6DH,7D

;INDEX TABLE
;GET 7-SEGMENT CODE

15-10

Decimal Sum
Purpose: The program DECSM adds two multi-word decimal numbers.

Language: Intel 8080 assembler.

Initial Conditions: Address of LSBs of one number in H and L. of the other number in

D and E. Length of numbers (in words) in A. Numbers arranged starting with LSBs.

Final Conditions: Sum replaces number with starting address in H and L.

Requirements:

Memory - 13 bytes.

Time - 19+50N where N is the number of words.

Registers - A. B. D. E. H. L.

All flags affected — Carry shows if sum produced a carry

Typical Case: (all datei in hexadecimal):

Start:

(HL) = 60
(DE) = 40
(A) = 2

(60) = 34
(61) = 55

(40) = 88
(41) = 15

End:

(60) = 22

(61) = 71

CARRY =

Error Handling: Program makes no check for validity of decimal inputs. (A) must be 1

or greater. Program does not check for overflow.

Listing:

MULTI-WORD
DECIMAL ADDITION

DECSM:

DECAD:

MOV B.A

SUB A
LDAX D
ADC M
DAA
MOV M.A
INX D
INX H
DCR B

JNZ DECAD
RET

SAVE LENGTH
CLEAR CARRY TO START
GET 2 DIGITS FROM 2ND NUMBER
ADD 2 DIGITS FROM 1ST NUMBER
MAKE ADDITION DECIMAL
STORE RESULT AS 1ST NUMBER

15-11

DOCUMENTATION
PACKAGE

TOTAL DOCUMENTATION
Complete documentation of microprocessor software will include all or most of the ele

ments which we have mentioned. The total documentation package may involve:

1) General flowcharts.

2) A written description of the program.

3) A list of all parameters and definitions.

4) A memory map.

5) A documented listing of the program.

6) A description of the test plan and test results.

The documentation may also include:

7) Programmer's flowcharts.

8) Structured programs.

Documentation is not a matter to be taken lightly or to be postponed until the end of

the software development cycle. Proper documentation, combined with proper pro-

gramming practices, is not only an important part of the final product but can also

make the development simpler, faster, and more productive. The designer should make

consistent and thorough documentation part of every stage of software development.

RE-DESIGN
Sometimes, the designer may have to squeeze the last microsecond of speed or the last

byte of extra memory out of a program. As memories have become larger and less ex-

pensive, the memory problem has become less serious. The time problem is, of course,

only serious if the application is time-critical; in many applications the microprocessor

usually spends most of its time waiting for external devices, and program speed is not a

major factor.

Squeezing the last bit of performance out of a program is hardly ever as important as

some writers would have you believe. In the first place, the practice is expensive for the

following reasons:

1) It requires extra programmer time, which is often the single

largest cost in software development.

2) It may sacrifice structure and simplicity with a resulting in-

crease in debugging and testing time.

3) The programs require extra documentation.

4) The resulting programs may be difficult to extend, maintain, or re-use.

In the second place, the lowered cost and performance may not really be justifiable.

Will the lowered cost and higher performance really sell more units? Or would you do

better with more user-oriented features? The only applications that would seem to

justify the extra effort are very high volume, low-cost and low-performance applica-

tions, where the cost of an extra memory chip will far outweigh the cost of the extra

software development. For other applications, you will find that you are playing an ex-

pensive game for no really good reason.

COST OF
RE DESIGN

15-12

MAJOR OR MINOR
REORGANIZATION

However, if you must pursue the matter, the following hints

will help. First, determine how much more performance or how
much less memory you need. If the necessary improvement is

25% or less, you may be able to achieve it by reorganizing the program. If it is more than

25%, either you have made a basic design error, in which case you will need to consider

drastic changes in hardware or software, or the designer of the system has placed a

ridiculous task in the hands of the software designer. We will first deal with reorganiza-

tion, and later with drastic changes. You should also look at Chapter 5 of 8080 Pro-

gramming For Logic Design for some examples.

REORGANIZING TO USE LESS MEMORY
In general, reorganizing a program to use less memory will also SAVING
result in higher speed. However, this is not necessarily the case, MEMORY
and higher speed is a less common goal than shorter programs.

The methods for achieving shorter programs are:

1

)

Replace repetitious in-line code with subroutines. Be sure, however, that the CALL
and RETURN instructions do not take away most of the gain. Note that this replace-

ment usually results in slower programs because of the time spent in transferring

control back and forth.

2) Use register operations when possible. But remember the cost of the extra initializa-

tion.

3) Use the stack when possible. The stack is automatically updated each time so that

no explicit updating instructions are necessary.

4) Eliminate jump statements. Try to reorganize the program or use indirect jumps
(PCHL) or RETURN instructions.

5) Take advantage of addresses which you can manipulate as 8-bit quantities. These
include page zero and addresses that are multiples of 100 hexadecimal. For exam-
ple, you might attempt to concentrate all ROM tables into one 100-|6 byte section

of memory, and all RAM variables into another 1 00-| 5 byte block of memory.

6) Organize data and tables so that you can address them without worrying about car-

ries or without any actual indexing. This will again allow you to manipulate 1 6-bit

addresses as 8-bit quantities. See pages 5-1 to 5-5 of 8080 Programming For Logic

Design for an example.

7) Use the 16-bit instructions to replace two separate 8-bit operations. This may be
particularly useful in initialization or storing results.

8) Use leftover results from previous sections of the program.

9) Take advantage of such instructions as INR M, DCR M, and MVI M. which operate

on memory or place results directly in memory.

10) Use RST instructions to reach subroutines if you are not using them for interrupts.

1 1) Use INR or DCR to change bit or to move from FF (hex) to zero.

REORGANIZING TO USE LESS TIME
Although some of the methods which reduce memory usage will SAVING
also save time, you can generally only save an appreciable amount EXECUTION
of time by concentrating on frequently executed loops. Even com- TIME
pletely eliminating an instruction that is only executed once can
save at most a few microseconds. But a savings in a loop that is executed frequently

will be multiplied many times over.

15-13

BETTER
ALGORITHMS

Therefore, if you must reduce execution time, proceed as follows:

1) Determine which instructions are executed most frequently. You can do this by

hand or by using a software simulator or other testing methods.

2) Start with the most frequently executed loops and continue attempting to reduce

the number of cycles until you achieve the required reduction.

3) First, see if there are any operations that can be moved outside the loop, i.e., repeti-

tive calculations, data which can be placed in a register or in the stack, addresses

which can be placed in registers, special cases or errors which can be handled ex-

ternally, etc. Note that this will require extra initialization and memory but will save

time.

4) Try to eliminate jump statements. These are very time-consuming.

5) Replace subroutines by in-line code. This will save at least a CALL and a RETURN.

Note that this method may increase the amount of memory necessary, but a CALL
takes 17 cycles and a RETURN takes 10 cycles.

