
TERMS AND CONDITIONS OF SALE AND LICENSE OF TANDY COMPUTER EQUIPMENT AND SOFTWARE

PURCHASED FROM RADIO SHACK COMPANY-OWNED COMPUTER CENTERS, RETAIL STORES AND

RADIO SHACK FRANCHISEES OR DEALERS AT THEIR AUTHORIZED LOCATIONS

LIMITED WARRANTY
I. CUSTOMER OBLIGATIONS

A. CUSTOMER assumes full responsibility that this computer hardware purchased (the "Equipment"), and any copies of software included with the

Equipment or licensed separately (the "Software") meets the specifications, capacity, capabilities, versatility, and other requirements of CUSTOMER.

B. CUSTOMER assumes full responsibility for the condition and effectiveness of the operating environment in which the Equipment and Software are to

function, and for its installation.

I I . LIMITED WARRANTIES AND CONDITIONS OF SALE

A. For a period of ninety (90) calendar days from the date of the Radio Shack sales document received upon purchase of the Equipment. RADIO SHACK

warrants to the original CUSTOMER that the Equipment and the medium upon which the Software is stored is free from manufacturing defects. This

warranty Is only applicable to purchases of Tandy Equipment by the original customer from Radio Shack company-owned computer centers, retail

stores, and Radio Shack franchisees and dealers at their authorized locations. The warranty is void if the Equipment or Software has been subjected to

improper or abnormal use. If a manufacturing defect is discovered during the stated warranty period, the defective Equipment must be returned to a Radio

Shack Computer Center, a Radio Shack retail store, a participating Radio Shack franchisee or a participating Radio Shack dealer for repair, along with a

copy of the sales document or lease agreement. The original CUSTOMER'S sole and exclusive remedy in the event of a defect is limited to the correction of

the defect by repair, replacement, or refund of the purchase price, at RADIO SHACK'S election and sole expense. RADIO SHACK has no obligation to

replace or repair expendable items.

B. RADIO SHACK makes no warranty as to the design, capability, capacity, or suitability for use of the Software, except as provided in this paragraph.

Software is licensed on an "AS IS" basis, without warranty. The original CUSTOMER'S exclusive remedy, in the event of a Software manufacturing defect,

is its repair or replacement within thirty (30) calendar days of the date of the Radio Shack sales document received upon license of the Software. The

defective Software shall be returned to a Radio Shack Computer Center, a Radio Shack retail store, a participating Radio Shack franchisee or Radio Shack

dealer along with the sales document.

C. Except as provided herein no employee, agent, franchisee, dealer or other person is authorized to give any warranties of any nature on behalf of RADIO

SHACK.

0 . EXCEPT AS PROVIDED HEREIN, RADIO SHACK MAKES NO EXPRESS WARRANTIES, AND ANY IMPLIED WARRANTY OF MERCHANTABILITY OR

FITNESS FOR A PARTICULAR PURPOSE IS LIMITED IN ITS DURATION TO THE DURATION OF THE WRITTEN LIMITED WARRANTIES SET FORTH

HEREIN.

E. Some states do not allow limitations on how long an implied warranty lasts, so the above limitation(s) may not apply to CUSTOMER.

III. LIMITATION OF LIABILITY

A. EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER OR ANY OTHER PERSON OR ENTITY

WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED OR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY "EQUIPMENT" OR

"SOFTWARE" SOLD, LEASED, LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO, ANY INTERRUPTION OF SERVICE,

LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OR OPERATION OF THE "EQUIPMENT"

OR "SOFTWARE." IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR LOSS OF PROFITS, OR ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL

DAMAGES ARISING OUT OF ANY BREACH OF THIS WARRANTY OR IN ANY MANNER ARISING OUT OF OR CONNECTED WITH THE SALE, LEASE,

LICENSE, USE OR ANTICIPATED USE OF THE "EQUIPMENT" OR "SOFTWARE."

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK'S LIABILITY HEREUNDER FOR DAMAGES INCURRED BY CUSTOMER

OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR THE PARTICULAR "EQUIPMENT" OR "SOFTWARE" INVOLVED.

B. RADIO SHACK shall not be liable for any damages caused by delay in delivering or furnishing Equipment and/or Software.

C. No action arising out of any claimed breach of this Warranty or transactions under this Warranty may be brought more than two (2) years after the cause

of action has accrued or more than four (4) years after the date of the Radio Shack sales document for the Equipment or Software, whichever first occurs.

D. Some states do not allow the limitation or exclusion of incidental or consequential damages, so the above limitation(s) or exclusion(s) may not apply to

CUSTOMER.

IV. SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the TANDY Software on one computer, subject to the following provisions:

A. Except as otherwise provided in this Software License, applicable copyright laws shall apply to the Software.

B. Title to the medium on which the Software is recorded (cassette and/or diskette) or stored (ROM) is transferred to CUSTOMER, but not title to the

Software.

C. CUSTOMER may use Software on a multiuser or network system only if either, the Software is expressly labeled to be for use on a multiuser or network

system, or one copy of this software is purchased for each node or terminal on which Software is to be used simultaneously.

D. CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except for use on one computer and as is specifically provided in this

Software License. Customer is expressly prohibited from disassembling the Software.

E. CUSTOMER is permitted to make additional copies of the Software only for backup or archival purposes or if additional copies are required in the operation

of one computer with the Software, but only to the extent the Software allows a backup copy to be made. However, for TRSDOS Software, CUSTOMER is

permitted to make a limited number of additional copies for CUSTOMER'S own use.

F. CUSTOMER may resell or distribute unmodified copies of the Software provided CUSTOMER has purchased one copy of the Software for each one sold or

distributed. The provisions of this Software License shall also be applicable to third parties receiving copies of the Software from CUSTOMER.

G. All copyright notices shall be retained on all copies of the Software.

V. APPLICABILITY OF WARRANTY

A. The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a sale of the Equipment and/or Software

License to CUSTOMER or to a transaction whereby Radio Shack sells or conveys such Equipment to a third party for lease to CUSTOMER.

B. The limitations of liability and Warranty provisions herein shall inure to the benefit of RADIO SHACK, the author, owner and or licensor of the Software and

any manufacturer of the Equipment sold by Radio Shack.

VI. 5TATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER specific legal rights, and the original CUSTOMER may have other rights which vary from state to

state.

Debug/Assembler

Model 100 Debug/Assembler Software:
Copyright 1984, Microsoft.

AU Rights Reserved.
Licensed to Tandy Corporation.

Model 100 Debug/Assembler Manual:
Copyright 1984, Tandy Corporation.

All Rights Reserved.

Reference section G/8085 Instruction Set and Reference
section H/8085 Hardware Characteristics are reprinted by

permission of Intel Corporation, Copyright 1984.

Reproduction or use without express written permission
from Tandy Corporation, of any portion of this manual is
prohibited. While reasonable efforts have been taken in
the preparation of this manual to assure its accuracy,
Tandy Corporation assumes no liability resulting from
any errors or omissions in this manual, or from the use
of the information contained herein.

10 9 8 7 6 5 4 3 2

Contents

Part I/ Getting Started 3
Chapter 1/ Loading the Model 100 Debug/Assembler 4
Chapter 2/ Running a Sample Program 7
Chapter 3/ Overview '. 11

Part II/ Commands 17
Chapter 4/ Examining Memory

(ZBUG Commands — Part I) 18
Chapter 5/ Assembling the Program

(Assembler Commands) 25
Chapter 6/ Debugging the Program

{ZBUG Commands — Part 11) 31
Chapter 7/ Using the ZBUG Calculator

(ZBUG Commands — Part III) 40

Part III/ Assembly Language 49
Chapter 8/ Writing the Program 50
Chapter 9/ Using Pseudo Ops 58

Part IV/ ROM Routines 63
Chapter 10/ Using the Keyboard and Video Display

(ROM Routines) 64

Part V/ Reference 67
A/ Assembler Commands and Switches 68
B/ ZBUG Commands 69
C/ ZBUG/Assembler Error Messages 74
D/ Assembler Pseudo Ops 77
E/ ROM Subroutines 79
F/ ASCII Codes 95
G/ 8085 Instruction Set 103
H/ 8085 Hardware Characteristics 141

Index 143

To Our Customers

The heart of the Model 100 is a n 8085 "processor." It controls
all parts of the Model 100.

The processor understands only 0s and ls , a code not at all
intelligible to the human mind. This code is called "8085
machine code."

When you run a BASIC program, a system calls the "BASIC
Interpreter" and translates each statement, one at a time,
into 8085 machine code. This is an easy, but inefficient, way
to program.

The Model 100 Debug/Assembler lets you program using an
intelligible representation of 8085 machine code, called "as­
sembly language," that talks directly to the processor. You
then assemble the entire program into 8085 machine code
before running it.

Programming with the Model 100 Debug/Assembler gives
you these benefits:

• You have direct and complete control of the Model 100.

• You can use its many features—such as the assembler,
disassembler, and breakpoint debugger—for memory loca­
tion modification.

• Your program executes faster. This is because it is already
translated into 8085 machine code when you run it.

Note: The page numbers referenced in the appendices refer
to the Intel publ ica t ion . The MSC® -80/85 Family Usei's
Manual.

To Use the Model 100 Debug/Assembler You Need

A Model 100 Portable Computer with 32K of RAM, a cassette
recorder, and the Model 100 Debug/Assembler program cas­
sette tape.

This manual uses these terms and notations:

(KEY) A key you must press.

Italics A value you must supply.

filename A Model 100 file specification.

CAS: filename, ext

filename has 1-6 characters.

extension has 1-3 characters. If you omit the
extension, the Model 100 Debug/Assembler
uses .DO.

H

CAS: saves the file to cassette.

A hexadecimal (Base 16) number. For exam­
ple, 0FH represents hexadecimal 0F, which is
equal to 15 in decimal (Base 10) notation.
Hexadecimal numbers should always begin
with a numeral so that the Model 100 Debug/
Assembler can distinguish between the num­
ber and its corresponding register name. Use
a leading 0 with hexadecimal numbers be­
ginning with an A, B, C, D, E, or F.

PART I/ GETTING STARTED
This section gets you started with the Model 100 Debug/As­
sembler and explains some concepts you need to know.

CHAPTER 1/ LOADING THE MODEL 100 DEBUG/ASSEMBLER

This chapter shows how to load the Model 100 Debug/Assem-
bIer from cassette tape into your Model 100 memory and
save it to RAM.

Load the Model 100 Debug/Assembler From Cassette

Be sure your Model 100 is turned on and the cassette re­
corder properly connected. Insert the Model 100 Debug/As-
sembler cassette tape into the recorder and press the Play
button.

Next, position the cursor over BASIC and press (ENTER). At
BASIC's OK prompt, type (in either uppercase or lowercase
letters):

SOUND OFF mrm

Note: Always be sure to turn off the Model 100's
sound whenever you use the cassette recorder.

When the OK prompt appears , type:

CLEAR 0 , 4 9 1 5 1 fENTER)

Another OK prompt appears . Now type:

CLQADM fENTERl

This procedure turns the sound off before loading the pro­
gram, clears memory for the program, and then loads the
program from the cassette.

Note: The Model 100 Debug/Assembler program is
stored with the filename ZBGASM. The program-
debugg ing portion of the Debug/Assembler is
called ZBUG.

The computer shows that it has located the ZBGASM pro­
gram by displaying:

Found:2BGASM
Top: 54272
End: G2475
Exe: 54275

The OK prompt signals that the Model 100 Debug/Assembler
is in memory.

At this point you can either execute the program or save the
program to RAM for future use.

To execute the program, type:

CALL 54272 fENTERl

The screen shows the startup message and the ZBUG
prompt:

M100 Z B G A S M / 0 1 . x x . x x
C o p r . 1984 M i c r o s o f t

To save the program to RAM, type:

SAVEM "2BGASM",54272,G2475,54272 fENTm

Now press ¢8) to re turn to the main menu. The file
ZBGASM.CO has been added. To execute the Model 100 De­
bug/Assembler, position the cursor over ZBGASM.CO and
press (ENTER). The screen shows the startup message and
the ZBUG prompt.

Note: the Model 100 Debug/Assembler occupies approxi­
mately 8.5K bytes of RAM. If you have other programs
or files in memory, you may not be able to save
ZBGASM. In this case, either load the Model 100 De­
bug/Assembler each time you wish to use it or delete
some of your other files.

CHAPTER 2/ RUNNING A SAMPLE PROGRAM

This "sample session" gets you started writing programs
and shows how to use the Model 100 Debug/Assembler. The
next chapters explain why the program works the way it
does.

1. Start TEXT

Use the TEXT program to enter your assembly language pro­
grams. At the main menu, position the cursor over TEXT and

press (mm.

TEXT prompts:

F i l e t o e d i t ?

Type SAMPLE for this sample session.
TEXT then shows a blank screen with a flashing cursor at
the top left corner of the screen.

2. Type the Source Program

Begin your assembly language program by typing:

CfAB) ORG (JM) 0CC00H CTTFR)

The [TABJ key tabs to the next column. (ENTER) inserts the
line into TEXT. The H means that the address CC00 is a
hexadecimal number.

If you make a mistake, use the arrow keys to position the
cursor at the mistake and type the correction. Use the (DEL]
key if necessary. TEXT is described fully in your owner's
manual, and a summary of Text Editor commands is in your
Model 100 Quick Reference Guide.

Insert the entire assembly language program listed below.

HOME:
SCREEN:

ROW:

COL:

WAIT:
EXIT:

ORG
CALL
MVI
CALL
LDA
CPI
JISZ
LDA
CPI
JNZ
CALL
CALL
END

0CC00H
422DH
A,0FFH
4B44H
0FG39H
8H
SCREEN
0F63AH
28H
SCREEN
12CBH
5797H
HOME

If you make a mistake, use TEXT's edit commands to correct
it.

The program you have inserted is an assembly language
"source" program, which we explain in the next chapter.

Press ¢8) to exit TEXT. Your assembly language source pro­
gram is automatically saved in RAM with the extension
.DO.

3. Assemble the Source Program in Memory

If you saved ZBGASM as a RAM file, position the cursor over
ZBGASM.CO and press CTtTO. This starts the the Model
100 Debug/Assembler program. At the # prompt, type:

ASM SAMPLE.DD SAMPLE /WE fCTTERl

This loads the assembler program. The assembler then as­
sembles your source program into 8085 machine code at the
memory area just above ZBGASM. To let you know what it
has done, it prints this listing:

CC00
CC00
CC03
CC05
CC08
CC0B
CC0D
CC10
CC13
CC15
CC18
CC1B

CD
3E
CD
3A
FE
C2
3A
FE
C2
CD
CD

422D
FF
4B44
F839
08
CC03
F63A
28
CC03
12CB
5797
CC00

00000 ERRORS

1

HOME:
SCREEN:

ROW:

COL:

WAIT:
EXIT:

ORG
CALL
MVI
CALL
LDA
CPI
JNZ
LDA
CPI
JNZ
CALL
CALL
END

0CC00H
422DH
A,0FFH
4B44H
0F639H
8H
SCREEN
0F63AH
28H
SCREEN
12CBH
5797H
HOME

If the assembler does not print this entire listing but stops
and shows an error message instead, you have an error in
the source program. Repeat Steps 1 and 2.

When the assembly is complete, a new file is created called
SAMPLE.CO. This file is the "object code" of your assembly
language program.

The assembler commands are explained in Chapter 5, "As­
sembling the Program."

4. Run the Assembled Program

To run the assembled program, you need to be at the main
menu. If you are at the # prompt, press J® to return to the
menu.

Position the cursor over SAMPLE.CO and press (ENTER). The
SAMPLE program executes, filling the entire screen with a
checkerboard of graphics characters.

Press (SPACEBAR] to exit the program and return to the
main menu.

5. Debug the Program (if necessary)

ZBUG lets you look at memory. Load the Model 100 Debug/
Assembler again.

ZBGASM loads its ZBUG program and displays ZBUG's #
prompt. You can now examine any memory address. Type:

0 C C 0 0 H /

and ZBUG shows you what is in memory at this address.
Press QD a few times to look at more memory addresses.
When you finish, press (ENTER).

In Chapter 8, we show you how to use ZBUG to examine and
test your program. To exit the Model 100 Debug/Assembler,
press dS).

in

CHAPTER 3/ OVERVIEW

The Model 100's 8085 processor understands only instructions
written in 8085 machine code: a code of 0s and ls containing
"opcodes" and data. "Opcodes" are instructions that tell the
processor to manipulate data in some way.

For example, the machine-code instruction "00111110
l l l l l l l l "contains :

• The opcode "00111110" (decimal 62 or hexadecimal 3E)
• The data "11111111" (decimal 255 or hexadecimal FF)

This instruction tells the processor to move the value
11111111 intoRegisterA.

ZBGASM looks for 3 fields in your instructions: label, com­
mand, and operand. For example, in this instruction:

HDME: CALL 422DH

HOME is the label (a colon delimiter must follow the label);
CALL is the command; and 422DH is the operand.

In the label field, the Model 100 Debug/Assembler looks for:

• Symbols (symbolic names)

In the command field, it looks for:

• Mnemonics

• Pseudo Ops

In the operand field, it looks for:

• Symbols
• Operators
• Data

II

Symbols

A symbol is similar to a variable. It can represent a value or
a location. HOME (in the sample session) is a symbol that
represents the location of the instruction CALL 422DH. Oper­
ands can also be symbols. For example, in the instruction
JNZ SCREEN, SCREEN is a symbol that represents the loca­
tion of MVI A,0FFH.

Mnemonics

A mnemonic is a symbolic representation of an opcode. It is
a command to the processor. "MVI" is a mnemonic. In the
instruction MVI A,0FFH, MVI is the mnemonic for the opcode
00111110, which moves the data 0FFH (255) into Register A.

Mnemonics are specific to a particular processor. For exam­
ple, if a computer uses a Z80 processor, it would understand
only Z80 mnemonics, and not 8085 mnemonics.

Pseudo Ops

A pseudo op is a command to the assembler. END (in the
sample session) is a pseudo op. It tells the assembler to quit
assembling the program.

Data

Data is n u m b e r s or cha rac t e r s . Many mnemonics a n d
pseudo ops call for data. Unless you use an operator (de­
scribed next), the assembler interprets your data a s a deci­
mal (Base 10) number.

Operators

An operator tells the assembler to perform a certain opera­
tion on the data. In the value 422DH the "H" is an operator.
It tells the assembler that 422D is a hexadecimal (Base 16)
number, rather than a decimal (Base 10) number.

19.

The more commonly used operators are arithmetic and rela­
tional. Addition (+) and equation (=) are examples of these
operators.

Pseudo ops, symbols, operators, and addressing-mode char­
acters vary from one assembler to another. Section III ex­
plains them in detail.

Sample Program

This is how each line in the sample program works:

ORG 0CC00H

ORG is a pseudo op for "originate." It tells the assembler to
begin loading the program at Location CC00H (Hexadecimal
CC00). This means that when you load and run the program
from the Model 100 main menu the program starts at Mem­
ory Address CC00H.

HDME: CALL 422DH

HOME is a symbol. It equals the location where the CALL
422DH instruction is stored.

CALL is a mnemonic that executes a subroutine. In this
case, the routine being "called" is the Model 100 ROM rou­
tine to move the cursor to Row 1, Column 1 (home the cur­
sor). The Model 100 ROM routines are listed in Reference
Section F.

SCREEN: MVI A,0FFH

SCREEN is a symbol. It equals the location where MVI
A,0FFH is stored.

13

MVI is a mnemonic for "move immediate." It loads Register
A with FFH, which is the hexadecimal ASCII code for a
graphics character. Notice that the value FFH is preceded by
a zero. All values that begin with a letter (A, B, C, D, E, F)
must be preceded by a zero. The ASCII characters are listed
in Reference Section G.

CALL 4B44H

This instruction calls the Model 100 ROM routine to display
a character at the current cursor position.

RDW: LDA 0F639H

LDA is a mnemonic for "load Register A." It loads Register A
with the hexadecimal address F639. This address contains
the current row position of the cursor.

CPI 8H

CPI is the mnemonic for "compare immediate." It compares
the value 8H to the contents of Register A. The maximum
number of rows is 8.

JNZ SCREEN

JNZ is a mnemonic for "jump on not zero." If Register A does
not equal 8H, the Z flag is not set, and the program jumps
to the line labeled SCREEN. If Register A does equal 8H, the
Z flag is set, and the program continues with the next line.

COL: LDA 0F63AH

This time, Register A is loaded with the current column po­
sition of the cursor (stored at address F63AH). COL: is the
label.

CPI 28H

14

The contents of Register A are compared to 28H (40 decimal).
This is the maximum number of characters per line.

JNZ SCREEN

If Register A does not equal 28H, the Z flag is not set, and
the program jumps to the line labeled SCREEN. If Register A
does equal 28H, the Z flag is set, and the program continues
with the next line.

WAIT: CALL 12CBH

This line calls the ROM routine that "waits" until a charac­
ter is input from the keyboard.

E X I T : CALL 5797H

After a key on the keyboard is pressed, the program exits by
calling the ROM routine that displays the main menu.

END HQME

END is a pseudo op that tells the assembler to quit assem­
bling the program. It also tells the assembler to store the be­
ginning address of the program (the value of HOME).

15

PART II/ COMMANDS
This section shows how to use the Model 100 Debug/Assem­
bler commands. Knowing these commands will help you edit
and test your program.

17

CHAPTER 4/ EXAMINING MEMORY
(ZBUG Commands — Part I)

To use the Model 100 Debug/Assembler, you must under­
stand the Model 100's memory. You need to know about
memory to write the program, assemble it, debug it, and ex­
ecute it.

In this chapter, we explore memory and see some of the
many ways to get information. To do this, we use ZBUG.

If you are not "in" ZBUG, with the ZBUG prompt (#) dis­
played, you need to get in it now.

Enter BASIC and load the Model 100 Debug/Assembler, then
execute the program by typing :

CALL 54272 (Mffi)

The screen shows the ZBUG prompt (#) which means you are
in ZBUG and can enter a command. You must enter all ZBUG
commands at this level. You can return to the command
level at any time by pressing (ENTER).

Examining a Memory Location

The 8085 can address 65,535 one-byte memory addresses,
numbered 0-65535 (0000H-0FFFFH).

Note: Although the processor may address 65,535
addresses, the bottom 32,768 (7FFFH) are Read-
Only-Memory (ROM) addresses and may not be
changed.

18

We'll examine ROM Address 0H. At the # prompt, type:

B fENTEH)

to get into the "byte mode." Then type:

0H/

and the screen shows the contents of Address 0. To see the
contents of the next bytes, press CD- Use QD to scroll to the
preceding addresses.

Continue pressing QD or (JJ. Notice that as you use the GD
the screen continues to scroll down. The smaller addresses
are on the lower part of the screen.

All the numbers you see are hexadecimal (Base 16). You see
not only the 10 numeric digits, but also the 6 alphabetic
characters needed for Base 16 (A-F). Unless you specify an­
other base (which we do in Chapter 6), ZBUG assumes you
want to see Base 16 numbers.

Notice that a zero precedes all hexadecimal numbers that
begin with an alphabetic character. This is to avoid any
confusion between hexadecimal numbers and registers.

Examination Modes

To help you interpret the contents of memory, ZBUG lets you
examine it in four ways:
Examination Mode Command

Byte B (mTR)
Word W (lNTCT)
ASCII A (TOTO
Mnemonic M (ENTERl

19

Byte Mode

Until now, you've been using the byte mode to examine
memory. Typing B [ENTER) at the # prompt put you into
this mode.

The byte mode displays every byte of memory as a number,
whether it is part of a machine-language program or data.

In byte mode, CX) increments the address by I. CD decre­
ments the address by 1.

Word Mode

Type (ENTER) to get back to the # prompt. To enter the word
mode, type:

W (ENTER)

Look at the same memory address again. Press the (JJ key
a few times. In this mode, the CX) increments the address by
2. The numbers contained in each address are the same,
but you see them 2 bytes or 1 word at a time.

Press the GD a few times. The CD always decrements the
address by 1, regardless of the examination mode.

ASCII Mode

Return to the command level. To enter the ASCII mode, type:

A CENTER)

ZBUG now assumes the content of each memory address is
an ASCII code. If the "code" is between 21H and 7FH, ZBUG
displays the character it represents. Otherwise, it leaves the
line following the address blank.

In the ASCII mode, GD increments the address by 1.

20

Mnemonic Mode

This is the default mode. Unless you specify some other
mode, you are in the default mode.

Return to the # prompt. To enter the mnemonic mode from
another mode, type:

M flNTER)

Look at the lowest ROM addresses. Type:

0H/

and, then press QD a few times. In the mnemonic mode,
ZBUG a s s u m e s you're examining an assembly l a n g u a g e
program. The QZ) increments memory one to 5 bytes at a
time (depending on the length of the instruction) by "disas­
sembling" the numbers into the mnemonics they represent.

In our example, the first command—JMP 7D33—is a 3-byte
instruction. Go into byte mode and list 3 bytes. The first byte
(C3) is the opcode for the mnemonic JMP. The second byte
(33) is the least significant byte of the address, and the third
byte (7D) is the most significant byte of the address.

Note: In any instruction, the first byte always contains
the opcode. In 3-byte instructions, the address is stored
in the second and third bytes with the least significant
byte of the address in the second byte aiui the most
significant byte of the address in the third byte.

Begin the disassembly at a different byte. Press [ENTER] and
then examine Address 1. Type:

1 /

21

Even though you now see a different disassembly, the con­
tents of memory have not actually changed. ZBUG is merely
interpreting them differently.

For example, assume 1 contains a 33. This is really the low
address byte of the JMP instruction. But when you begin dis­
assembly at this location, ZBUG reads the first byte as an
opcode. So 33 is interpreted as an INX SP instruction — and
not as part of the address.

To see the program correctly, you must be sure you are be­
ginning at the correct byte.

Sometimes, several bytes contain the symbol "??". This
means ZBUG can't figure out which instruction is in that
byte and is possibly disassembling from the wrong point.
The only way to know you're on the right byte is to know
where the program starts.

Changing Memory

As you look at individual memory addresses, notice that the
cursor remains to the right of the contents of each address.
This lets you change the contents of that address. After typ­
ing the new contents, press (ENTER) or QD; the change is
made. To make no changes, press [ENTER) or CD-

To show how to change memory, we'll open an address in
memory above ROM and the HIMEM area. Get into the byte
mode and open Address C000 by typing:

B (mM)
0 C 0 0 0 H /

22

Notice that the cursor is to the right of the address. To put a
1 in that address, type:

1 mfm
If you want to change the contents of more than I address,
type:

0 C 0 0 1 H /

Then type:

0DD CE

This changes the contents to DD and lets you change the
next address. (Press QD to verify that the change has been
made.)

The size of the changes you can make depends on the exam­
ination mode. In the byte mode, you can change only 1 byte
at a time and can type 1 or 2 digits.

In the word mode, you can change I word at a time. Any 1-,
2-, 3-, or 4-digit number you type becomes the new value of
the word.

If you type a hexadecimal number that is also the name of
an 8085 register (A,B,C,D,E,H,L,SP,PC), ZBUG assumes it's a
register and gives you an "EXPression ERROR." To avoid
this confusion, include a leading zero (0A,0B, etc.) whenever
you enter hexadecimal nun <5ric da ta that beg ins with a
letter.

To change memory in the ASCII mode, use an apostrophe
before the new letter. For example, here's how to write the
letter C in memory at Address C000. To get into the ASCII
examination mode, type:

A (HiTra

23

To open Address C000,type:

0C000H/

To change its contents to a C, type:

'c m

Press CD to confirm that the address contains the letter C.

If you are in mnemonic mode, you must change 1 to 5 bytes
of memory depending on the length of the opcode. Changing
memory is complex in mnemonic mode because you must
type the opcodes rather than the mnemonic.

For example, get into the mnemonic mode and open Address
C000. Type:

M (MSH)
0C000H/

To change the instruction at this address to an ADD IMME­
DIATE instruction, type:

C6 (MM)

Now Address 0C000H contains the opcode for the ADI mne­
monic. Open location 0C001H:

0C001 /

and insert 06, the operand:

06 {mrm

Examine Address 0C000H again, and you see it contains an
ADI 6 instruction.

24

CHAPTER 5/ ASSEMBLING THE PROGRAM
(Assembler Commands)

To load the assembler program and assemble the source
program into 8085 machine code, the Model 100 Debug/As­
sembler has an "assembly command." Depending on how
you enter the command, the assembler:

• Shows an "assembly listing," which gives information on
how the assembler is assembling the program.

• Stores the assembled program in a RAM file.

• Stores the assembled program on tape.

This chapter shows the different ways you can control the
assembly listing and the in-memory assembly. Knowing this
will help you debug a program.

The Assembly Command

The command to assemble your source program into 8085
machine code is:

Assembling in a RAM fiie:

flSt^ <source filename> <ohject filename> /SWl/SW2/...SWn

SW1, SW2, etc. are switches.

Note: lf you omit the object filename, the object
code is written to memory and not saved as a
RAM file.

25

Assembling on tape:

flSM <source hlename> CAS:<object iilename> /SWl/...SWn

The assembled program is stored on tape under the same
name as source filename if you do not use an object file­
name. Since source files must be RAM files created by the
Text Editor (TEXT), they always carry the .DO extension.

The switch options are as follows:

/LP Assembly listing on the line printer
/MR Multiple record object code file
/NL No listing
/NO No object code
/NS No symbol table
AVE Wait on assembly errors

You may use any combination of the switch options. Be sure
to include a blank space before the first switch.

Examples:

ASM TEST.DD /WE

assembles the source program in memory and stops at each
error {fWE).

ASM TEST.DD CAS:SAMPLE /LP

assembles the source program and saves it on tape as SAM­
PLE. The listing is printed on the printer (/LP). Note that
there must be a space between the filename and the
/switch.

ASM T E S T . D D C A S :

assembles the source program and saves it on tape as
TEST.

26

ASM TEST.DD CAS: /MR

assembles TEST.DO on cassette as a multiple record object
code file. Normally, the Model 100 Debug/Assembler uses the
same record format as BASIC's CSAVEM command to gener­
ate single record object code files on cassette.

Saving programs on cassette as single record files, how­
ever, has 2 drawbacks. First, since all data must be buff­
ered before it can be written to cassette, buffer requirements
may cause you to run out of memory. Second, the single rec­
ord format doesn't let you generate non-contiguous object
code. The /MR multiple record switch lets you overcome both
of these restrictions.