6) Use the Stack for temporary data storage.

7) Use any of the hints mentioned in saving memory which also decrease execution

time. These include the use of 8-bit addresses, 16-bit instructions, RST, etc.

MAJOR REORGANIZATIONS
If you need more than a 25% increase in speed or decrease in memory usage, do not

bother to reorganize the code. Your chances of getting that much of an improvement

are small unless you call in an outside expert. You are generally better off making a ma-

jor change.

The most obvious change is a better algorithm. Particularly if you

are doing sorts, searches, or mathematical calculations, you may
be able to find a faster or shorter method in the literature. Libraries

of algorithms are available in some journals and from professional groups. See, for ex-

ample, references 1 through 8 at the end of the chapter.

More hardware can replace some of the software. Counters, shift registers, hardware

multipliers, and other fast add-ons can save both time and memory. Calculators,

UARTs, keyboards, encoders, and other slower add-ons may save memory even though

they operate slowly.

Other changes may help as well, i.e.:

1) A CPU with a longer word length will be faster if the data is

long enough. Such a CPU will use less total memory. 16-bit

processors, for example, use memory more efficiently than 8-

bit processors, since more of their instructions are one word

long.

2) Versions of the CPU may exist that operate at higher clock rates. But remember

that you will need faster memory and I/O ports and will have to adjust any delay

loops.

3) Two CPUs may be able to do the job in parallel or separately if you can divide the

job and solve the communications problem.

4) A specially microprogrammed processor may be able to execute the same program

much faster. The cost, however, will be much higher even if you buy an off-the-

shelf emulation. Such emulations are widely available for the 8080 processor.

5) You can make trade-offs between time and memory. Look-up tables and function

ROMs will be much faster than algorithms, but will occupy a lot more memory.

15-14

OTHER
MAJOR
CHANGES

This kind of problem, in which a large improvement is necessary, DECIDING
usually results from lack of adequate planning in the design stage. ON A
Part of the problem definition should be to determine which pro- MAJOR
cessors and methods will be adequate to handle the problem. If CHANGE
you misjudge, the cost will be high. A cheap solution may result in

an unwarranted expenditure of expensive development time. Do not try to just get by;

the best solution is usually to do the proper design and chalk a failure off to experience.

If you have followed such methods as flowcharting, modular programming, structured

programming, top-down design and proper documentation, you will be able to salvage

a lot of your effort even if you have to make- a major change.

15-15

STOPWATCH
INPUT
PROCEDURE

Chapter 1

6

SAMPLE PROJECTS

PROJECT #1 : A Digital Stopwatch
Purpose: This project is a digital stopwatch. The operator enters

two digits (minutes and tenths of minutes) from a

calculator-like keyboard and then presses the GO key.

The system counts down the remaining time on two 7-

segment LED displays (see Chapter 11 for a description of encoded
keyboards and LED displays).

Hardware: The project uses one input and one output port, two 7-segment displays, a

12-key keyboard, a 7404 inverter, and a 7408 AND gate. The displays may require dri-

vers, inverters and resistors, depending on their polarity and configuration.

Figure 1 6-1 shows the organization of the hardware. Output lines 0, 1 and 2 are used to

scan the keyboard. Input lines 0, 1, 2 and 3 are used to determine whether any keys

have been pressed. Output lines 0, 1, 2 and 3 are used to send BCD digits to the 7-seg-

ment decoder/drivers. Output line 4 is used to activate the LED displays (if line 4 is T,
the displays are lit). Output line 5 is used to select the leading or trailing display (output

line 5 is
'1' for the leading display, '0' for the trailing display). The common line on the

leading display is active if line 4 is
'1' and line 5 is T. while the common line on the

trailing display is active if line 4 is 'V and line 5 is
'0'.

Output line 6 controls the decimal point on the leading display. It may be driven with an
inverter or simply left on.

The keyboard is a simple calculator keyboard available for 50$ from a local source. It

consists of 12 unencoded key-switches arranged in four rows of three columns each.
Since the wiring of the keybbard does not coincide with the observed rows and col-
umns, the program uses a table to identify the keys. Tables 16-1 and 16-2 contain the
input and output connections for the keyboard. The decimal point key is present for
operator convenience and for future expansion; the current program does not actually
use the key.

16-1

o7

°6

5

Output °4

Port °3

2

01
o

Input

Port

Co
i_i

Keyboard

lit
Dq D, D2 D3

DP

Display

and

Driver 1

!=0

lit
D D, D2 D3

Display

and

Driver 2

iy
Figure 16-1. I/O Configuration

Table 16-1. Input Connections For Tinner Keyboard

Input Bit Keys Connected

1

2

3

'3', '5'. '8'

'2', '6'. '9'

'0'. T, T
'4'. '.', 'GO'

Table 16-2. Output Connections For Timer Keyboard

Output Bit Keys Connected

1

2

'0'. '2'. '3'. '4'

'V. '8'. '9'. 'GO'

'5'. '6'-, 7', V

16-2

General Program Flowchart:

c
t

Save key value Count time on LEDs

r~^~)

16-3

Program Description:

The program is modular and has several subroutines. The emphasis is on clarity and

generality rather than efficiency; obviously, the program does not utilize the full

capabilities of the 8080 processor. Each section of the listing will now be described in

detail.

1) Introductory Comments

The introductory comments fully describe the program; these comments are a

reference so that other users can easily apply, extend and understand the program.

Note that standard formats, indentations, and spacings increase the readability of

the program.

2) Variable Definitions

All variable definitions are placed at the start of the program so that they can easily

be checked and changed. Each variable is placed in a list alphabetically with other

variables of the same type; comments describe the meaning of each variable. The

categories are:

a) Memory system constants, which may vary from system to system depending

on the memory space allocated to different programs or types of memories.

b) Temporary storage (RAM) used for variables.

c) I/O unit numbers.

d) Definitions.

The memory system constants are placed in the definitions so that the user may
relocate the program, temporary storage and memory stack without any other

changes. The memory constants can be changed to accommodate other programs

or to coincide with a particular system's allocation of ROM and RAM addresses.

Temporary storage is allocated by means of a DS (Define Storage) pseudo-opera-

tion. An ORG (Origin) pseudo-operation places the temporary storage locations in a

particular part of memory. No values are placed in these locations, so that the pro-

gram can be burned into a PROM and the system operated from power-up reset

without reloading.

I/O units are always referred to by name so that the unit numbers can easily be

changed to handle varied configurations. Each I/O unit is given a separate name,

although some units are physically the same in the present configuration.

The definitions clarify the meaning of certain constants and allow parameters to be

changed easily. Definitions are given in the form (e.g., binary, hex, octal. ASCII,

decimal) in which their meaning is the clearest. Parameters (such as debounce

time) are placed here so that they can be varied with system needs.