Note: The multiple record feature applies only to
cassette object files and not to RAM object files.
Setting the /MR switch with an object file directed
to RAM results in a DEVice Error.

You must load multiple record object files from the Debug/
Assembler command level with the L load command. Trying
to load a multiple record object file with the CLOADM com­
mand results in an OM (Out of Memory) Error.

Controlling the Assembly Listing

The assembler normally displays an assembly listing simi­
lar to that on page 13. You can alter this listing with one of
these switches:

/NS No symbol table in the listing
/NL No listing
/LP Listing printed on the printer

27

For example:

ASM TEST.DD /NS

assembles TEST.DO and shows a listing without the symbol
table.

ASM SAMPLE.DO /LP

assembles SAMPLE.DO and prints the listing on the line
printer.

Note: If the Model 100 Debug/Assembler displays
an error message during a lengthy assembly list­
ing, you may stop the listing by pressing (SHIFT)
^REAK). This command also terminates the
assembly.

Memory Allocation

ZBGASM uses approximately 8.5K of memory starting at
54272 (D400 Hex) and requires additional memory for the
symbol table and object code buffer. The memory map (Fig­
ure 1) shows the Model 100 memory allocation after the
Model 100 Debug/Assembler is loaded.

Available memory is defined as the memory beginning at
Himem +1 and extending up to the start of the symbol table.
Memory outside this range is considered "restricted." Any
operation that results in a modification of restricted memory
causes an

MRM?

28

warning message. This message alerts you that your opera­
tion modifies restricted memory and asks for confirmation to
continue. A "Y" response to the MRM? message allows the
change {if the modfication is not in ROM); a (CTRLlY re­
sponse allows the change and cancels further MRM? warn­
ings (if the modification is not in ROM). Any other responses
terminate the operation.

MEMORY MAP

FFFF

F5F0

D400

[LOMEM]
[HIMEN]

8000
7FFF

0000

BASIC/SYSTEM TEMPS

ZBGASM

SYMBOL TABLE

OBJECT CODE

BASIC STORAGE

RAM FILES

BASIC ROM

FIGURE 1

29

Warning: Exercise extreme care when modifying re­
stricted memory. Know exactly what you are modifying
and the consequences of the modification. Some
changes in restricted memory can result in the loss of
all your RAM files.

As shown in the memory map, the symbol table is built
down from the start of ZBGASM. The lower portion of avail­
able memory (beginning at Himem +1 and extending to the
start of the symbol table) is used for the object code gener­
ated by in-memory assemblies and for buffering the object
code to be written to a cassette file. Insufficient available
memory for the above operations results in an OM (Out of
Memory) Error.

You can control the amount of available memory allocated to
ZBGASM by using the CLEAR statement to set the BASIC HI­
MEM parameter. (See your Model 100 owner's manual for de­
tails on this procedure.)

The lower the address you assign to Himem, the more avail­
able memory you allocate to ZBGASM. Lower Himem ad­
dresses, however, decrease the space available for RAM
files, and may cause you to overwrite or limit RAM files.

Hints On Assembly

• Use a symbolic name to label the beginning of your
program.

• The /WE switch is an excellent debugging tool. Use it to
detect assembly errors before debugging the program.

• To examine the symbol table or any other location after an
assembly, use ZBUG.

30

CHAPTER 6/ DEBUGGING THE PROGRAM
(ZBUG Commands — Part II)

ZBUG has some powerful tools for a trial run of your assem­
bled program. You can use them to look at each register,
every flag, and every memory address during every step of
running the program.

Before reading any further, you might want to review the
ZBUG commands you learned in Chapter 4. We use these
commands here.

Preparing the Program for ZBUG

In this chapter, we use the sample program from Chapter 2
to show how to test a program.

First, load and then enter ZBUG.

Next, assemble SAMPLE.DO into ZBGASM.

When the # prompt appears , you're ready to test the sample
program with ZBUG.

Display Modes

In Chapter 4, we discussed 4 examination modes. ZBUG
also has 3 display modes.

We'll examine each of these display modes from the mne­
monic examination mode. If you're not in this mode, type M
fEfiTlR) to get into it.

31

Numeric Mode

Type:

N (MM)

and examine the memory addresses that contain your pro­
gram: CC00H-CC13H.

In the numeric mode, you do not see any of the symbols (la­
bels) in your program (SCREEN, ROW, WAIT, EXIT, etc.). All
you see are numbers. For example, Address CC0DH shows
the instruction JNZ 0CC03 rather than JNZ SCREEN.

Symbolic Mode

From the command level, type:

S (CTTER)

and examine your program again. ZBUG displays your en­
tire program in terms of its symbols (SCREEN, WAIT, ROW,
CALL, WAIT, etc.). Examine the memory address containing
the INZ SCREEN instruction by typing the memory address
of the previous instruction:

0CC0BH/

Now press QD- In the symbolic mode, the screen shows your
program's memory addresses and instructions as symbols
(labels):

RDW+5/ JNZ SCREEN

32

Half-Symbolic Mode

At the # prompt, type:

H CENTER)

and examine the program. Now all the memory addresses
(on the left) are shown as symbols, but the operands (on the
right) are shown as numbers.

Using Symbols to Examine Memory

Since ZBUG understands symbols, you can use them in your
commands. For example, with ZBUG, both of the following
commands open the same memory address regardless of the
display mode:

HDME/

or

0CC00H/

Both t h e s e c o m m a n d s get ZBUG to d i s p l a y your en t i re
program:

T HDME EXIT
T CC00 CC1B

Note: ZBUG usually directs console output to the
LCD screen. Use the K (console change) command
to redirect a listing (or any other output) to your
printer or communicat ions port. (See Reference
Section B for details on using the K command.)

33

Executing the Program

You can run your program from ZBUG using the G {Go) com­
mand followed by the program's start address.

Type either of the following:

G HDME flNTEH)

G 0cc00H mrm
The program executes, filling all of your screen with a pat­
tern of graphics characters. If you don't get this pattern, the
program probably has a "bug." The rest of the chapter dis­
cusses program bugs.

Setting Breakpoints

If your program doesn't work properly, you might find it eas­
ier to debug it if you break it up into small units and run
each unit separately. The X command sets breakpoints at
which ZBUG pauses during the execution of a program.
From the command level, type:

followed by the address where you want execution to break.

We'll set a breakpoint at the first address that contains the
symbol SCREEN: C003H.

Type either of the following:

xscREEN mrm
XCC03 (MM)

34

Now type GHOME (ENTER) to execute the program. Each
time execution breaks, type:

C (HffIR)

to continue. A graphics character appears on the screen
each time ZBUG executes the SCREEN loop. The line:

0 BRK @ SCREEN

follows the graphics character to tell you that Breakpoint 0 is
set at the SCREEN address. You may set up to 8 breakpoints
numbered from 0-7 in a program.

Type:

D (anm

to display all the breakpoints you have set.

Type:

C1 0 fRTTER)

ZBUG continues until the tenth time it encounters that break­
point, and then halts execution. Type:

Y (mfm

This is the command to "yank" (delete) all breakpoints. You
can also delete a specific breakpoint. For example:

Y0 fENTERl

deletes the first breakpoint (Breakpoint 0).

35

You may not set a breakpoint in a ROM routine. Also, if you
set a breakpoint at the point where you call a ROM routine,
the C command returns a CONtinuation Error and doesn't
let you continue the program.

Examining Registers and Flags

Assemble SAMPLE.DO, and type:

R (mM)

What you see are the contents of every register before the
program is executed. (See Chapter 8 for a definition of all
the 8085 registers and flags.)

Your display should look something like this:

PC SP BC DE HL A F
0000 F563 0000 0000 0000 0000 00=

Type:

0CC00H;

The semicolon (;) executes the instruction at memory address
CC00 and displays the next line.

Type ; again to execute the instruction at CC03. Now look at
all the registers by typing

R <MM)

The Accumulator (Register A) now contains FF (the ASCII
code for a graphics character) from the MOV A,0FFH
instruction.

36

To display only the contents of Register B, type:

B/

To display the register pair HL, type:

HL/

Now it contains a 0. You can change registers in the same
way you change the contents of memory. With the cursor on
the same line as HL/ 0, type:

1234 fENTERl

Check the HL Register pair to verify that it contains 1234.

Stepping Through the Program

Type:

SCREEN;

CALL 422DH is the next instruction to be executed. The first
instruction, MVI A,0FFH, has just been executed. To see the
next instruction, type:

Now, CALL 422DH has been executed, and LDA 0F639H is
the next instruction. Type:

To see that the LDA instruction was executed, type:

R riN7lR)

37

Register A now contains the current row position of the cur­
sor. (Memory address F639H is a status location that con­
tains the current row position of the cursor.)

Use the semicolon and R command to continue to single-step
through the program examining the registers at will.

You may also single-step through a program using a comma
(,) instead of a semicolon. The comma, however, cannot step
through a ROM subroutine. For example, type:

RDW,

Continue stepping through the program by repeatedly press­
ing comma. When you reach the CALL 4B44H instruction, the
screen shows a CONtinuation Error because you are trying
to CALL a ROM subroutine.

Transferring a Block of Memory

Type:

U 0CC00H 0 C 0 0 0 H 5 (MM)

Now the first 5 bytes of your program have been copied to
memory address beginning at C000.

38

Hints on Debugging

Don't expect your first program to work the first time. Have
patience. Most new programs have bugs. Debugging is a
fact of life for all programmers, not just beginners.

Be sure to make a copy of what you have in the edit buffer
before executing the program. The edit buffer is not pro­
tected from machine language programs.

39

CHAPTER 7/ USING THE ZBUG CALCULATOR
(ZBUG Commands — Part IH)

ZBUG has a buih-in calculator that performs arithmetic, re­
lational, and logical operations. Also, it lets you use 3 dif­
ferent numbering systems, ASCII characters, and symbols.

This chapter contains examples of how to use the calculator.
Some use the same assembled program that we used in the
last chapter.

Numbering System Modes

ZBUG recognizes numbers in 3 numbering systems: hexa­
decimal (Base 16), decimal (Base 10), and octal (Base 8).

Output Mode

The output mode determines which numbering system ZBUG
uses to output (display) numbers. From the ZBUG command
level, type:

0 1 0 fENTER)

Examine memory. The T at the end of each number s tands
for Base 10. Type:

08 (Mm)

Examine memory. The Q at the end of each number s tands
for Base 8. Type:

0 1 6 <Mm

You're now back in Base 16, the default output mode.

40

Input Mode

You can change input modes in the same way you change
output modes. For example, type:

11 0 fENTEff]

Now, ZBUG interprets any number you input as a Base 10
number. For example, if you are in this mode and type:

T 49152 49162 fERTm

ZSBUG shows you memory addresses 49152 (Base 10)
through 49162 (Base 10). Note that what is printed on the
screen is determined by the output mode, not the input
mode.

You can use these special characters to "override" your input
mode:

BASE

Base 10
Base 16
Base 8

BEFORE NUMBER

&

@

AFTER NUMBER

T
H
Q

Table 1. Special Input Mode Characters

For example, while still in the 110 mode, type:

T 49152 #0C01 0 fEN7TO

The "#" overrides the 110 mode. ZBUG, therefore, interprets
C010 as a hexadecimal number. As another example, get
into the 116 mode and type:

T 49152T 0C01 0 (ffinB)

41

Here, the "T" overrides the 116 mode. ZBUG interprets 49152
a s decimal.

Operations

ZBUG performs many kinds of operations for you. For exam­
ple, type:

0C000+25T/

and ZBUG goes to memory address C019 (Base 16), the sum
of C000 (Base 16) and 25 (Base 10). lf you simply want ZBUG
to print the results of this calculation, type:

0 C 0 0 0 + 2 B T =

On the following pages, we use the terms operands, opera­
tors, and qperafion. An operation is any calculation you
want ZBUG to solve. In this operation:

1 + 2 =

" 1 " and "2" are the operands. " + " is the operator.

Operands

You may use any of these a s operands:

1. ASCII characters

2. Symbols

3. Numbers (in either Base 8, 10, or 16).

Note: ZBUG recognizes integers (whole numbers)
only.

42

Examples (in the 016 output mode):

'A =

prints 41, the ASCII code for "A".

HOME =

prints the HOME address of the sample program. (It will
print UDS Error [Undefined Symbol Error] if you don't have
the sample program assembled in memory.)

15Q =

prints the hexadecimal equivalent of octal 15.

If you want your results printed in a different numbering
system, use a different output mode. For example, get into
the O10 mode and try the above examples again.

Operators

You may use arithmetic, relational, or logical operators. (Get
into the 016 mode for the following examples.)

Arithmetic Operators
Addition
Subtraction
Multiplication
Division
Modulus
Positive
Negative

+
-
*
.DIV.
.MOD.
+
-

43

Examples:

E X I T - H O M E =

prints the length of the sample program (not including the
END statement).

9 . D I V . 2 =

prints 4. (ZBUG can divide integers only.)

9.MDD.2=

prints 1, the remainder of 9 divided by 2.

1 - 2 =

prints OFFFF,65535T, or 177777Q, depending on the output
mode. ZBUG does not use negative numbers. Instead, it
uses a "number circle" that operates on modulus 10000
(hexadecimal):

FFFD

mmus
equals 2
FFFF

Number Circle Illustration of Memory
To understand this number circle, you can use the clock as
an analogy. A clock operates on modulus 12 in the same
way the ZBUG operates on modulus 10000. Therefore, on a
clock, 1:00 minus 2 equals 11:00:

44

3:00

equals n
11:00 1:00

Number Circle Illustration of Clock

Relational Operators

Equal to
Not Equal to

.EQU.

.NEQ.

These operators determine whether a relationship is true or
false.

Examples:

5.EQU.5=

prints 0FFFF, since the relationship is true. {ZBUG prints
65535T in the O10 mode or 177777Q in the 0 8 mode.)

5 .NEQ.5=

prints 0, since the relationship is false.

Logical Operators

Shift
LogicalAND
InclusiveOR
ExclusiveOR
Complement

<
.AND.
.OR.
.XOR.
.NOT.

45

Logical operators perform bit manipulation on binary
numbers.

Examples:

1 0<2 =

shifts 10 two bits to the left to equal 40. The 8085 RLC in­
struction also performs this operation.

10<-2=

shifts 10 two bits to the right to equal 4. The 8085 RRC in­
struction also performs this operation.

6 .XDR.5=

prints 3, the Exclusive OR of 6 and 5. The 8085 XOR instruc­
tion also performs this operation.

Complex Operations

ZBUG calculates complex operations in this order of
precedence:

* .DIV. .MOD. <
.AND.

.OR. .XOR.
+ -

.EQU. .NEQ.

46

You may use parentheses to change this order.

Examples:

4 + 4.DIV.2 =

The division is performed first.

(4 + 4).DIV.2 =

The addition is performed first.

4*4.DIV.4 =

The multiplication is performed first.

47

PART III/ ASSEMBLY
LANGUAGE

This section gives details on 8085 assembly language. It
does not explain the 8085 mnemonics, however, since there
a r e m a n y b o o k s a v a i l a b l e on t h e 8080 f a m i l y of
microprocessors.

49

CHAPTER 8/ WRITING THE PROGRAM

Chapter 3 gives a general description of assembly language
instructions. This chapter describes them in detail.

The 8085 Registers

The 8085 contains 10 temporary storage areas (registers) that
you may use in your program:

Register A manipulates data and performs arithmetic and
logical calculations. It holds 1 byte of data.