3) Initialization

Location (the reset location on the 8080 microprocessor) contains a jump to the

main program. The main program can thus be placed anywhere in memory and

reached via a RESET signal.

The initialization consists of three steps:

a) Place a starting value in the Stack Pointer. The Stack is only used to store

subroutine return addresses.

b) Start the number of digit keys pressed at zero.

c) Initialize the location where the next digit key pressed will be saved to the start

of the digit key array. Memory location KEYAD contains the address in which

the next digit will be placed. Each time the program accepts a digit key, it in-

crements the contents of KEYAD so that it will place the next digit key in the

next memory location.

16-4

4) Look for Key Closure

Flowchart:

c 1

Ground all keyboard

columns

Key closures are identified by grounding all the keyboard columns and then check-
ing for grounded rows (i.e.. column-to-row switch closures). Note that the program
does not assume any values for the unused input bits; instead, it masks off the bits

attached to the keyboard rows with a logical AND instruction.

Debounce Key

The program debounces the key closure in software by waiting for two millise-

conds, long enough for a clean contact to be made. Subroutine DELAY simply
counts with Register C for a millisecond. The number of milliseconds is in the Ac-
cumulator. DELAY would have to be adjusted if a slower clock or slower memories
were being used. You could make the change simply by redefining the constant
MSCNT.

16-5

6) Identify Key Closure

Flowchart:

c
I

D

Set key table pointer

to Ktat,
- 1

Set pattern pointer

toPATT

Ground a keyboard

column by output of

(pattern pointer)

c J

IncremernTJeyTaDle
pointer by the number
of keys in a column
(KCOL) Increment
pattern pointer by 1

Increment key table

pointer by 1

Shift keyboard input

right 1 bit

Key ID =

(key table pointer)

Use key table pointer

to get key ID

c J>

The particular key closed is identified by grounding single columns and observing

whether a closure is found. Once a closure is found (so the key column is known),

the key row can be determined by shifting the input.

The patterns required to ground single keyboard columns are in a table PATT in

memory. The final pattern in the table is a marker which indicates that all the col-

umns have been grounded without a closure being found. This pattern also indi-

cates to the main program that the closure could not be identified (e.g.. the key

closure ended or a hardware error occurred before we could find the closure).

The key identifications are in a table KTAB in memory. The keys in

the first column (attached to the least significant output bit) are

followed by those in the second column, etc. Within a column, the

key in the row attached to the least significant input bit is first, etc. Thus, each time

a column is scanned without finding a closure, the number of keys in a column

KEY
TABLE

16-6

(KCOL) must be added to the base address of the table to get the starting address of

the next column. The key table pointer is also incremented by one before each bit in

the row inputs is examined; this process stops when a zero input is found. Note that

the key table pointer is started one location before the table, since it is always incre-

mented once in the search for the proper row.

If the program cannot identify the key closure, we simply ignore it and look for

another closure.

7) Act on Key Identification

If the program has enough digits (two in this simple case), it only looks for the GO
key and ignores all other keys. If it finds the GO key, it proceeds to Step 8 and starts

counting.

If the program does not have enough digits, it ignores either the decimal point or

the GO key. If it finds a digit key, it saves the value in the key array, increments the

number of digit keys pressed, and increments the key array pointer.

If the process is not complete, the program must wait for the key closure to end so
that the system will not read the same closure again. The user must wait between
key closures, i.e., stop pressing one key before pressing another one. Note that the

program will identify double key closures as one key or the other, depending on
which closure the identification routine finds first.

8) Set Up Display Output

The digits are placed in registers with bit 4 set so that the output is sent to the dis-

plays. Bits 5 and 6 are set for the leading display to direct the output correctly and
to turn on the decimal point. The logical OR instruction with the appropriate mask
sets the bits.

9) Pulse the LED Displays

Each display is turned on for two milliseconds. This process is repeated 1500 times

to get a total delay of six seconds. The pulses are frequent enough so that the LED
displays- appear to be lit continuously.

16-7

10) Decrement Display Count

Flowchart:

c J

Trailing display =

Trailing display - 1

Trailing display = 9
End of

timer program

c }

The value on the trailing display is decremented by 1. If this affects bit 4

(LEDON — used to turn the displays on), the value has become negative. A bor-

row must then be obtained from the leading display. If the borrow from the lead-

ing display affects bit 4, the count has gone past zero and the countdown is

finished. Otherwise, the program sets the trailing display to '9' and continues.

Note that comments describe both sections of the program and individual statements.

The comments explain what the program is doing, not what specific instruction codes

do.

16-8

PROGRAM NAME: TIMER
DATE OF PROGRAM: 4/29/76
PROGRAMMER: LANCE A. LEVENTHAL
PROGRAM REQUIREMENTS: DC (220) WORDS
RAM REQUIREMENTS: 5 WORDS
I/O REQUIREMENTS: 1 INPUT PORT. 1 OUTPUT PORT

THIS PROGRAM IS A SOFTWARE TIMER WHICH ACCEPTS INPUTS FROM A
CALCULATOR-LIKE KEYBOARD AND THEN PROVIDES A STOPWATCH COUNTDOWN
ON TWO 7-SEGMENT LED DISPLAYS IN MINUTES AND TENTHS OF MINUTES

KEYBOARD

A 12-KEY KEYBOARD IS ASSUMED
THREE COLUMN CONNECTIONS ARE OUTPUTS FROM THE PROCESSOR
SO THAT A COLUMN OF KEYS CAN BE GROUNDED

FOUR ROW CONNECTIONS ARE INPUTS TO THE PROCESSOR SO THAT
COMPLETED CIRCUITS CAN BE IDENTIFIED

THE KEYBOARD IS DEBOUNCED BY WAITING FOR TWO MILLISECONDS
AFTER A KEY CLOSURE IS RECOGNIZED

A NEW KEY CLOSURE IS IDENTIFIED BY WAITING FOR THE OLD ONE
TO END SINCE NO STROBE IS USED

THE KEYBOARD COLUMNS ARE CONNECTED TO BITS TO 2 OF THE
PROCESSOR OUTPUT BUS

THE KEYBOARD ROWS ARE CONNECTED TO BITS TO 3 OF THE PROCESSOR
INPUT BUS

DISPLAYS

TWO 7-SEGMENT LED DISPLAYS ARE USED WITH SEPARATE DECODERS
(7447 OR 7448 DEPENDING ON THE TYPE OF DISPLAY)

THE DECODER DATA INPUTS ARE CONNECTED TO BITS TO 3 OF THE
PROCESSOR OUTPUT BUS

BIT 4 OF THE PROCESSOR OUTPUT BUS IS USED TO ACTIVATE THE LED
DISPLAYS (BIT 4 IS T TO SEND DATA TO LEDS)

BIT 5 OF THE PROCESSOR OUTPUT BUS IS USED TO SELECT WHICH LED
IS BEING USED (BIT 5 IS 'V IF THE LEADING DISPLAY IS BEING USED.
'0' IF THE TRAILING DISPLAY IS BEING USED)

BIT 6 OF THE PROCESSOR OUTPUT BUS IS USED TO LIGHT THE DECIMAL
POINT LED ON THE LEADING DISPLAY (BIT 6 IS 'V IF THE DISPLAY IS

TO BE LIT)

METHOD

STEP 1 - INITIALIZATION

THE MEMORY STACK (USED FOR SUBROUTINE RETURN ADDRESSES) IS

INITIALIZED. THE NUMBER OF DIGIT KEYS PRESSED IS SET TO ZERO.
AND THE ADDRESS INTO WHICH THE NEXT DIGIT KEY IDENTIFICATION
WILL BE PLACED IS INITIALIZED TO THE FIRST ADDRESS IN THE DIGIT
KEY ARRAY

STEP 2 - LOOK FOR KEY CLOSURE
ALL KEYBOARD COLUMNS ARE GROUNDED AND THE KEYBOARD ROWS ARE
EXAMINED UNTIL A CLOSED CIRCUIT IS FOUND

STEP 3 - DEBOUNCE KEY CLOSURE
A WAIT OF 2 MS IS INTRODUCED TO ELIMINATE KEY BOUNCE

16-9

STEP 4 - IDENTIFY KEY CLOSURE
THE KEY CLOSURE IS IDENTIFIED BY GROUNDING SINGLE KEYBOARD
COLUMNS AND DETERMINING THE ROW AND COLUMN OF THE KEY CLOSURE
A TABLE IS USED TO ENCODE THE KEYS ACCORDING TO THEIR ROW AND
COLUMN NUMBER-
IN THE KEY TABLE. THE DIGITS ARE IDENTIFIED BY THEIR VALUES.
THE DECIMAL POINT KEY IS NO. 10. AND THE "GO" KEY IS NO. 11

STEP 5 - SAVE KEY CLOSURE
DIGIT KEY CLOSURES ARESAVED IN THE DIGIT KEY ARRAY UNTIL

TWO DIGITS HAVE BEEN IDENTIFIED. DECIMAL POINTS. FURTHER DIGITS.

AND CLOSURES OF THE "GO" KEY BEFORE TWO DIGITS HAVE BEEN
IDENTIFIED ARE IGNORED
AFTER TWO DIGITS HAVE BEEN FOUND, THE "GO" KEY IS USED TO
START THE COUNTDOWN PROCESS

STEP 6 - COUNT DOWN TIMER INTERVAL ON LEDS
A COUNTDOWN IS PERFORMED ON THE LEDS WITH THE LEADING DIGIT

REPRESENTING THE REMAINING NUMBER OF MINUTES AND THE TRAILING

DIGIT REPRESENTING THE REMAINING NUMBER OF TENTHS OF MINUTES

TIMER VARIABLE DEFINITIONS

MEMORY SYSTEM CONSTANTS

BEGIN EQU 50H

LASTM EQU 1000H
TEMP EQU 800H
;RAM TEMPORARY STORAGE

ORG TEMP
KEYAD: DS 2

KEYNO: DS

NKEYS: DS 1

;l/0 UNITS

KBDIN EQU 3

KBDOT EQU 3

LDOUT EQU 3

.DEFINITIONS

DECPT EQU 0100O000B
ECODE EQU OFFH
GOKEY EQU 11

KCOL EQU 4
LEDON EQU 00010000B
LEDSL EQU 00100000B
MSCNT EQU 131

MXKEY EQU 2

BEGIN IS STARTING MEMORY LOCATION
FOR PROG
LASTM IS STARTING STACK ADDRESS
TEMP IS START OF RAM STORAGE '

KEYAD HOLDS THE ADDRESS IN THE
DIGIT KEY ARRAY IN WHICH THE
IDENTIFICATION OF THE NEXT DIGIT

KEY WILL BE PLACED
KEYNO IS THE DIGIT KEY ARRAY - IT

HOLDS THE IDENTIFICATIONS OF THE
DIGIT KEYS WHICH HAVE BEEN PRESSED
NKEYS HOLDS NUMBER OF DIGIT

KEYS PRESSED

INPUT UNIT FOR KEYBOARD
OUTPUT UNIT FOR KEYBOARD
OUTPUT UNIT FOR LED DISPLAYS

CODE TO TURN ON DECIMAL POINT LED

ERROR CODE FOR NO KEY CLOSURE FOUND
IDENTIFICATION NO. FOR "GO" KEY
NUMBER OF KEYS IN A COLUMN
CODE TO SEND OUTPUT TO LEDS
CODE TO SELECT LEADING DISPLAY
COUNT NEEDED TO GIVE 1 MS DELAY TIME