Register Pair H-L are used for direct addressing. H stores
the most significant byte of an address, Register L stores the
least significant byte of an address. This lets the processor
directly access an address with the single, least significant
byte.

Register Pairs B-C and D-E can each hold 2 bytes of data.
They are general purpose registers and may be used for
temporary data storage. They may be used individually to
hold 1-byte data.

Register PC (Program Counter) stores the address of the next
instruction to be executed.

Note: The current address of Register PC may be
represented in ZBUG by using a $ or . in the oper­
and field.

Register SP (Stack Pointer) is a 16-bit register that points to
the memory stack. Addresses are stored in the stack in a
"Iast-in, first-out" manner. The last address put into the
stack should be the first address to be pulled.

50

Status Register F is the Flag register for testing conditions
and setting interrupts. It consists of 5 "flags." Many mne­
monics "set" or "clear" 1 or more of these flags. Others test
to see if a certain flag is set or clear.

This is the meaning of each flag, if set:

B i t 0 I
CY (Carry) — an 8-bit arithmetic operation caused a
carry or borrow from the most significant bit.

Bit 1
Reserved

Bit2
P (Parity) — the result of the previous operation has <jn
even number of bits set (even parity).

Bit3
Reserved

Bit4
AC (Auxiliary Carry or Half Carry) — an 8-bit addition
operation caused a carry.

Bit5
Reserved

Bit6
Z (Zero) — the result of the previous operation is zero.

Bit7
S (Sign) — the result of the previous operation is a neg­
ative number

51

Assembly Language Fields

You may use 4 fields in an assembly language instruction:
label, command, operand, comment. In this instruction:

HQME: MQV A,M -,MQVES MEMQRY DATA TQ
REG A

HOME is the label. MOV is the command. A,M is the oper­
and. MOVES MEMORY DATA TO REG A is the comment.

The comment is solely for your convenience. The assembler
ignores comments after a semicolon.

The Label

You can use a symbol in the label field to define a memory
address or data. The above instruction uses HOME to define
its memory address.

Once the address is defined, you can use HOME as an oper­
and in other instructions. For example:

JNZ HOME

branches to the memory address defined by HOME.

The assembler stores all the symbols, with the addresses or
data they define, in a "symbol table," rather than as part of
the "executable program." The symbol can be a maximum
of 6 characters.

The Command

The command can be either a pseudo op or a mnemonic.

52

Pseudo ops are commands to the assembler. The assembler
does not translate them into opcodes and does not store
them with the executable program. For example:

NAME : EQU 43

defines the symbol NAME as 43. The assembler stores this
in its symbol table.

ORG 0CC00H

is a pseudo op that tells the assembler to begin the executa­
ble program at Address CC00.

SYMBOL: DC 6

stores 6 in the current memory address and labels this ad­
dress SYMBOL. The assembler stores this information in its
symbol table.

Mnemonics are commands to the processor. The assembler
translates them into opcodes and stores them with the exe­
cutable program. For example:

XCHG

tells the processor to exchange the data in the H-L Register
Pair with the D-E Register Pair. The assembler assembles
this into opcode number EBH and stores it with the executa­
ble program.

The next chapter shows how to use pseudo ops. fleference G
lists the 8085 mnemonics.

53

The Operand

The operand is either a memory address or data . For
example:

LXIBC, 3000 + COUNT

loads Register Pair B-C with 3000H plus the value of COUNT.
The operand, 3000 + COUNT, specifies a data constant.

The assembler stores the operand with its opcode. Both are
stored with the executable program.

Operators

The plus sign (+) in the above operand (3000 + COUNT) is
called an operator.

You can use any operator described in Chapter 7, "Using the
ZBUG Calculator," as part of the operand.

Addressing Modes

8085 mnemonics have 4 addressing modes that let you ad­
dress data in different ways.

54

1 lmmediateAddressing

The operand is data. For example:

ADI 30H

adds the value 30H to the contents of Register A.

DATA: EQU 8004H
LXI BC,DATA

loads the value 8004 into Register Pair BC.

CPI 94H

compares the contents of Register A with the hexadecimal
value 94.

2. DirectAddressing

The operand is the exact memory address of the data. In
this mode of addressing, you address a specific memory
location.

For example:

JNZ 0CC00H

jumps to Address CC00.

SPOT: EQU 0CC00H
SHLD SPOT

stores the contents of Register Pair HL in Address CC00.

If the instruction calls for data, the operand contains the ad­
dress where the data is stored.

LHLD 0CC00H

55

does not load Register Pair HL with CC00. The processor
loads HL with whatever data is in Address CC00. li 65H is
stored in Address CC00, Register Pair HL is loaded with
65H.

ADDM

adds whatever data is stored in the Address in the HL Regis­
ter Pair to the contents of Register A.

3. Register Indirect Addressing.

The operand is the HL Register Pair that contains the ad­
dress in memory that contains the data.

In understanding this mode, think of a treasure hunt game.
The first instruction is "Look in the suitcase." The suitcase
contains the second instruction, "Look in the mailbox."

Examples:

MOV A,M

moves the contents of the memory location whose address is
in Register pair HL. M refers to the memory address cur­
rently stored in Register Pair HL.

The following example shows the complete process:

LXI HL,0CC00H
MVI M,0FFH
INX H
MVI M,0FFH

LHLD 0CC00H
MOV A,M

The LXI instruction loads address CC00 into the H-L Register
Pair, and MVI moves the data FF into Register L. The INX in­
struction increments the address in the H-L Register Pair by
I, and MVI moves the data FF into memory location CC01.

56

Later in the program, you can access the data FFFF by load­
ing memory location CC00 into the H-L Register Pair and
then moving the data into the accumulator.

This is a good mode of addressing to use when calling ROM
routines.

4. RegisterAddressing

This addressing mode lets you access data by specifying
registers or register pairs containing the data. The operand
is always a register.

For example:

MOV A,B

transfers the data in Register B to Register A. Now both of
the registers contain the same data.

Register pairs may also be addressed:

DAD BC

adds the data in Register Pair BC to the data in Register
Pair HL. The result is placed in HL.

57

CHAPTER 9/ USING PSEUDO OPS

As discussed earlier, pseudo ops direct the assembler. You
can use them to:

• Control where the program is assembled

• Define symbols

• Insert data into the program

• Change the assembly listing

• Do a "conditional" assembly

• Include another source file in your program

Pseudo ops are unique to the assembler you are using.
Other 8085 assemblers may not recognize the ZBUG pseudo
ops.

The ZBUG pseudo ops make it easier for you to program.
This chapter shows how to use pseudo ops.

Controlling Where the Program is Assembled

ZBUG has two pseudo ops that control where the program is
assembled:

• ORG, sets the first location
• END, ends the assembly

ORG
ORG expression
Tells the assembler to begin assembling the program at
expression. Example:

ORG 0CC00H

tells the assembler to start assembling the program at Ad­
dress CC00.

You can put more than one ORG command in a program.
When the assembler arrives at the new ORG, it begins as­
sembling at the new expression.

58

Note: $ or . may be used as an operand to return
the cur ren t loca t ion of t he p r o g r a m counter .
ORG $ + 50, for example, opens 50 bytes be­
tween the present location and the next assembled
location.

END
END expression

Tells the assembler to quit assembling the program. The
expression option lets you store the program's start address.
Use END as the last instruction in all your assembly lan­
guage programs.

Example:

ORG 0CC00H
HOME: MOV A,M

DATA: DC 'This is data '
END HOME

The END pseudo op quits the assembly and stores the pro­
gram's entry address (the value of HOME) in memory. When
you load the program, the processor knows to start execut­
ing at HOME (the LDA instruction) rather than at DATA (the
DC instruction).

DC is a pseudo op explained later in this chapter.

Defining Symbols

Symbols make it easy to write a program and also make the
program easy to read and revise. The ZBUG has 2 pseudo
ops for defining symbols:

• EQU, for defining a constant value
• SET, for defining a variable value

EQU
symbol EQU expression

59

Equates symbol to expression. Examples:

CHAR: EQU F9H

makes every use of CHAR equal to F9H.

KYREAD: EQU 7242H
CALL KYREAD

equates KYREAD to 7242H. The next instruction calls the
ROM routine at memory address 7242H.

EQU helps set the values of constants. You can use it any­
where in your program.

SET
symbol SET expression

Sets symbol equal to expression. You can use SET to reset
the symbol elsewhere in the program. Example:

SYMBOL: SET 25

sets SYMBOL equal to 25. Later in the program, you can re­
set SYMBOL.

SYMBOL: SET SYMBOL + COUNT

Now SYMBOL equals 25 + COUNT.

Inserting Data into Your Program

ZBUG has 4 pseudo ops that make it simple for you to re­
serve memory and insert data in your program:

• DS, for reserving areas of memory for data
• DB, for inserting 1 byte of data in memory
• DW, for inserting 2 bytes of data in memory
• DC, for inserting a string of data in memory

60

Remember that the processor cannot "execute" a block of
data in your program. If you use these pseudo ops:

• Use them at the end of your program (just before the END
instruction), or

• Precede them with an instruction that jumps or branches to
the next 'executable' instruction.

DS
symbol DS expression

(Define Storage) Reserves expression bytes of memory for
data. Example:

BUFFER: DS 200

reserves 200 bytes for data, starting at Address BUFFER.

DATA: DS 6 + SYMBOL

reserves 6 + SYMBOL bytes for data beginning at Address
DATA.

DB
symbol DB expression

(Define Byte) Stores a 1-byte expression in memory at the
current address. The symbol is optional.

Examples:

DATA: DB 33H

stores 33H in Address DATA.

FACTOR: DB NUM/2
LDA FACTOR

stores NUM/2 in Address FACTOR and then loads NUM/2 into
Register A.

DW
symbol DW expression

(Define Word) Stores a 2-byte expression in memory starting
at the current address. The symbol is optional. Example:

DATA: DW 1100H

stores 1100H in Address DATA and DATA + 1.

61

DC
symbol DC delimiter string delimiter

Stores an ASCII string in memory, beginning at the current
address. The symbol is optional. The delimiter can be any
character.

Examples:

TABLE: DC /THIS IS A
STRING/

stores the ASCII codes for THIS IS A STRING in memory lo­
cations, beginning with TABLE.

INIT:

DISP:

LXI
MVI

MOV
CALL
INX
DCR
JNZ

DC
DB

H,NAME
B,4

A,M
LCD
H
B
DISP

'GARY'
0DH

NAME:

The first instruction loads NAME into Register Pair HL. The
pseudo op DC at the end of the program stores "Gary" in
the four memory addresses beginning with NAME. The DISP
routine processes this data.

62

PART IV/ ROM ROUTINES
In an assembly language program, the simplest way to use
the I/O devices is with ROM routines.

This section shows how. A complete list of ROM routines is
in Reference Section E.

63

CHAPTER 10/ USING THE KEYBOARD AND VIDEO DISPLAY
(ROM ROUTINES)

The Model 100 uses its own machine-code routines to access
the screen, keyboard, and tape. These routines are built
into the computer's ROM. You can use the same routines in
your own program.

Appendix F lists each ROM routine and the ROM address
that points to it. This chapter uses 2 of these routines,
CHGET and LCD, a s samples in showing the steps for using
ROM routines.

Steps for Calling ROM Routines

We recommend these steps for calling a ROM routine:

1. Equate the routine's address to its name. This lets you re­
fer to the routine by its name rather than its address,
making your program easier to read and revise.

2. Set up any entry conditions required by the routine. This
lets you pass data to the routine.

3. Preserve the contents of the registers. Since many rou­
tines change the contents of the registers, you might want
to store the registers' contents temporarily before jumping
to the routine.

4. Cal l the ROM routine, us ing the indirect add re s s ing
mode.

5. Use any exit conditions that the routine passes back to
your program.

6. Restore the contents of the registers (if you temporarily
preserved them in Step 3).

64

Sample: Keyboard Input with CHGET

This short program uses 4 ROM subroutines to (1) "home"
the cursor, (2) monitor the keyboard, (3) display characters,
and (4) exit to the menu. Each key you press is displayed un­
til you press (RETURN) which returns you to the main menu.

CHGET monitors the keyboard and waits for you press a
key. When you do press a key, CHGET loads Register A with
the key's ASCII code. LCD then displays the contents of Reg­
ister A on the screen.

HOME:
CHGET:
LCD:
EXIT;
BEGIN;
LOOP:

ORG
EQU
EQU
EQU
EQU
PUSH
CALL
CALL

CPI
JNZ
POP
CALL
END

eccgen
422DH
12CDH
4B44H
S797H

PSW
CHGET

LCD
0DH
LOOP
PSW
EXIT
BEGIN

RDM routine homes cursor
RDM routine waits for a key
RDM routine d1splay5 character
RDM exit routine
store Registers A and F data

;Look for a c a r n a g e return
;If no <ENTER> loop to LDDP
;restore Registers A and F data

This is how we applied the above steps in writing this
program:

1. Equate ROM routines to their Addresses

This equates CHGET to 12CBH, the address that points to
CHGET's address:

CHGET: EQU 12CBH

2. Set Up Entry Conditions

HOME, CHGET, and EXIT have no entry conditions. LCD re­
quires that Register A contains the character to be dis­
played. CHGET fulfills the entry requirement for LCD.

65

g^^^^

3. Preserve the Registers' Contents

Only Registers A and F (Carry Flag) are affected by the pro­
gram. This preserves the contents of Register A and all the
condition flags:

BEGIN: PUSH PSW

This instruction "pushes" the value of Register A into a
memory location 1 less than the SP Register, and pushes the
condition flags (Register F) into a memory location 2 less
than the SP Register.

4. Call ROM routines

This CALLs CHGET:

LOOP: CALL CHGET

This displays the character you typed onto the LCD screen:

CALL LCD

5. Use Exit Conditions

After the CHGET subroutine is executed, Register A contains
a character. That character is compared to a carriage return:

CPI 0DH

The above ins t ruc t ion b r a n c h e s back to LOOP (the JNZ
LOOP instruction) if you do not press (RETURN). (Pressing
fflETURN) calls the EXIT subroutine.

6. Restore the Register's Contents

This "pops" (restores) the contents of Registers A and F:

POP PSW

Now, the above registers are restored to the data they con­
tained before executing the CHGET routine.

7. Exit the Program

This CALLs the Exit Routine that lets you properly exit the
program and return to the Model 100's main menu screen:

CALL EXIT

66

PART V/ REFERENCE
This section summarizes all the features of the Model 100
Debug/Assembler.

67

REFERENCEA/ASSEMBLERCOMMANDSANDSWITCHES _

ASM source fUename object filename lswitchl. . .
Assembles the source program into machine code in mem­
ory. Source files must be RAM files generated by the Text ,
Editor (TEXT) and therefore always carry the .DO extension.
The source filename is always required. If the object code
filename is omitted, the object code is written directly to
memory and no object file is created.

ASM source filename CRS:object iilename lswitchl. . .
Assembles the source program into machine code in the
cassette. When the device specifier CAS: precedes the object
filename, the object file is created and written to the cas­
sette recorder. If the object filename is omitted, the source
filename is assigned to the object file.

The assembler switches are:
«

/LP Assembly listing on the printer. {
/MR Multiple record object code file t
/NL No listing printed.
/NO No object code generated.
/NS No symbol table generated.
AVE Wait on assembly errors.