MAXIMUM NUMBER OF DIGIT KEY CLOSURES
USED

16-10

OPEN EQU 00001 111B
TPULS EQU 2

TWAIT EQU 2

ORG

INPUT FROM KEYBOARD IF NO KEY CLOSED
NUMBER OF MS BETWEEN DIGIT DISPLAYS
NUMBER OF MS TO DEBOUNCE KEYS

;RESET ROUTINE TO REACH TIMER PROGRAM
JMP BEGIN ;FIND TIMER PROGRAM

INITIALIZATION OF TIMER PROGRAM

ORG BEGIN
LXI SP.LASTM PUT STACK AT END OF MEMORY
XRA A
STA NKEYS INITIALIZE NO. OF DIGIT KEYS PRESSED

TOO
LXI H.KEYNO STARTING LOCATION FOR SAVING

DIGIT KEYS
SHLD KEYAD

SCAN KEYBOARD LOOKING FOR KEY CLOSURE

START: CALL SCANC :WAIT FOR KEY CLOSURE

WAIT FOR KEY TO BE DEBOUNCED

MVI A.TWAIT
CALL DELAY

;GET DEBOUNCE TIME IN MS
;WAIT FOR KEY TO STOP BOUNCING

IDENTIFY WHICH KEY WAS PRESSED

CALL IDKEY
CPI ECODE

JZ START
ACT ON KEY IDENTIFICATION

MOV B.A

LXI H.NKEYS
MOV A.M

CPI MXKEY
JZ KEYF
MOV A.B

CPI 10

JNC WAITK
INR M
LHLD KEYAD
MOV M.A
INX H
SHLD KEYAD

IDENTIFY KEY CLOSURE
WAS KEY CLOSURE IDENTIFIED BY
COLUMN SCAN?
IF NOT. WAIT FOR ANOTHER CLOSURE

;SAVE KEY NUMBER

;CHECK FOR MAXIMUM NO. OF DIGIT

KEYS

IF SO. LOOK FOR "GO" KEY
IF NOT. IGNORE DECIMAL POINT OR
"GO" KEY

INCREMENT NO. OF DIGIT KEYS PRESSED
;SAVE IDENTITY OF DIGIT KEY PRESSED

MOVE POINTER TO SAVE NEXT DIGIT KEY

WAIT FOR CURRENT KEY CLOSURE TO END

16-11

WAITK: CALL SCAND
JMP START

;WAIT FOR OPEN CIRCUIT

;GO LOOK FOR NEXT KEY

LOOK FOR "GO" KEY IF ENOUGH DIGITS FOUND

KEYF: MOV
CPI

JNZ

AB
GOKEY
WAITK

GET NUMBER OF KEY PRESSED
CHECK FOR "GO" KEY
IGNORE KEY IF IT'S NOT "GO" KEY

PUT DIGITS INTO REGISTERS FOR DISPLAY

LXI H.KEYNO
MOV A.M
ORI DECPT

ORI LEDON
ORI LEDSL
MOV D.A
INX H
MOV A.M
ORI LEDON
MOV E.A

GET LEADING DIGIT

TURN ON DECIMAL POINT FOR LEADING
DIGIT

SET OUTPUT TO LEDS
SELECT LEADING DISPLAY

GET NEXT DIGIT

SET OUTPUT TO LEDS

;PULSE THE LED DISPLAYS

LEDLP: MVI H.6 SET COUNTERS FOR 6 SE

TLOOP: MVI L.250

LDPUL: MOV A.D GET LEADING DIGIT

OUT LDOUT OUTPUT TO LED 1

MVI A.TPULS DELAY BETWEEN DIGITS

CALL DELAY
MOV A.E GET TRAILING DIGIT

OUT LDOUT OUTPUT TO LED 2

MVI A.TPULS DELAY BETWEEN DIGITS

CALL DELAY
DCR L COUNT DOWN REG L

JNZ LDPUL
DCR H COUNT DOWN REG H
JNZ TLOOP

DECREMENT COUNT ON LED DISPLAYS

DCR E

MOV A.E

ANI LEDON
JNZ LEDLP
DCR D

MOV A.D

ANI LEDON
JZ BEGIN

MVI A.9

ORI LEDON
MOV E.A

JMP LEDLP

;COUNT DOWN TRAILING DIGIT

OKAY IF NO BORROW NEEDED
IF BORROW NEEDED. COUNT DOWN
LEADING DIGIT

THROUGH IF COUNT PAST ZERO
OTHERWISE SET TRAILING DIGIT TO 9

SET OUTPUT TO LEDS

;RETURN TO DISPLAY SECTION

16-12

SUBROUTINE SCANC SCANS THE KEYBOARD WAITING FOR A KEY CLOSURE
ALL KEYBOARD INPUTS ARE GROUNDED
SCANC: XRA A

;GROUND ALL KEYBOARD COLUMNS

IGNORE UNUSED INPUTS
CHECK FOR CLOSED CIRCUIT

CONTINUE SCANNING IF NO KEYS CLOSED

SUBROUTINE DELAY WAITS FOR THE NUMBER OF MILLISECONDS SPECIFIED

IN REGISTER A BY COUNTING WITH REGISTER C

OUT KBDOT
IN KBDIN
ANI OPEN
CPI OPEN
JZ SCANC
RET

;LOAD REG C FOR 1 MS DELAY
;WAIT 1 MS

;COUNT DOWN NUMBER OF MS

SUBROUTINE IDKEY DETERMINES THE ROW AND COLUMN NO. OF THE
KEY CLOSURE AND IDENTIFIES THE KEY ACCORDING TO A TABLE

DELAY: MVI CMSCNT
WTLP: DCR C

JNZ WTLP
DCR A
JNZ DELAY
RET

TDKEY: LXI

LXI

LXI

B.PATT

H.KTAB-1

D.KCOL

POINT TO SCAN PATTERNS TO GROUND
ONE COL.

START KEY TABLE POINTER
GET NUMBER OF KEYS IN A COLUMN

SCAN KEYBOARD COLUMNS SUCCESSIVELY LOOKING FOR CLOSURE

FCOL: LDAX B

CPI ECODE
RZ

OUT KBDOT
IN KBDIN
ANI OPEN
CPI OPEN
JNZ FROW

DAD D

INX B

JMP FCOL

GET PATTERN TO GROUND A PARTICULAR
COLUMN
HAVE ALL THE COLUMNS BEEN SCANNED?
RETURN WITH ERROR CODE IF NO
CLOSURE FOUND
SCAN COLUMN

IGNORE UNUSED INPUTS
CHECK FOR CLOSED CIRCUIT

COLUMN DETERMINED IF CLOSURE
FOUND
MOVE KEY TABLE POINTER TO NEXT
COLUMN
POINT TO NEXT SCAN PATTERN

DETERMINE ROW NUMBER OF CLOSURE

FROW TNX
RRC

JC FROW

MOVE KEY TABLE POINTER TO NEXT ROW
SHIFT INPUTS LOOKING FOR GROUNDED
ROW
KEEP SHIFTING INPUTS UNTIL CLOSURE
FOUND

16-13

IDENTIFY KEY FROM TABLE

MOV A.M ;GET KEY NUMBER
RET

SCAN PATTERNS USED TO GROUND A PARTICULAR COLUMN
ERROR PATTERN USED TO INDICATE THAT ALL COLUMNS HAVE BEEN SCANNED
THE COLUMN ATTACHED TO OUTPUT BIT IS SCANNED FIRST. THEN
THE ONE ATTACHED TO OUTPUT BIT 1 . ETC.

PATT: DB 000001 1 0B.000001 01 B.0000001 1 B.ECODE
KEYBOARD TABLE
COLUMNS ARE PRIMARY INDEX. ROWS SECONDARY INDEX
THE KEYS IN THE COLUMN ATTACHED TO OUTPUT BIT ARE FOLLOWED
BY THOSE IN THE COLUMN ATTACHED TO OUTPUT BIT 1, ETC. WITHIN A
COLUMN. THE KEY ATTACHED TO INPUT BIT IS FIRST FOLLOWED
BY THE ONE ATTACHED TO INPUT BIT 1. ETC.

THE DIGIT KEYS ARE TO 9. THE DECIMAL POINT IS 10. AND
"GO" IS 1

1

KTAB: DB 3.2.0,4,8.9.1,11,5,6.7.10

SUBROUTINE SCAND SCANS THE KEYBOARD WAITING FOR KEY CLOSURE
TO END SO NEXT CLOSURE CAN BE FOUND

SCAND: XRA A
GROUND ALL KEYBOARD COLUMNS

IGNORE UNUSED INPUTS
CHECK FOR CLOSED CIRCUIT

CONTINUE SCAN IF KEY STILL CLOSED

OUT KBDOT
IN KBDIN
ANI OPEN
CPI OPEN
JNZ SCAND
RET
END

16-14

PROJECT #2: A Digital Thermometer
Purpose: This project is a digital thermometer which senses the temperature with a

thermistor (through an analog-to-digital converter) and shows the tem-

perature in degrees Celsius on two 7-segment displays.

Hardware: The project uses one^input and one output port, two 7-segment displays, a

7404 inverter, a 7400 NAND gate or a 7408 AND gate depending on the polarity of the

displays, an 'Analog Devices AD7570J 8-bit monolithic A/D converter, an LM3II com-
parator, and various peripheral drivers, resistors and capacitors as required by the dis-

plays and the converter (see Chapter 11 for a discussion of A/D converters. Also see

Hnatek. E.R., A User's Handbook of D/A and A/D Converters , Wiley, New York. 1976;

Finkey, J., Computer-Aided Experimentation . Wiley. New York,-- 19,75; Engineering Staff

of Analog Devices Inc.. Analog-Digital Conversion Handbook , Analog Devices Inc.. P.O.

Box 796, Norwood. MA. 1972).

Figure 16-2 shows the organization of the hardware. Output line 7„is used to send a

START CONVERSION signal to the A/D converter. Input lines through 7 are attached

directly to the eight digital data lines from the converter. Output li-nes through 3 are

used to send BCD digits to the 7-segment decoder/drivers. Oulput line 4 activates the

displays and output line 5 selects the leadings trailing display (line 5 is
'1

' for the lead-

ing display).

The aaalog part of the hardware is shown in Figure 16-3. The THERMOMETER
thermistor simply provides a resistance which depends on ~ ANALOG
temperature. Figure 16-4 is a plot of the resistance and Figure HARDWARE
16*5 shows'the range of current over which the resistance is

constant with current. The conversion to degrees Celsius in the program is performed

with a calibration table. The various potentiometers can be adjusted to scale the data

properly. A clock for the A/D converter is generated from an RC network as shown in

Figure 16-6. The values are R = 33-kft, C = 1000 pF so that the clock frequency is

about 75 kHz. At this frequency, the maximum conversion time for eight bits is about
100 microseconds. A much longer delay is allowed for conversion so that no check for

the end of conversion is necessary.

The 8-bit version of the converter requires the following special connections. The eight

data lines are DB2 through DB9 (DB1 is always high during conversion and DB0 low).

The Short Cycle 8-bits input (pin 26-SC8; not shown) is tied low so that only an 8-bit

conversion is performed. In the present case. High Byte Enable (pin 20-HBEN) and Low
Byte Enable (pin 21-LBEN; not shown) were both tied high so that the data outputs

were always enabled. A tri-state buffer (the input port shown in Figure 16-1) isolates

the outputs from the processor Data Bus.

The converter uses the successive approximation method. It checks each bit with the

analog comparator to see if that bit should be on or off. Each comparison takes one
clock period. The method is subject to error if the input is noisy or changes during the

conversion period.

16-15

o
Oi

2

Output O3

Port 4
o5

°6

7

inrr \i

\

""'Mr'+
<

'0

M
'2

Input |

3
Port l4

'5

'6

'7

Start

Conversion

A/D

Converter

D3 D2 D, D

Display

and

Driver 1

(Leading digit)

Common

D3 D2 D, D

Display

and

Driver 2

(Trailing digit)

Common

^

i I i

Figure 16-2. I/O Configuration

16-16

-10V

O—

68 kO

15V

Q

R3

200 n
-vw-

+ 15V

O R4

i 1kfl

*T i GAIN ADJ

.ANALOG IN'

' to + 10V

v&-

R6

50k n
OFFSET ADJ

-15V O VW O + 15V

VCC
+ 5V

Q

AW COMP

R5

2MO

Note: If positive VREp is used, the ANALOG INPUT range is to -VREF , and the

COMPARATOR'S (-) input should be connected to OUT1 (pin 4) of the AD7570.

Rj is the thermistor. The analog input from the voltage divider is:

*F

ftp + Rt
x 15 Volt

Since RF = 68 kft, the input is:

Re + 6.8 • 10*

Rj has a minimum value of 3.4 • 104 CI (T = 50C, see Figure 16-4)

so full scale is 10 Volt.

Figure 16-3. Analog Hardware

16-17

T<°C) R (Ohm)

25

50

100

365 000

100 000

34 000

6000

XX

J
25

Temperature (°C)

Figure 16-4. Thermistor Characteristics

(Fenwal GA51J1 Bead)

The curve is linear (i.e., the resistance is

independent of current) for currents less

than 0.1 miHiampere.

Figure 16-5. Typical E-l Curve for Thermistor (25°C)

16-18

+ 5V

AD7570

i
RC

Figure 16-6. Generating an Internal Clock Frequency

General Program Flowchart:

f Start J

Send START

CONVERSION signal

to A/D converter

Read data from

A/D converter

Convert data to

degrees Celsius

Display

temperature on

LEDs for six seconds

16-19

Program Description:

1) Initialization

Location (the 8080 microprocessor RESET location) contains a jump to the main

program. The only initialization is starting the Stack Pointer at the highest address

in RAM. The Stack is only used to store subroutine return addresses.

2) Send START CONVERSION signal to A/D converter.

The CPU pulses the START CONVERSION line by first placing a
'1

' on output line 7

and then placing a '0' on that line.

Each input from the converter requires the starting pulse.

3) Wait 1 ms for conversion.

A delay of 1 ms after me START CONVERSION pulse guarantees a completed con-

version. Actually, the converter only takes a maximum of 10 microseconds for an

8-bit conversion. We could reduce the delay by checking the BUSY signal from the

converter. This signal will indicate either a '1' (conversion complete) or '0' (conver-

sion in progress) if the BUSY-ENABLE line is addressed with a logic 1. In the pre-

sent case there is no reason to speed the conversion process.

4) Read data from A/D converter.

A single input operation reads the data. We should note that the Analog Devices

AD7570J has an ENABLE input and tri-state outputs so that it could be tied directly

to the microprocessor Data Bus.

5) Convert data to degrees Celsius.

The conversion uses a table which contains the largest input

value corresponding to a given temperature. The program

searches the table looking for a value greater than or equal to

the value received from the converter. The first such value it

finds corresponds to the required temperature; i.e.. if the tenth entry is the first

value larger than or equal to the data, the temperature is 10 degrees. This search

method is inefficient, but the present application does not warrant a better one.

(See Knuth, D.E.. The Art of Computer Programming. Vol. 3: Sorting and Search-

ing. Addison-Wesley, Reading. Mass.. 1973.) Note that we must keep the entry

number in decimal rather than binary. The instruction sequence "ADI 1, DAA"
keeps the index as two decimal digits instead of a binary number. For example, the

entry number after 9 (00001001 binary) will be decimal 10 (00010000 binary)

rather than binary ten (00001010). The reason for this procedure is that we plan to

display the temperature as two decimal digits and would have to convert it from

binary to decimal otherwise.