Examples:

ASM SAMPLE.DO SAMPLE
ASM TEST.DO CAS:TEST /WE
ASM TEST.DO /NO/NS

68

REFERENCE B/ ZBUG COMMANDS

The following list defines the terms used in this section:

expression
One or more numbers, symbols, or ASCII characters, lf more
t h a n one is u s e d , you may s e p a r a t e them wi th t h e s e
operators:

Multiplication
Division
Modulus
Shift
Local And
Exclusive Or
Logical Or

*
.D1V.
.MOD.
<
.AND.
.XOR.
.OR.

Addition
Subtraction
Equals
Not Equal
Positive
Negative
Complement

+
-
.EQU.
.NEG
+
-
.NOT.

address
A location in memory. This may be specified a s an expres-

.sion using numbers or symbols.

Iilename
A BASIC cassette file specification.

Commands

CONTINUE FROM BREAKPOINT C expression (MfER)
Continues execution of the program after interruption at a
breakpoint . The expression specifies the proceed count,
which is the number of times (-1) that the breakpoint will be
passed before a break occurs. Numbers in the expression for
the proceed count are interpreted as decimal numbers re­
gardless of the input radix setting.

c(mm
Continue by increments of 1.

DISPLAY BREAKPOINTS D fefTER)
Displays all breakpoints that have been set.

69

G
GO EXECUTE G expression fEmTO
Executes the program beginning at the address specified by
the expression. The expression is required.

K
CONSOLE CHANGE K fENTlR)
The Debug/Assembler usually directs console output to the
LCD. The K command allows you to direct the console out­
put to any of 3 devices—screen, printer, communications—by
responding to the LCD = 0 LPT = l COM = 2 CNS= prompt
with the appropriate number.

L
LOAD A MACHINE LANGUAGE FILE L filename rEFTTERl
Loads a machine language file Iilename from RAM files. Us­
ing CAS: to specify the cassette recorder—L CAS:fiiename
CENTER]—loads a m a c h i n e l a n g u a g e file filename from
cassette.

CL
CASSETTE LOAD A MACHINE LANGUAGE FILE
CL filename dNTER]
Loads machine language file filename from cassette.

P
PUNCH filename start address end address execution
address
Saves memory from start address to end address in a RAM
file. You must also specify an execution address, the first
address to be executed when the file is loaded. Using CAS:
to specify the cassette recorder—P CAS:/iiename start ad­
dress end address execution address—saves memory from
start address to end address in cassette.

CP
CASSETTE PUNCH filename start address end address
execution address
Saves memory to cassette from start address to end address.
You must also specify an execution address, the first ad­
dress to be executed when the file is loaded.

70

R
REGISTER DISPLAY R (lNTES)
Displays the contents of all the registers.

T
TYPE OUT T addressl address2 (MM)
Displays the memory locations from addressl to address2,
inclusive. Uses the current Examination and Type Out
Modes.

U
BLOCK TRANSFER U source address destination ad­
dress byte count
Transfers the contents of memory beginning at source ad­
dress and continuing for count bytes to another location in
memory beginning with destination address.

X
SET BREAKPOINT X address fENTER)
Sets a breakpoint at address. If address is omitted, the cur­
rent location is used. Each breakpoint is assigned a number
from 0 to 7. The first breakpoint set is assigned as Break­
point 0. A maximum of eight breakpoints may be set at one
time.

Y
YANK BREAKPOINT Y n (MM)
Deletes the breakpoint referenced by the n number (0-7). If n
is omitted, all breakpoints are deleted.

Z
DELETE SYMBOL TABLE Z (MM)
Deletes the current symbol table.

Examination Mode Commands

A mrm ASCII Mode
B rPTTER) Byte Mode
M CENTER) Mnemonic Mode
W (MM Word Mode
(The default is M)

71

Display Mode Commands

H (mm Half Symbolic
N (ENTER) Numberic
S lWfEff) Symbolic
(The default is S)

Numbering System Mode Commands

Obase Output
lbase Input
(Base can be 8, 10, or 16. The default is 16)

Speciai Symbois ___^

/
OPEN A LOCATION address/
Opens the specified memory location. Opens the current lo­
cation if address is omitted.

m
OPEN NEXT LOCATION CE
Opens next address and allows you to enter any change.

CE
OPEN PRECEDING LOCATION CE
Opens preceding address and allows you to enter any
changes.

address fENTTO
regisfer
OPEN A REGISTER AT AN ADDRESS address/ register/
Opens address of register and displays its contents. If ad­
dress is omitted, the register at the last address is re­
opened. After the contents have been displayed, you may
type:

new value To change the contents.
(ENTER) To close and enter any change.

72

SINGLE STEP EXECUTION address.
Executes the instruction at a specific memory address. A .
without an address executes the instruction at the current
setting of the Program Counter (PC).

SINGLE STEP EXECUTION—SKIP SUBROUTINES
Executes the instruction at the current setting of the Pro­
gram Counter, but skips all subroutines except CALL. When
; encounters a CALL, it executes the entire subroutine.

FORCE FLAGS :
Opens the current location, forcing the flags mode. The co­
lon does not actually have anything to do with the (status
flag) Register F. It simply interprets the contents of the given
address as if it contained flag bits.

EVALUATE THE EXPRESSION expressions=
Opens the current memory location and forces the numeric
type out mode and byte examination mode to evaluate the
expression.

73

REFERENCE C / DEBUG/ASSEMBLER ERROR MESSAGES

These are error messages you can get while in ZBGASM:

BAS BASIC Error (General)
BASIC Errors result from ZBUG's calls to the BASIC ROM.
The BASIC error code for these errors is stored at address
START + 3 (where START is the start of ZBGASM).

BP BAD BREAKPOINT (ZBUG)
You are attempting to set a breakpoint (1) greater than 7, (2)
in ROM, (3) at a SWI command, (4) at an address where one
is already set.

BTO BYTE OVERFLOW (Assembler)
There is a field overflow in an 8-bit data quantity.

CMD COMMAND ERROR (ZBUG)
You are not using a ZBUG command.

CON CAN'T CONTINUE (ZBUG)
The sys tem doesn ' t u n d e r s t a n d a c o m m a n d a n d canno t
continue.

DEV BAD DEVICE (General)
The device you are trying to access does not exist.

END MISSING END STATEMENT (Assembler)
END must be the final instruction on any source assembly
language program.

EXP EXPRESSION ERROR (General)
Either the syn tax for the express ion is incorrect or the
expression is dividing by zero.

FF FILE NOT FOUND (General)
The file is not in a RAM file or on cassette tape .

FLG LOST FLAGS (ZBUG)
A breakpoint ZBUG breakpoint path has caused the flag
register to be lost.

INF MISSING INFORMATION (Assembler)
(1) There is a missing delimiter in a pseudo op or (2) there is
no label on a SET or EQU pseudo op.

74

IO I/O ERROR (General)
Input/Output error. A checksum error was encountered while
loading a file from a cassette tape. The tape may be bad, or
the volume setting may be wrong. Try a higher volume.

LBL LABEL ERROR (Assembler)
The symbol you are using is (1) not a legal symbol, (2) not
terminated with either a space, a tab, or a carriage reJurn,
(3) has been used with ORG or END, which do not allow la­
bels, or (4) longer than six characters.

LTL LINE TOO LONG (Assembler)
Your assembler instruction line is too long.

MDS MULTIPLE DEFINED SYMBOL (Assembler)
Your program has defined the same symbol with different
values.

MEM BAD MEMORY (General)
A bad memory error can occur during ZBUG memory modifi­
cation or during an in-memory assembly in the Assembler. It
indicates that the data did not store correctly in the memory
location.

MRM MODIFYING RESTRICTED MEMORY (General)
This error warns you that you are either trying to alter ROM,
or you are about to overwrite a file in ^AM.

NM BAD OR MISSING FILENAME (General)
File integrity has been breached and data cannot be
accessed.

OM OUT OF MEMORY (General)
You have run out of available memory and may not continue
your operation.

OPC OP CODE ERROR (Assembler)
The op code is either not valid or is not terminated with a
space, tab, or carriage return.

OPN OPERAND ERROR (Assembler)
There is some syntax error in the operand field.

75

PRM BAD PARAMETERS {ZBUG)
Usually this means your command line has a syntax error,
or you have specified a filename that has more than eight
characters.

UDS UNDEFINED SYMBOL (General)
%ur program has not defined the symbol being used. The
operand field has a symbol that does have a corresponding
symbol in the label field.

VFY VERIFY ERROR (General)
An error was detected in a file saved to tape.

76

REFERENCE D/ ASSEMBLER PSEUDO OPS

The following list defines the terms used in this section:

symbol
Any string from one to six characters long, typed in the sym­
bol field.

expression
Any expression typed in the operand field. See Reference B,
"ZBUG commands," for a definition of valid expressions.

END expression
Ends the assembly. The optional expression specifies the
start address of the program.

symbol EQU expression
Equates symbol to an expression.

SYMBOL: EQU 0D000H

symbol DB expression, . . .
Stores a 1-byte expression beginning at the current address .

DATA2: DB 33H + COUNT

symbol DC delimiter string delimiter
Stores string in memory beginning with the current address.
The delimiter can be any character.

TABLE: DC /THIS IS A STRING/

symbol DW expression
Stores a 2-byte expression in memory beginning at the cur­
rent address.

DATA: DW 0D000H

77

ORG expression
Originates the program at expression address.

ORG 0CC00H

DS expression

Reserves expression bytes of memory for data.

DATA: DS 06H

symbol SET expression
Sets or resets symbol to expression.

SYMBOL: SET 0DD00H

78

L

REFERENCE E/ ROM SUBROUTINES

This reference lists the indirect addresses where the Model
100's ROM routines are stored. It also shows the entry and
exit conditions for each routine.

The name of the routine is for documentation only. To jump
to the routine, you must use its indirect address.

LCD Functions

LCD
Displays a character on the LCD at current cursor position.

Entry Address (Hex): 4B44
Entry conditions: A = character to be displayed
Exit conditions: None

PLOT
Turns on pixel at specified location.

Entry Address (Hex): 744C
Entry conditions: D = x coordinate (0-239)

E = 7 coordinate (0-63)
Exit conditions: None

UNPLOT
Turns off pixel at specified location.

Entry Address (Hex): 744D
Entry conditions: D = x coordinate (0-239)

E = y coordinate (0-63)
Exit conditions: None

POSIT
Gets current cursor position.

Entry Address (Hex): 427C
Entry condition: None
Exit conditions: H = column number (1-40)

I = row number (1-8)

79

ESCA
Sends specified Escape Code Sequence.

Entry Address (Hex): 4270
Entry conditions: A = escape code
Exit conditions: None

LCD Functions and Escape Codes

The routines for generating common LCD functions and es­
cape codes have no entry or exit parameters.

Routine

CRLF

HOME

CLS

SETSYS

RSTSYS

LOCK

UNLOCK

CURSON

CUROFF

DELLIN

INSLIN

ERAEOL

Function

Generates a Carriage
Return and Line Feed

Moves cursor to Home
Position (1,1)

Clears Display

Sets system line (lock
line 8)

Resets system line
(unlock line 8)

Locks display (no
scrolling)

Unlocks display
(scrolling)

Turns on cursor

Turns off cursor

Deletes line at current
cursor position

Inserts a blank line at
cursor position

Erases from cursor to
end of line

Entry
Address
(Hex)
4222

422D

4231

4235

423A

423F

4244

4249

424E

4253

4258

425D

Equiv.
ESC

—

—

T

U

Y

W

P

Q

M

L

K

80

ENTREV

EXTREV

Sets Reverse character 4269
mode

Turns off Reverse
character mode

426E

P

q

LCD Variabie and Status Locations

Name Contents

CSRY lCursor Position (ROW)
CSRX Cursor Position (Column)
BEGLCD Start of LCD memory
ENDLCD End of LCD memory

Memory
Location
F639
F63A
FE00
FF40

Keyboard Functions

KYREAD
Scans keyboard for a key and returns with or without one.

Entry Address (Hex): 7242
Entry conditions: None
Exit conditions: A = Character, if any

Z Flag: Set if no key found,
reset if key found

Carry: Set (character in code table below), reset
(normal character set code)

81

When Carry is set (1), Register A will contain one of
the following:
Register A

0
1
2
3
4
5
6
7
8
9

0A
0B

Key Pressed
Fl
F2
F3
F4
F5
F6
F7
F8
LABEL
PRINT
SHIFT-PRINT
PASTE

CHGET
Waits and gets character from keyboard.

Entry Address (Hex): 12CB
Entry conditions: None
Exit conditions: A = character code

Carry: Set if special character, reset if normal
character

{ ® - CE® return preprogrammed strings)

CHSNS
Checks keyboard queue for characters.

Entry Address (Hex): 13DB
Entry conditions: None
Exit conditions: Z flag: Set if queue empty, reset if keys

pending

82

KEYX
Checks keyboard queue for characters or BREAK.

Entry Address (Hex): 7270
Entry conditions: None
Exit conditions: Z flag set if queue empty, reset if keys

pending

Carry: Set when BREAK entered,
Reset with any other key

BRKCHK
Checks for BREAK characters only (CTRL C or CTRL S).

Entry Address (Hex): 7283
Entry conditions: None
Exit conditions:

Carry: Set if BREAK or PAUSE entered,
reset if no BREAK characters

INLIN
Gets line from keyboard. Terminated by (ENTER).

Entry Address (Hex): 4644
Entry conditions: None
Exit conditions: Data stored at location F685

83

Using Function Key Routines

The function table consists of character strings to be used
by the keyboard driver when processing H) - (fS) keys. The
strings have a maximum length of 16 characters and are ter­
minated by an 80 (hex) code. If the last character of the
string is ORed with 80, the character will also serve as a
terminator. The entire string will be placed in the keyboard
buffer when the appropriate function key is pressed. You
must specify character strings for all 8 function keys. (Use
the terminator byte for any string you wish to ignore.)

Example of function table:

FCTAB DEFM
DEFW
DEFM
DEFB
DEFM
DEFB
DEFM
DEFW
DEFM
DEFW
DEFB
DEFB

'Files'
0D80
'Load'
80
'Save'
80
'Run'
0D80
'List'
0D80
80
80

;F1

;F2

;F3

;F4

;F5

;Ignore F6
.ignore F7

DEFM 'Menu' ;F8
DEFW 0D80

STFNK
Sets function key definitions.

Entry Address (Hex): 5A7C
Entry conditions:

HL = Address of function table (above) *
Exit conditions: None

CLRFLK
Clears function key definition table (fills table with 80s).

Entry Address (Hex): 5A79
Entry conditions: None
Exit conditions: None

i
\

84

DSPFNK
Displays function keys.

Entry Address (Hex): 42A8
Entry conditions: None
Exit conditions: None

STDSPF
Sets and displays function keys.

Entry Address (Hex): 42A5
Entry conditions:

HL = Start address of function table
Exit conditions: None

ERAFNK
Erases function key display.

Entry Address (Hex): 428A
Entry conditions: None
Exit conditions: None

FNKSB
Displays fuiu:tion table (if enabled).

Entry Address (Hex): 5A9E
Entry conditions: None
Exit conditions: None

Printing Routines

PRINTR
Sends a character to the line printer.

Entry Address (Hex): 6D3F
Entry conditions: A = character to be printed
Exit conditions:

Carry: Set if cancelled by BREAK,
reset if normal return

85

PNOTAB
Prints character without expanding tab characters.