The table could be obtained by calibration or by a mathematical approximation.

The calibration method is the simplest, since the thermometer must be calibrated

anyway. The table occupies one memory location for each temperature value.

USING A
CALIBRATION
TABLE

16-20

Flowchart:

f Start

t
Value = Data received

A/D converter
Index =
Pointer =Start of table

s^»W Yes^^^

Xno
I

Index = Index + 1

Pointer =

Pointer + 1

Temperature =

Index

(
End

)

6) Prepare data for display.

Flowchart:

C start)

Get least significant

digit and set

output to LEDs

Get most

significant digit

Set output to LEDs

16-21

We remove the least significant digit by masking and set the BLANKING A
bit which turns on the displays with a logical OR instruction. LEADING ZERO
The result is saved in Register E.

The only difference for the most significant digit is that we do not show a leading

zero (i.e., the displays show "blank 7" rather than "07" for 7 C). This simply in-

volves not setting the bit which turns on the displays if the digit is zero. The result is

saved in Register D.

Display temperature for six seconds.

Flowchart:

f Start
J

3ET
Count =Tsamp

Send most

significant digit

to leading display

Send least

significant digit

to trailing display

Count = Count - 1

16-22

Each display is pulsed often enough so that it appears to be lit continuously. If

TPULS were made longer (say 50 ms), the displays would appear to flash on and
off.

The program uses a 16-bit counter to count the time between temperature sam-
ples. The 8080 has a special instruction — DCX or Double Decrement— to

subtract '1' from the 16-bit counter. However, there is no way to directly determine
when the counter reaches zero, since DCX does not affect the 8080 status flags.

So. we make this determination by logically ORing the eight most significant and
the eight least significant bits of the counter. If that result is zero, the 16-bit

counter is zero.

PROGRAM NAME: THERMOMETER
DATE OF PROGRAM: 7/22/76
PROGRAMMER: LANCE A. LEVENTHAL
PROGRAM REQUIREMENTS: 159 WORDS
RAM REQUIREMENTS: NONE
I/O REQUIREMENTS: 1 INPUT PORT. 1 OUTPUT PORT

THIS PROGRAM IS A DIGITAL THERMOMETER WHICH ACCEPTS INPUT FROM
AN A/D CONVERTER ATTACHED TO A THERMISTOR. CONVERTS THE INPUT
TO DEGREES CELSIUS AND DISPLAYS THE RESULTS ON TWO 7-SEGMENT
LED DISPLAYS

A/D CONVERTER

THE A/D CONVERTER IS AN ANALOG DEVICE 7570 MONOLITHIC CONVERTER
WHICH PROVIDES AN 8-BIT OUTPUT

THE CONVERSION PROCESS IS STARTED BY A PULSE ON THE START
CONVERSION LINE (OUTPUT BIT 7 OF PORT ADOUT)

THE CONVERSION IS COMPLETED IN 40 MICROSECONDS AND THE DIGITAL
DATA IS LATCHED

DISPLAYS

TWO 7-SEGMENT LED DISPLAYS ARE USED WITH SEPARATE DECODERS
(7447 OR 7448 DEPENDING ON THE TYPE OF DISPLAY)

THE DECODER DATA INPUTS ARE CONNECTED TO BITS TO 3 OF THE
PROCESSOR OUTPUT BUS

BIT 4 OF THE PROCESSOR OUTPUT BUS IS USED TO ACTIVATE THE LED
DISPLAYS (BIT 4 IS 1 TO SEND DATA TO LEDS)

BIT 5 OF THE PROCESSOR OUTPUT BUS IS USED TO SELECT WHICH LED
IS BEING USED (BIT 5 IS 1 IF THE LEADING DISPLAY IS BEING USED.
'0' IF THE TRAILING DISPLAY IS BEING USED)

METHOD

STEP 1 - INITIALIZATION
THE MEMORY STACK (USED FOR SUBROUTINE RETURN ADDRESSES) IS IN-
ITIALIZED

STEP 2 - PULSE START CONVERSION LINE
THE A/D CONVERTER'S START CONVERSION LINE (BIT 7 OF PORT ADOUT)
IS PULSED

STEP 3 - WAIT FOR A/D OUTPUT TO SETTLE

16-23

A WAIT OF 1 MS IS INTRODUCED TO ALLOW FOR COMPLETION OF CONVERSION
STEP 4 - READ A/D VALUE AND CONVERT TO DEGREES C

A TABLE IS USED FOR CONVERSION WHICH CONTAINS THE MAXIMUM
INPUT VALUE FOR EACH TEMPERATURE READING

STEP 5 - DISPLAY TEMPERATURE ON LEDS
THE TEMPERATURE IS DISPLAYED ON THE LEDS FOR SIX SECONDS BEFORE

ANOTHER CONVERSION IS PERFORMED

THERMOMETER VARIABLE DEFINITIONS

MEMORY SYSTEM CONSTANTS

BEGIN EQU 50H

LASTM EQU 1000H

;l/0 UNITS

BEGIN IS STARTING LOCATION FOR
PROGRAM
LASTM IS STARTING ADDRESS FOR
STACK

INPUT UNIT FOR DATA FROM A/D
CONVERTER
OUTPUT UNIT FOR START CONVERSION
PULSE TO A/D CONVERTER
OUTPUT UNIT FOR LED DISPLAYS

CODE TO SEND OUTPUT TO LEDS
CODE TO SELECT LEADING DISPLAY

COUNT USED IN DELAY ROUTINE FOR
1 MS DELAY
OUTPUT WHICH BRINGS START CONVERSION
HIGH
DELAY IN MS TO ALLOW A/D TO DO
CONVERSION
DISPLAY PULSE LENGTH IN MS
TSAMP IS THE NUMBER OF TIMES THE
DISPLAYS ARE PULSED IN A TEMPERATURE
SAMPLING PERIOD. THE LENGTH OF A
SAMPLING PERIOD IS THUS 2*TPULS*TSAMP
MILLISECONDS. THE FACTOR OF