Entry Address (Hex): 1470
Entry conditions: A = character to be printed
Exit conditions: Unknown

PRTTAB
Prints a character expanding tabs to spaces.

Entry Address (Hex): 4B55
Entry conditions: A = character to be printed
Exit conditions: Unknown

PRTLCD
Prints contents of LCD.

Entry Address (Hex): lE5E
Entry conditions: None
Exit conditions: None

RS232-C and Modem Routines

DISC
Disconnects phone line.

Entry Address (Hex): 52BB
Entry conditions: None
Exit conditions: None

CONN
Connects phone line.

Entry Address (Hex): 52D0
Entry conditions: None
Exit conditions: None

DIAL
Dials a specified phone number.

Entry Address (Hex): 532D
Entry conditions: HL = phone number address
Exit conditions: None

86

RCVX
Checks RS232 queue for characters.

Entry Address (Hex): 6D6D
Entry conditions: None
Exit conditions: A = number of characters queue

Z flag: Set if no data, reset if charac­
ters pending

RV232C
Gets a character from RS232 receive queue.

Entry Address (Hex): 6D7E
Entry conditions: None
Exit conditions: A = character received

Z flag: Set if O.K., reset if error (PE,FF, or OF)
Carry: Set if BREAK pressed, else reset

SENDCQ
Sends an XON resume character (CTRL Q).

Entry Address (Hex): 6E0B
Entry conditions: None
Exit conditions: None

SENDCS
Sends an XOFF pause character (CTRL S).

Entry Address (Hex): 6ElE
Entry conditions: None
Exit conditions: None

SC232C
Sends a character to the RS-232 or Modem (with XON/OFF),

Entry Address (Hex): 6E32
Entry conditions: A = character to be sent
Exit conditions: Unknown

CARDET
Detects carrier (for modem only).

Entry Address (Hex): 6EEF
Entry conditions: None
Exit conditions: A = 0 if carrier

Z Flag: Set if carrier, else reset

87

BAUDST
Sets baud rate ior RS232-C.

Entry Address (Hex) 6E75
Entry conditions: H = Baud rate (l-9,M)
Exit conditions: None

INZCOM
Initializes RS232-C and Modem.

Entry Address (Hex): 6EA6
Entry conditions:

H = Baud rate (l-9,M)
L = UART configuration code

(See UART byte description below)
Carry: Set if RS232-C, reset if modem

Exit conditions: None

Bit(s)
0
1

2

3-4

Description
Number of Stop Bits
Parity setting

Parity disable

Word length

:0=1,1=2
:0 = Odd
1 = Even

:0 = Enable
I = Disable

:01 = 6, 10 = 7.
11 = 8

The byte is ANDed with lFH to ignore bits 5-7. The text *
string containing the current STAT setting is located at
F65BH (5 bytes): baud, length, parity, stop bits, and XON/
XOFF switch.

SETSER
Sets serial interface parameters. Activates RS232-C/Modem. *

Entry Address (Hex): 17E6
Entry conditions: HL = start address of ASCII string

containing parameter terminated by zero (78ElE.0). |
Syntax same as in Telcom's STAT *
Carry: Set for RS232-C, reset for Modem ^

Exit conditions: None |
i

CLSCOM
Deactivates RS232-C/Modem.

Entry Address (Hex): 6ECB
Entry conditions: None
Exit conditions: None

Cassette Recorder Routines

DATAR
Reads character from cassette (no checksum).

Entry Address (Hex): 702A
Entry conditions: None
Exit conditions: D = character from cassette

CTON
Turns on motor.

Entry Address (Hex): 14A8
Entry conditions: None
Exit conditions: None

CTOFF
Turns off motor.

Entry Address (Hex): 14AA
Entry conditions: None
Exit conditions: None

CASIN
Reads a character from cassette and updates checksum.

Entry Address (Hex): 14B0
Entry conditions: C = current checksum
Exit conditions: A = character

C = contains the updated checksum

89

CSOUT
Sends character to cassette and updates checksum.

Entry Address {Hex): 14C1
Entry conditions: A = character to be sent

C = current checksum
Exit conditions: C = updated checksum

SYNCW
Writes cassette header and sync byte only.

Entry Address (Hex): 6F46
Entry conditions: None
Exit conditions: None

SYNCR
Reads cassette header and sync byte only.

Entry Address (Hex): 6F85
Entry conditions: None
Exit conditions: None

DATAW
Writes a character to cassette (no checksum).

Entry Address (Hex): 6F5B
Entry conditions: A = character to be sent
Exit conditions: None

90

RAM File Routines

The directory table (F962) contains information on all file lo­
cation, type, and status.

Each file is managed by an 11-byte directory entry in the
format:

Byte 1
Bytes 2-3 :
Bytes 4-11 :

Directory Flag (for file type and status)
Address of file
8-byte filename

The Directory Flag contains the following information:

Bit 7 (MSB)
Bit 6
Bits
Bit 4
Bits
Bit 2
Bit 1
Bit 0

MAKTXT
Creates a text file

1 if a valid entry
1 for ASCII text file (DO)
1 for machine language (CO)
1 for ROM file
1 for invisible file

reserved for future use
reserved for future use
interiial use only

,
Entry Address (Hex): 220F
Entry conditions: Filename (max. 8 bytes) must be

stored in FILNAM (FC93).'DO' extension not
required.

Exit conditions: HL = TOP address of new file
DE = address of Directory entry (Flag)
Carry: Set if file already exists

Reset if new file

CHKDC
Searches for file in directory.

Entry Address (Hex): 5AA9
Entry conditions; DE = address of filename to find

(ASCII filename + 0 byte terminator)
Exit conditions: HL = start address (TOP) of file

Z Flag: 0 (file found)
1 (file not found)

91

GTXTTB
Gets top address of file.

Entry Address (Hex): 5AE3
Entry conditions: HL = address of directory entry for

file
Exit conditions: HL = TOP start address of file

KILASC
Kills a text (DO) file.

Entry Address (Hex): lFBE
Entry conditions: DE = file TOP start address

HL = address of directory entry (flag)
Exit conditions: None

INSCHR
Inserts a character in a file.

Entry Address (Hex): 6B61
Entry conditions: A = character to insert

HL = address to insert character
Exit conditions: HL = HL + 1

Carry: Set if out of memory

MAKHOL
Inserts a specified number of spaces in a file.

Entry Address (Hex): 6B6D
Entry conditions: BC = number of spaces to insert

HL = address to insert spaces
Exit conditions: HL and BC are preserved

Carry : Set if out of memory

MASDEL
Deletes specified number of characters.

Entry Address (Hex): 6B9F
Entry conditions: BC = number of characters to delete

HL = address of deletion
Exit conditions: HL and BC are preserved

92

other Routines

INITIO
Cold start reset.

Entry Address (Hex): 6CD6
Entry conditions: None
Exit conditions: None

IOINIT
Warm start reset.

Entry Address (Hex): 6CE0
Entry conditions: None
Exit conditions: None

MENU
Goes to Main Menu.

Entry Address (Hex): 5797
Entry conditions: None
Exit conditions: None

MUSIC
Makes tone.

Entry Address (Hex): 72C5
Entry cond i t ions : DE = f requency (See O w n e r ' s

manual)
B = d u r a t i o n (S e e O w n e r ' s
manual)

Exit conditions: None

TIME
Read System TIME.

Entry Address (Hex): 190F
Entry conditions: HL = address of 8-byte area for TIME
Exit conditions: HL @ TIME (hh:mm:ss)

DATE
Reads system DATE.

Entry Address (Hex): 192F
Entry conditions: HL = address of 8-byte area for DATE
Exit conditions: HL & DATE (mm/dd/yy)

93

DAY
Reads system DAY of the week.

Entry Address (Hex): 1962
Entry conditions: HL = address of 3 byte area for DAY
Exit conditions: HL Q DAY (ddd)

94

REFERENCE F/ ASCII CODES

Decimal Hex Binary Printed
Character

Keyboard
Character

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

00

01

02

03

04

05

06

07

08

09

0A

OB

0C

0D

0E

OF

10

11

12

13

14

15

16

17

18

19

1A

IB

1C

ID

1E

IF

20

21

00000000

00000001

00000010

00000011

00000100

00000101

00000110

00000111

00001000

00001001

00001010

00001011

00001100

00001101

00001110

00001111

00010000

00010001

00010010

00010011

00010100

00010101

00010110

00010111

00011000

00011001

00011010

00011011

00011100

00011101

00011110

00011111

00100000

00100001 !

(SSDM)
ftTBDA

(HHDB

(CTBDC

(CTBDD

(tTBDE

(CTBDF

(CTRDG

feTHDH

(tTBDI

(tTBC1J

(CTBDK

fCTRDL

(CTBt1M

(tTBDN

(ETHDO

(HBDP

(HBDQ

(tTBt1R

(CTBDS

ftTBDT

(HBDU

(tTBDV

fCTHDW

fCTBDX

fCTHDY

fCTHClZ

(BE
®
(3

cr>
CD
(SPXCEfXR)

!

95

Decimal

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

Hex

AC

AD

AE

AF

BO

B1

82

B3

B4

85

86

87

88

89

8A

88

BC

BD

BE

BF

CO

CI

C2

03

C4

C5

C6

C7

C8

C9

CA

C8

CC

CD

CE

Binary

10101100

10101101

10101110

10101111

10110000

10110001

10110010

10110011

10110100

10110101

10110110

10110111

10111000

10111001

10111010

10111011

10111100

10111101

10111110

10111111

11000000

11000001

11000010

11000011

•11000100

11000101

11000110

11000111

11001000

11001001

11001010

11001011

11001100

11001101

11001110

Printed
Character

'/4

3/4

'/2

n
¥

A

6

u
e
-
a

6

u

B
T
M

6

U

e

f
k

e

T

6

u

-
e

i'

d

i

6

u

y

n
a

Keyboard
Character

<SXS)p

(S9S:

(339E)/

(S9E)0

1SBHr7

33&E]A

(BSDO

IBBE)U

(^9)6

(SSS)[

(S9E)a

(S9E)o

dSSE)u

3S9E)S

<SM)T

(BEE)d

(SODT).

(HSUTv

(am) =
(BBBF

(tacTi

(BffiB3

339E8

WS)9

(BffiB7

(BffiE-

(QSE)e

(ME)i

(sacq
(SSBK

S3SE>l

(IKBj

33SE)n

(SSE)z

Forlo>vercaselettersa-z, besureSaJOEBisnotpressed "down."

100

DKlmal Hex Binary Printed
Character

Keyboard
Character

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

CF

DO

D1

D2

D3

D4

D5

D6

D7

D8

D9

DA

DB

DC

DD

DE

DF

ED

El

E2

E3

E4

E5

E6

E7

E8

E9

EA

EB

EC

ED

EE

EF

F0

F1

11001111

11010000

11010001

11010010

11010011

11010100

11010101

11010110

11010111

11011000

11011001

11011010

11011011

11011100

11011101

11011110

11011111

11100000

11100001

11100010

11100011

11100100

11100101

11100110

11100111

11101000

11101001

11101010

11101011

11101100

11101101

11101110

11101111

11110000

11110001

6

A

E

i
6
u
1

E

E

A

1

6

u
Y

u
E

A

(S9B

(SSE>!

(SSE)#

(HBB"

(QSS(

(i3SE)&

(S9!E)l

(BffiBE

SffiBD

(BffiBQ

(SffiBK

(BffiDL

(BffiBJ

(BffiDY

(MD<
(HBBV

(BffiBX

(SRPB)Z

• (upper left) (5RFH)i

• (upper right) (JSBPRl(ii

• (1

• (1

•.

^
—
^
1
1

r

-

Dwer left (5Bffl)#

3wer right)(BBffl $

(upper)

lower)

(left)

(right)

(SffiH)%

(SK'
(BiPfflQ

(SffHlW

(ffiffl)E

ffiKR

(ffiH)A

mms
(BgffiD

(gffff,F

ogn:x
03gHlU

OfffflP

101

Decimal Hex Binary Printed Keyboard
Character Character

242

243

244

245

246

247

248

249

250

251

252

253

254

255

F2

F3

F4

F5

F6

F7

F8

F9

FA

FB

FC

FD

FE

FF

11110010

11110011

11110100

11110101

11110110

11110111

11111000

11111001

11111010

11111011

11111100

11111101

11111110

11111111

n

-r

h

1
i_

J

j _

^
+
r A
^
k.
P

fflH)0

(agffii

(SH3J

(SH)

(9B)M

(!^>
(^ <
(BJHDL

(BW)K

(BRFffiH

(BgffiT

(BffH)G

(B8STY

(BTOC

102

REFERENCE G/ 8085 INSTRUCTION SET

What the Instruction Set Is

A computer, no matter how sophisticated, can do only what
it is instructed to do. A program is a sequence of instruc­
tions, each of which is recognized by the computer and
causes it to perform an operation. Once a program is placed
in memory space that is accessible to your CPU, you may
run that same sequence of instructions a s often as you wish
to solve the same problem or to do the same function. The
set of instructions to which the 8085A CPU will respond is
permanently fixed in the design of the chip.

Each computer instruction allows you to initiate the perfor­
mance of a specific operation. The 8085A implements a
group of instructions that move data between registers, be­
tween a register and memory, and between a register and
an I/O port. It also has arithmetic and logic instructions,
conditional and unconditional branch instructions, and ma­
chine control instructions. The CPU recognizes these instruc­
tions only when they are coded in binary form.

103

Symbols and Abbreviations:

The following symbols and abbreviations are used in the
subsequent description of the 8085A instructions:

SYMBOLS MEANING

accumulator Register A

addr 16-bit address quantity

data 8-bit quantity

data 16 16-bit data quantity

byte 2 The second byte of the instruction

byte 3 The third byte of the instruction

port 8-bit address of an I/O device

r,rl,r2 One of the registers A,B,C,D,
E,H,L

DDD,SSS The bit pattern designating one of
the registers A,B,C,D,E,H,L (DDD
= destination, SSS = source):

DDD
or SSS

111
000
001
010
011
100
101

REGISTER
NAME

A
B
C
D
E
H
L

104

rp One of the register pairs:

B represents the B,C pair with B
as the high-order register and C
a s the low-order register;

D represents the D,E pair with D
as the high-order register and E
as the low-order register;

H represents the H,L pair with H
as the high-order register and L
as the low-order register;

SP represents the 16-bit stack
pointer register.

RP The bit pattern designating one
of the register pairs B,D,H,SP:

REGISTER
RP PAIR
00 B-C
01 D-E
10 H-L
11 SP

rh The first (high-order) register of
a designated register pair.

rl The second (low-order) register
of a designated register pair.

PC 16-bit program counter register
(PCH and PCL are used to refer
to the high-order and low-order 8
bits respectively).

SP 16-bit stack pointer register (SPH
and SPL are used to refer to the
high-order and low-order 8 bits
respectively.)

rm Bit m of the register r (bits are
number 7 through 0 from left to
right).

LABEL 16-bit address of subroutine.

105

The condition flags:

2 Zero

S Size

P Parity

CY Carry

AC Auxiliary Carry

() The contents of the memory loca­
tion or registers enclosed in the
parentheses.

"Is transferred to"

Logical AND

Exclusive OR

Inclusive OR

+ Addition

- Two's complement subtraction

* Multiplication

"Is exchanged with"

The one's complement {e.g., (A))

n The restart number 0 through 7
NNN The binary representa t ion 000

through 111 for restart number 0
through 7 respectively.