2'TPULS IS INTRODUCED BY
THE FACT THAT EACH OF 2

DISPLAYS IS PULSED FOR TPULS MS

ORG

RESET ROUTINE TO REACH THERMOMETER PROGRAM

JMP BEGIN ;FIND THERMOMETER PROGRAM

INITIALIZATION OF THERMOMETER PROGRAM

ADIN EQU 3

ADOUT EQU 3

LDOUT EQU

DEFINITIONS

LEDON EQU 0001 0000

B

LEDSL EQU 00100000B
MSCNT EQU 131

STCON EQU 1 00O0O00B

STTIM EQU 1

TPULS EQU 2

TSAMP EQU 1500

16-24

ORG
LXI

BEGIN
SP.LASTM PUT STACK AT END OF MEMORY

PULSE START CONVERSION LINE TO GET A/D TO PERFORM A CONVERSION

START: MVI
OUT
SUB
OUT

A.STCON
ADOUT
A
ADOUT

WAIT 1 MS FOR CONVERSION

MVI A.STTIM
CALL DELAY

;START CONVERSION HIGH

;START CONVERSION LOW

CONVERSION DELAY TIME IN MS
;WAIT FOR CONVERSION

READ DIGITAL DATA FROM CONVERTER

IN ADIN ;GET DATA FROM A/D

CONVERT A/D DATA TO 2 BCD DIGITS

CALL CONVR CONVERT DATA TO BCD

GET LEAST SIGNIFICANT DIGIT

SAVE BCD DIGITS

MASK OUT LSD
SET OUTPUT TO LEDS
SAVE LSD IN REG E

GET MOST SIGNIFICANT DIGIT - BLANK LEADING ZERO

MOV B.A

ANI OFH
ORI LEDON
MOV E.A

MOV A.B

RRC

RRC
RRC
RRC
ANI OFH
JZ SVMSD

ORI LEDON
ORI LEDSL

SVMSD: MOV D.A

RESTORE BCD DIGITS

SHIFT MSD TO LEAST SIGNIFICANT
POSITIONS

MASK OUT MSD
DON'T TURN LEADING DISPLAY ON IF

MSD ZERO
SET OUTPUT TO LEDS
SELECT LEADING DISPLAY
SAVE MSD IN REG D

16-25

;PULSE THE LED DISPLAYS

DSPLY:

16-BIT COUNTER FOR 'NO. OF DISPLAY

PULSES
GET LEADING DIGIT

OUTPUT TO LEADING DISPLAY
DELAY DISPLAY PULSE LENGTH ,

GET TRAILING DIGIT-

OUTPUT TO TRAILING DISPLAY
DELAY DISPLAY PULSE LENGTH

COUNT DOWN 16-BIT COUNTER
ARE BOTH 8-BIT SEGMENTS OF •

COUNTER ZERO? "

REMEMBEFDGX INSTRUCTION DOES
NOT SET ZERO
NO.CONTINUE PULSINGTDISPLAYS
YES. GO SAMPLE TEMPERATURE AGAIN

SUBROUTINE DELAY WAITS FOR THE NUMBER OF MILLISECONDS SPECIFIED

IN REGISTER A BY COUNTING WITH REGISTER C

LXI H.TSAMP

MOV A.D ;

OUT LDOUT ;

MVI A.TPULS
CALL. DELAY
MOV A.E

OUT LDOUT v

MVI A.TPULS
CALL DELAY
DCX H
MOV A.H

ORA L

JNZ DSPLY
JMP START

REGISTERS USED: A.C

DELAY: MVI C.MSCNT
WTLP: DCR C

JNZ WTLP
DCR A
JNZ DELAY
RET

;LOAD REG C FOR 1 MS DELAY
;WAIT 1 MS

;COUNT DOWN NUMBER OF MS

SUBROUTINE CONVR CONVERTS INPUT FROM A/D CONVERTER TO DEGREES

CELSIUS BY USING A TABLE. INPUT DATA IS IN THE ACCUMULATOR
AND RESULT IS 2 BCD DIGITS IN ACCUMULATOR

REGISTERS USED: A.B.C.H.L

CONVR: LXI H.DEGTB GET BASE ADDRESS OF CONVERSION
TABLE

MOV B,A SAVE A/D INPUT

MVI CO START DEGREES AT ZERO
CHVAL: MOV A,M GET ENTRY FROM TABLE

CMP B IS A/D INPUT LESS THAN OR
EQUAL TO ENTRY?

MOV A,C GET DEGREES CELSIUS

JNC FOUND YES. RIGHT VALUE FOUND
ADI 1 ADD 1 TO DEGREES
DAA MAKE DEGREES BCD
MOV C.A
INX H NEXT TABLE ENTRY
JMP CHVAL

FOUND: RET RETURN WITH TEMP AS 2 BCD
; DIGITS IN A

16-26

TABLE DEGTB WAS OBTAINED BY CALIBRATION WITH A KNOWN REFERENCE
DEGTB CONTAINS THE LARGEST INPUT VALUE WHICH CORRESPONDS TO A
PARTICULAR TEMPERATURE READING (I.E., THE FIRST ENTRY IS DECIMAL 58
SO AN INPUT VALUE OF 58 IS THE LARGEST VALUE GIVING A ZERO TEM-

PERATURE
; READING - VALUES BELOW ZERO ARE NOT ALLOWED)

DEGTB: DB 58.61,63.66,69,71,74,77.80,84.87.90,93.97.101.104,108
DB 112.116,120,124,128,132,136,141,145,149.154,158,

163,167

DB 172,177,181.186,191,195,200,204.209,214 218 223
227,232

DB 236.241,245,249,253,255
END

16-27

LANCE A. LEVENTHAL is an independent consultant specializing in

microprocessors and microprogramming, and is also an instructor in the

Engineering and Technology Department at Grossmont College in San

Diego, California. He serves as technical editor of the Society for Com-

puter Simulation and as editor of "Microprocessors in Simulation" for

Simulation magazine. He is a national lecturer on microprocessors for the

IEEE, the author of over thirty articles on microprocessors, and a regular

contributor to such publications as Simulation, Electronic Design and

Kilobaud.

Dr. Leventhal's previous experience includes affiliations with Linkabit Cor-

poration, Intelcom Rad Tech, Naval Electronics Laboratory Center and Har-

ry Diamond Laboratories. He received a B.A. degree from Washington

University in St. Louis, Missouri, and M.S. and Ph.D. degrees from the

University of California at San Diego. He is a member of SCS, ACM, and

OTHER BOOKS BY OSBORNE & ASSOCIATES, INC.

6001 AN INTRODUCTION TO MICROCOMPUTERS: VOLUME — THE BEGINNER'S

BOOK
2001 AN IMTRODUCTION TO MICROCOMPUTERS: VOLUME I

— BASIC CONCEPTS
3001 AN INTRODUCTION TO MICROCOMPUTERS: VOLUME It— SOME REAL PRO-

DUCTS
4001 8080 PROGRAMMING FOR LOGIC DESIGN

5001 6800 PROGRAMMING FOR LOGIC DESIGN ^m****"
7001 Z80 PROGRAMMING FOR LOGIC DESIGN

21002 SOME COMMON BASIC PROGRAMS
22002 PAYROLL WITH COST ACCOUNTING
To be published in 1978:

23002 ACCOUNTS PAYABLE AND ACCOUNTS RECEIVABLE

24002 GENERAL LEDGER
32003 6800 ASSEMBLY LANGUAGE PROGRAMMING

For order information, call or write: "

Osborne & Associates, Inc.

-J^fjjtt, PO. Box 2036
'

' Berkeley. California 94702
(415)548-2805

10:00 a.m. - 4:00 p.m. Pacific Standard Time