The instruction set encyclopedia is a detailed description of
the 8085A instruction set. Each instruction is described in
the following manner:

1. The MCS-85 macro assembler format, consisting of the in­
struct ion mnemonic a n d ope rand fields, is pr in ted in
BOLDFACE on the first line.

106

2. The name of the instruction is listed to the right of the
mnemonic.

3. The next lines contain a symbolic description of what the
instruction does.

4. This is followed by a narrative description of the opera­
tion of the instruction.

Instruction and Data Formats

Memory used in the MCS-85 system is organized in 8-bit
bytes. Each byte has a unique location in physical memory.
That location is described by one of a sequence of 16-bit bi­
nary addresses. The 8085A can address up to 64K (K = 1024,
or 2'°; hence, 64K represents the decimal number 65,536)
bytes of memory, which may consist of both random-access,
read-wri te memory (RAM) and read-only memory (ROM),
which is also random-access.

Data in the 8085A is stored in the form of 8-bit binary
integers.

When a register or data word contains a binary number, it
is necessary to establish the order in which the bits of the
number are written. In the Intel 8085A, BIT 0 is referred to a s
the Least Significant Bit (LSB), and BIT 7 (of an 8-bit num­
ber) is referred to a s the Most Significant Bit (MSB).

An 8085A program instruction may be one, two or three
bytes in length. Multiple-byte instructions must be stored in
successive memory locations; the address of the first byte is
always used as the address of the instruction. The exact in­
struction format will depend on the particular operation to
be executed.

107

Addressing Modes:

Often the data that is to be operated on is stored in memory.
When multi-byte numeric data is used, the data, like in­
structions, is stored in successive memory locations, with
the least significant byte first, followed by increasingly sig­
nificant bytes. The 8085A has four different modes for ad­
dressing data storfed in memory or in registers:

• Direct — Bytes 2 and 3 of the instruction contain the
exact memory address of the data item (the low-
order bits of the address are in byte 2, the high-
order bits in byte 3).

• Register — The instruction specifies the register or
register pair in which the data is located.

• Register Indirect — The instruction specifies a regis­
ter pa i r which conta ins the memory a d d r e s s
where the data is located (the high-order bits of
the address are in the first register of the pair
the low-order bits in the second).

• Immediate — The instruction contains the data itself.
This is either an 8-bit quantity or a 16-bit quan­
tity (least significant byte first, most significant
byte second).

Unless directed by an interrupt or branch institution, the ex­
ecution of instructions proceeds through consecutively in­
creasing memory locations. A branch instruction can specify
the address of the next instruction to be executed in one of
two ways:

• Direct — The branch instruction contains the address
of the next instruction to be executed. (Except
for the 'RST' instruction, byte 2 contains the low-
order a d d r e s s a n d by t e 3 t h e h i g h - o r d e r
address.)

108

• Register Indirect — The branch instruction indicates a
register-pair which contains the address of the
next instruction to be executed. (The high-order
bits of the address are in the first register of

j the pair, the low-order bits in the second.)

The RST instruction is a special one-byte call instruction
(usually used during interrupt sequences.). RST includes a
three-bit field; program control is transferred to the instruc­
tion whose address is eight times the contents of this three-
bit iield.

Condition Flags:

There are five condition flags associated with the execution
of instructions on the 8085A. They are Zero, Sign, Parity,
Carry, and Auxiliary Carry. Each is represented by a 1-bit
register (or flip-flop) in the CPU. A flag is set by forcing the
bit to 1: it is reset by forcing the bit to 0.

Unless indicated otherwise, when an instruction affects a
flag, it affects it in the following manner:

Zero: If the result of an instruction has the value 0,
this flag is set; otherwise it is reset.

Sign: If the most significant bit of the result of the op­
eration has the value 1, this flag is set; other­
wise it is reset.

Parity: If the modulo 2 sum of the bits of the result of
the operation is 0, (i.e., if the result has even
parity), this flag is set; otherwise it is reset
(i.e., if the result has odd parity).

Carry: If the instruction resulted in a carry (from addi­
tion) or a borrow (from subtraction or a compari­
son) out of the high-order bit, this flag is set;
otherwise it is reset.

109

Auxiliary If the instruction caused a carry out of bit 3 and
Carry: into bit 4 of the resulting value, the auxiliary

carry is set; otherwise it is reset. This flag is
affected by single-precision additions, subtrac­
tions, increments, decrements , compar isons ,
and logical operations, but is principally used
with additions and increments preceding a DAA
(Decimal Adjust Accumulator) instruction.

Instruction Set Encyclopedia

In the ensuing 22 pages, the complete 8085A instruction set
is described, grouped in order under five different functional
headings, a s follows:

1. Data Transfer Group — Moves data between regis­
ters or between memory locations and registers. In­
cludes moves, loads, stores, and exchanges. (See
below).

2. Arithmetic Group — Adds, subtracts, increments, or
decrements data in registers or memory. (See pages
5-13.)

3. Logic Group — ANDs, ORs, XORs, compares, ro­
tates, or complements data in registers or between
memory and a register (See page 5-16.)

4. Branch Group — Initiates conditional or uncondi­
tional jumps, calls, returns, and restarts. (See page
5-20.)

5. Stack, I/O. and Machine Control Group — Includes
instructions for maintaining the stack, reading from
input ports, writ ing to output ports , se t t ing a n d
clearing flags. (See page 5-22.)

110

The formats described in the encyclopedia reflect the assem­
bly language processed by Intel-supplied assembler, used
with the Intellec® development systems.

Data Transfer Group

This group of instructions transfers data to and from regis­
ters and memory. Condition flags are not affected by any in­
struction in this group.

MOV rl, r2 Move Register

(rl) ^ (r2)

The content of register r2 is moved to register r l .

MOV r, M Move from memory

(r) ^ ((H) (L))

The content of the memory location, whose address is in reg­
isters H and L, is moved to register r.

MOV M. r Move to memory

((H)) (L)) - (r)

The content of register r is moved to the memory location
whose address is in registers H and L.

MVI r, data Move Immediate

(r) ^ (byte 2)

The content of byte 2 of the instruction is moved to register r.

All mnemonics copyright Intel Corporation 1985

111

MVI M, data Move to memory immediate

((H)(L))^(byte2)

The content of byte 2 of the instruction is moved to the mem­
ory location whose address is in registers H and L.

LXI rp, data 16 Load register pair immediate

(rh) ^ (byte 3),
(rl) ^ (b y t e 2)

Byte 3 of the instruction is moved into the high-order register
(rh) of the register pair rp. Byte 2 of the instruction is moved
into the low-order register (rl) of the register pair rp.

LDA addr Load Accumulator direct

(A) ^ ((byte 3)(byte 2))

The content of the memory location, whose address is speci­
fied in byte 2 and byte 3 of the instruction, is moved to reg­
ister A.

STA addr Store Accumulator direct

((byte 3)(byte 2)) *- (A)

The content of the accumulator is moved to the memory loca­
tion whose address is specified in byte 2 and byte 3 of the
instruction.

LHLD addr Load H and L direct

(L) ^ ({byte 3)(byte 2))
(H) ^ {(byte3)(byte2)+l)

The content of the memory location, whose address is speci­
fied in byte 2 and byte 3 of the instruction, is moved to reg­
ister L. The content of the memory location at the succeeding
address is moved to register H.
All mnemonics copyright Intel Corporation 1985

112

SHLD addr Store H and L direct

((byte 3)(byte 2)) ^ (L)
((byte3)(byte2) + l) ^ (H)

The content of register L is moved to the memory location
whose address is specified in byte 2 and byte 3. The content
of register H is moved to the succeeding memory location.

LDAX rp Load accumulator indirect

(A) ((rp))

The content of the memory location, whose address is in the
register pair rp, is moved to register A. Note: only register
pairs rp = B (registers B and C) or rp = D (registers D and E)
may be specified.

STAX rp Store accumulator indirect

((rp)) - (A)

The content of register A is moved to the memory location
whose address is in the register pair rp. Note: only register
pairs rp = B (registers B and C) or rp = D (registers D and E)
may be specified.

XCHG Exchange H and L with D and E

(H)*-(D)
(L)*-(E)

The contents of registers H and L are exchanged with the
contents of r eg i s t e r s D a n d E.

All mnemonics copyright Intel Corporation 1985

113

Arithmetic Group

This group of instructions performs arithmetic operations on
data in registers and memory.

Unless indicated otherwise, all instructions in this group af­
fect the Zero, Sign, Parity, Carry, and Auxiliary Carry flags
according to the standard rules.

All subtraction operations are performed via two's comple­
ment arithmetic and set the carry flag to one to indicate a
borrow and clear it to indicate no borrow.

ADD r Add Register

(A) - (A) + (r)

The content of register r is added to the content of the accu­
mulator. The result is placed in the accumulator.

ADD M Add memory

{A) - (A) + ((H) (L))

The content of the memory location whose address is con­
tained in the H and L registers is added to the content of the
accumulator. The result is placed in the accumulator.

ADI data Add immediate

(A) ^ (A) + (byte 2)

The content of the second byte of the instruction is added to
the content of the accumulator. The result is placed in the
accumulator.

ADC r Add Register with carry

(A) - (A) + (r) + (CY)

The content of register r and the content of the carry bit are
added to the content of the accumulator. The result is placed
in the accumulator.

All mnemonics copyright Intel Corporation 1985

114

ADC M Add memory with carry

(A) ^ (A) + ((H) (L)) + (CY)

The content of the memory location whose address is con­
tained in the H and L registers and the content of the CY
flag are added to the accumulator. The result is placed in
the accumulator.

ACI data Add immediate with carry

(A) *• (A) + (byte 2) + (CY)

The content of the second byte of the instruction and the con­
tent of the CY flag are added to the contents of the accumu­
lator. The result is placed in the accumulator.

SUB r Subtract Register

(A) - (A) - (r)

The content of register r is subtracted from the content of the
accumulator. The result is placed in the accumulator.

SUB M Subtract memory

(A) - (A) - ((H) (L))

The content of the memory location whose address is con­
tained in the H and L registers is subtracted from the con­
tent of t he a c c u m u l a t o r . The r e s u l t is p l a c e d in t h e
accumulator.

SUI data Subtract immediate

(A) ^ (A) - (byte 2)

The content of the second byte of the instruction is sub­
tracted from the content of the accumulator. The result is
placed in the accumulator.

All mnemonics copyright Intel Corporation 1985

115

SBB r Subtract Register with borrow

(A) - {A) - (r) - {CY)

The content of register r and the content of the CY flag are
both subtracted from the accumulator. The result is placed
in the accumulator.

SBB M Subtract memory with borrow

(A) - (A) - ((H) (L)) - (CY)

The content of the memory location whose address is con­
tained in the H and L registers and the content of the CY
flag are both subtracted from the accumulator. The result is
placed in the accumulator.

SBI data Subtract immediate with borrow

(A) *- (A) - (byte 2) - (CY)

The contents of the second byte of the instruction and the
contents of the CY flag are both subtracted from the accu­
mulator. The result is placed in the accumulator.

INR r Increment Register

(r) - (r) + 1

The content of register r is incremented by one. Note: All
condition flags except CY are affected.

INR M Increment memory

((H) (L)) ^ ((H) (L)) + 1

The content of the memory location whose address is con­
tained in the H and L registers is incremented by one. Note:
All condition flags except CY are affected.

All mnemonics copyright Intel Corporation 1985

116

DCR r Decrement Register

{r) - (r) - 1

The content of register r is decremented by one. Note: All
condition flags except CY are affected.

DCR M Decrement memory

((H) (L)) ^ ((H) (L)) - 1

The content of the memory location whose address is con­
tained in the H and L registers is decremented by one. Note:
All condition flags except CY are affected.

INX rp Increment register pair

(rh) (rl) *- (rh) (rl) + 1

The content of the register pair rp is incremented by one.

Note: No condition flags are affected.

DCX rp Decrement register pair

(rh) (rl) *- (rh) (rl) - 1

The content of the register pair rp is decremented by one.

Note: No condition flags are affected.

DAD rp Add register pair to H and L

(H) (L) ^ (H) (L) + (rh) (rl)

The content of the register pair rp is added to the content of
the register pair H and L. The result is placed in the register
pair H and L. The result is placed in the register pair H and
L. Note: Only the CY flag is affected. It is set if there is a
carry out of the double precision add; otherwise it is reset.

All mnemonics copyiight Intel Coiporation 1985

117

DAA Decimal Adjust Accumulator

The eight-bit number in the accumulator is adjusted to form
two four-bit Binary-Coded-Decimal digits by ,the following
process:

1. If the value of the least significant 4 bits of the accumula­
tor is greater than 9 or if the CY flag is set, 6 is added to
the most significant 4 bits of the accumulator.

Note: All flags are affected.

Logical Group

This group of instructions performs logical (Boolean) opera­
tions on data in registers and memory and on condition
flags.

Unless indicated otherwise, all instructions in this group af­
fect the Zero, Sign, Parity, Auxiliary Carry, and Carry flags
according to the standard rules.

ANA r AND Register

(A) *- (A) (r)

The content of register r is logically ANDed with the content
of the accumulator. The result is placed in the accumulator.
The CY flag is cleared and AC is set {8085). The CY flag is
cleared and AC is set to the OR'ing of bits 3 of the operands
(8080).

All mnemonics copyright Intel Corporation 1985

118

ANA M AND memory

(A) ^ (A) ((H) (L))

The contents of the memory location whose address is con­
tained in the H and L registers is logically ANDed with the
content of the accumulator. The result is placed in the accu­
mulator. The CY flag is cleared and AC is set (8085). The
CY flag is cleared and AC is set to the OR'ing of bits 3 of
the operands (8080).

ANI data AND immediate

(A) ^ (A) (byte 2)

The content of the second byte of the instruction is logically
ANDed with the contents of the accumulator. The result is
placed in the accumulator. The CY flag is cleared and AC is
set (8085). The CY flag is cleared and AC is set to the OR'­
ing of bits 3 of the operands (8080).

XRA r Exclusive OR Register

(A) *- (A) (r)

The content of register r is exclusive-OR'd with the content of
the accumulator. The result is placed in the accumulator.
The CY and AC flags are cleared.

XRA M Exclusive OR Memory
(A) - (A) ((H) (L))
The content of the memory location whose address is con­
tained in the H and L registers is exclusive-OR'd with the
content of the accumulator. The result is placed in the accu­
mulator. The CY and AC flags are cleared.

All mnemonics copyright Intel Corporation 1985

119

XRI data Exclusive OR immediate
(A) ^ (A) {byte 2)
The content of the second byte of the instruction is exclusive-
OR'd with the content of the accumulator. The result is
p l a c e d in the a c c u m u l a t o r . The CY and AC f lags are
cleared.

ORA r OR Register

(A) ^ (A) V (r)

The content of register r is inclusive-OR'd with the content of
the accumulator. The result is placed in the accumulator.
The CY and AC flags are cleared.

ORA M OR memory

(A) ^ (A) V ((H) (L))

The content of the memory location whose address is con­
tained in the H and L registers is inclusive-OR'd with the
content of the accumulator. The result is placed in the accu­
mulator. The CY and AC flags are cleared.

ORI data OR Immediate

(A) *- (A) V (byte 2)

The content of the second byte of the instruction is inclusive-
OR'd with the content of the accumulator. The result is
p l a c e d in the a c c u m u l a t o r . The CY and AC f lags are
cleared.

All mnemonics copyright Intel Corporation 1985

120

CMP r Compare Register

(A) - {r)

The content of register r is subtracted from the accumulator.
The accumulator remains unchanged. The condition flags
are set a s a result of the subtraction. The Z flag is set to 1
of (A) = (r). The CY flag is set to 1 if (A) < (r).

CMP M Compara memory

(A) - ((H) (L))

The content of the memory location whose address is con­
tained in the H and L registers is subtracted from the accu­
mulator. The accumulator remains unchanged. The condition
flags are set as a result of the subtraction. The Z flag is set
to 1 if (A) = ((H) {L)). The CY flag is set to 1 if (A)<((H) {L)).

CPI data Compare immediate
(A) - (byte 2)

The content of the second byte of the instruction is sub­
tracted from the accumulator. The condition flags are set by
the r e s u l t of the s u b t r a c t i o n . The Z f lag is set to 1 if
(A) = (byte 2). The CY flag is set to 1 if (A)<(byte 2).

RLC Rotate left

(A„,,) ^ (AJ ;(Ao) - (A,)
(CY) ^ (A,)

The content of the accumulator is rotated left one position.
The low order bit and the CY flag are both set to the value
shifted out of the high order bit position. Only the CY flag is
affected.

All mnemonics copyright Intel Corporation 1985

121

RRC Rotate right

(AJ *- (A„,J;(A,) - (Ao)
(CY) - (Ao)

The content of the accumulator is rotated right one position.
The high order bit and the CY flag are both set to the value
shifted out of the low order bit position. Only the CY flag is
affected.

RAL Rotate left through carry

(A„,,) - (AJ; (CY) - (A,)
(Ao) ^ (CY)

The content of the accumulator is rotated left one position
through the CY flag. The low order bit is set equal to the CY
flag and the CY flag is set to the value shifted out of the
high order bit. Only the CY flag is affected.

RAR Rotate right through carry

(A„) *- (A^,,);(CY) ^ (Ao)
(A,) - (CY)

The content of the accumulator is rotated right one position
through the CY flag. The high order bit is set to the CY flag
and the CY flag is set to the value shifted out of the low or­
der bit. Only the CY flag is affected.

CMA Complement accumulator

(A) ^ (A)

The contents of the accumulator are complemented (zero bits
become 1, one bits become 0). No flags are affected.

All mnemonics copyright Intel Corporation 1985

122

CMC Complement carry

(CY) ^ {Cl)

The CY flag is complemented. No other flags are affected.

STC Set carry

(CY) ^ 1

The CY flag is set to 1. No other flags are affected.

Branch Group

This group of instructions alter normal sequential program
flow.

Conditional flags are not affected by any instruction in this
group.

The two types of branch instructions are unconditional and
conditional. Unconditional transfers simply perform the spec­
ified operation on register PC (the program counter). Condi­
t iona l t r a n s f e r s e x a m i n e the s t a t u s of one of the four
processor flags to determine if the specified branch is to be
execu ted . The condi t ions that may be speci f ied a r e a s
follows:

CONDITION CCC
N Z - n o t z e r o (Z = 0) 000

Z - z e r o (Z = l) 001
NC — no carry (CY = 0) 010

C - c a r r y (C Y = l) 011
PO — parity odd (P = 0) 00
OE — parity even (P=1) 101

P - p l u s (S = 0) 110
M — m i n u s (S = l) 111

All mnemonics copyright Intel Corporation 1985

123

IMP addr Jump

(PC) *- (byte 3) (byte 2)

Control is transferred to the instruction whose address is
specified in byte 3 and byte 2 of the current instruction.

]cottdition addr Conditional jump

IF (CCC),
(PC) *- (byte 3) (byte 2)

If the specified condition is true, control is transferred to the
instruction whose address is specified in byte 3 and byte 2
of the current ins t ruct ion; o the rwise , control con t inues
sequentially.

CALL addr Call

((SP) - 1) - (PCH)
((SP) - 2) — (PCL)
(SP) ^ (SP) - 2
(P O ^ (byte3)(byte2)

The high-order eight bits of the next instruction address are
moved to the memory location whose address is one less
than the content of register SP. The low-order eight bits of
the next instruction address are moved to the memory loca­
tion whose address is two less than the content of register
SP. The content of register SP is decremented by 2. Control is
transferred to the instruction whose address is specified in
byte 3 and byte 2 of the current instruction.

All mnemomcs copyright Intel Corporation 1985

124

Ccondition addr Condition call

IF (CCC),
((SP) - 1) - (PCH)
({SP) - 2) - (PCL)
(SP) ^ (SP) - 2
(PC) ^ (byte 3) (byte 2)

If the specified condition is true, the actions specified in the
CALL instruction (see above) are performed; otherwise, con­
trol continues sequentially.

RET Return

(PCL) - ((SP));
(P C H) ^ ((SP) + 1);
(SP) *- (SP) + 2 ;

The content of the memory location whose address is speci­
fied in register SP is moved to the low-order eight bits of
register PC. The content of the memory location whose ad­
dress is one more than the content of register SP is moved to
the high-order eight bits of register PC. The content of regis­
ter SP is incremented by 2.

Rcondition Conditional return

If (CCC),
(PCL) — ((SP))
(PCH) *- ((SP) + 1)
(SP) ^ (SP) + 2

If the specified condition is true, the actions specified in the
RET instruction (see above) are performed; otherwise, control
continues sequentially.

All mnemonics copyright Intel Corporation 1985

125

RST n Restart

((SP) - 1) - (PCH)
((S P) - 2) ^ (PCL)
(SP) *- (SP) - 2
(P O ^ 8*(NNN)

The high-order eight bits of the next instruction address are
moved to the memory location whose address is one less
than the content of register SP. The low-order eight bits of
the next instruction address are moved to the memory loca­
tion whose address is two less than the content of register
SP. The content of register SP is decremented by two. Control
is transferred to the instruction whose address is eight times
the content of NNN.

PCHL Jump H and L indirect —
move H and L to PC

(PCH) - (H)
(PCL) - (L)

The content of register H is moved to the high-order eight
bits of register PC. The content of register L is moved to the
low-order eight bits of register PC.

Stack, I/O, and Machine Control Group

This group of instructions performs I/O, manipulates the
Stack, and alters internal control flags.

Unless otherwise specified, condition flags are not affected tt
by any instructions in this group. ^

AU mnemonics copyiight Intel Coipoiation 1985

126

PUSH rp Push

({SP) - 1) ^ (rh)
((SP) - 2) ^ (rl)
((SP) *- {SP) - 2

The content of the high-order register of register pair rp is
moved to the memory location whose address is one less
than the content of register SP. The content of the low-order
register of register pair rp is moved to the memory location
whose address is two less than the content of register SP.
The content of register SP is decremented by 2.

Note: Register pair rp = SP may not be specified.

PUSH PSW Push processor status word

((SP) - 1) - (A)
((SP) - 2)o - (CY), {(SP) - 2), X
((SP) - 2), — (P), ((SP) - 2)3 X
((SP) - 2)4 *- (AC), ((SP) - 2)5 X
((SP) - 2)e - {Z), ((SP) - 2), (S)
(SP) (SP) - 2 X: Undefined.

The content of register A is moved to the memory location
whose address is one less than register SP. The contents of
the condition flags are assembled into a processor status
word and the word is moved to the memory location whose
address is two less than the content of register SP. The con­
tent of register SP is decremented by two.

All mnemonics copyright Intel Corporation 1985

127

POP rp Pbp

(rl) ^ ({SP))
(rh) ^ ((SP) + 1)
(SP) *- (SP) + 2

The content oi the memory location, whose address is speci­
fied by the content of register SP, is moved to the low-order
register of register pair rp. The content of the memory loca­
tion, whose address is one more than the content of register
SP, is moved to the high-order register of register rp. The
content of register SP is incremented by 2.

Note: Register pair rp = SP may not be specified.

POP PSW Pop processor status word

(CY) - ((SP))o
(P) - ((SP)),
(AC) — ((SP))4
(Z) *- ((SP))e
(S) - ((SP)),
(A) - ((SP) + 1)
(SP) ^ (SP) + 2

The content of the memory location whose address is speci­
fied by the content of register SP is used to restore the condi­
tion flags. The content of the memory location whose
address is one more than the content of register SP is moved
to register A. The content of register SP is incremented by 2.

All mnemonics copyright Intel Corporation 1985

128

XTHL Exchange stack top with H and L

(L) - ((S P))
J H) - ^ ((S P) + 1)

The content of the L register is exchanged with the content of
the memory location whose address is specified by the con­
tent of register SP. The content of the H register is exchanged
with the content of the memory location whose address is
one more than the content of register SP.

SPHL Move HL to SP

(SP) - (H) (L)

The contents of registers H and L (16 bits) a re moved to reg­
ister SP.

IN port Input

(A) *- (data)

The data placed on the eight bit bi-directional data bus by
the specified port is moved to register A.

OUT port Output

(data) ^ (A)

The content of register A is placed on the eight bit bi-direc­
tional data bus for transmission to the specified port.

All mnemonics copyright Intel Corporation 1985

129

EI Enable interrupts

The interrupt system is enabled following the execution of
the next instruction. Interrupts are not recognized during the
EI instruction.

Note: Placing an EI instruction on the bus in re­
sponse to INTA during an INA cycle is prohibited.
(8085)

DI Disable interrupts

The interrupt system is disabled immediately following the
execution of the DI instruction. Interrupts are not recognized
during the DI instruction.

Note: Placing a DI instruction on the bus in re­
sponse to INTA during an INA cycle is prohibited.
(8085)

HLT Halt

The processor is stopped. The registers and flags are unaf­
fected. (8080) A second ALE is generated during the execu­
tion of HLT to strobe out the Halt cycle status information.
(8085)

NOP No op

No opera t ion is performed. The r eg i s t e r s a n d f lags a r e
unaffected.

All mnemonics copyright Intel Corporation 1985

130

RIM Read Interrupt Masks (8085 only)

The RIM instruction loads data into the accumulator relating
to interrupts and the serial input. This data contains the fol­
lowing information:

• Current interrupt mask status for the RST 5.5, 6.5, and
7.5 hardware interrupts (1 = mask disabled)

• Current interrupt enable flag status (1 = interrupts en­
abled) except immediately following a TRAP interrupt.
(See below.)

• Hardware interrupts pending (i.e., signal received but
not yet serviced), on the RST 5.5, 8.5, and 7.5 lines.

• Serial input data.

Immediately following a TRAP interrupt, the RIM instruction
must be executed as a part of the service routine if you need
to retrieve current interrupt status later. Bit 3 of the accumula­
tor is (in this special case only) loaded with the interrupt ena­
ble (IE) flag status that existed prior to the TRAP interrupt.
Following an RST 5.5, 8.5, 7.5, or INTR interrupt, the interrupt
flag flip-flop reflects the current interrupt enable status. Bit 6
of the accumulator (I7.5) is loaded with the status of the RST
7.5 flip-flop, which is always set (edge-triggered) by an input
on the RST 7.5 input line, even when that interrupt has been
previously masked. (See SlM Instruction.)

All mnemonics copyright Intel Corporation 1985

131

SIM Set Interrupt Masks (8085 only)

The execution of the SIM instruction uses the contents of the
accumulator (which must be previously loaded) to perform
the following functions:

• Program the interrupt mask for the RST 5.5, 6.5, and
7.5 hardware interrupt.

• Reset the edge-triggered RST 7.5 input latch.

• Load the SOD output latch.

To program the interrupt masks, first set accumulator bit 3
to 1 and set to 1 any bits 0, 1, and 2, which disable inter­
rupts RST 5.5, 6.5, and 7.5, respectively. Then do a SlM in­
struction. If accumulator bit 3 is 0 when the SIM instruction
is executed, the interrupt mask register will not change. If
accumulator bit 4 is 1 when the SIM instruction is executed,
the RST 7.5 latch is then reset. RST 7.5 is distinguished by
the fact that its latch is always set by a rising edge on the
RST 7.5 input pin, even if the jump to service routine is in­
hibited by masking. This latch remains high until cleared
by a RESET IN, by a SIM instruction with accumulator bit 4
high, or by an internal processor acknowledge to an RST 7.5
interrupt subsequent to the removal of the mask (by a SIM
instruction). The RESET IN signal always sets all three RST
mask bits.

If accumulator bit 6 is at the 1 level when the SIM instruction
is executed, the state of accumulator bit 7 is loaded into the
SOD latch and thus becomes available for interface to an ex­
ternal device. The SOD latch is unaffected by the SIM in-
struction if bit 6 is 0. SOD is always reset by the RESET IN
signal.

All mnemonics copyright Intel Corporation 1985

132

8085A
8080A/8085A INSTRUCTION SET INDEX

ADC

ADC

ADD

ADD

ADI

ANA

ANA

CMft

CMC

CMP

CMP

CNC

CNZ

DAA

DAD

DCR

DCR

DCX

DATA

REG

• ATA

REG

M

• ATA

LABEl

L A 8 E l

LABEL

LABEL

LABEL

LABEL

LABEL

• ATA

LABEL

LABEL

JZ

LDA

LDAX

LHLD

LXI

MOV

MOV

MOV

NOP

ORA

ORA

PORT

REG

M

RP

LABEL

LABEL

LABEL

LABEL

LABEL

LABEL

LABEL

LABEL

LABEL

AOOR

RP

ADDR

RPDATA16

fiEG REG

M REG

REG M

fiEG DATA

M DATA

CE daia

1000 1SSS

C6da1a

1010 0SSS

AS

E6da1a

CO dddr

DCadd'

FCaddr

ZF

D4addr

C4 addr

F4 addr

ECaddr

FEdata

E4 addr

CCaddr

27

OORP 1001

OOSSS101

DBdata

OOSSSlOG

34

OORPOOH

DAadrir

FAaddr

C3addr

02addr

C2addr

F2addr

EAaddr

E2addr

CAaddf

3Aaddr

000X 1010

Madd r

OORPOOOIdataIf

01DD DSSS

om osss
01DD D110

OODD D110daia

36data

00

10110SSS

F R

S R R W W

SR./SR R W W

S R . / S R R W W

F

FR

S R . / S R R W W

SR./SR R W W

SR./SR R W W

S R . / S R R W W

FR

SR./SR R W W

SR./SR R W W

F R F R S

F R/F R R

F R R

F R F R R

F R F R R

F R F R R"

F R F R R'

F R F R R

F R/F R R

F R R R

F R

F R R R R

F R R

All mnemonics copyright Intel Corporation 1985

133

lnitruction

OUT PORT

PCHL

POP RP

PUSH RP

RAL

RAR

RC

RET

RIU(808SAonlvl

RLC

RU

RNC

RNZ

RP

RPE

RPO

RRC

RST N

RZ

SBB REG

S8B M

SBI DATA

SHLD ADDR

SIM (8085A onlvl

SPHL

STA ADOR

STAX RP

STC

SUB REG

SUB M

SUI DATA

XCHG

XRA REG

XRA M

XRI DATA

XTHL

Code

D3dala

E9

I IRP0001

11RP0101

17

IF

D8

C9

20

07

F8

DO

CO

F0

E8

E0

OF

iixx x in
C8

1001 ISSS

9E

DEd3ia

22addr

30

F9

32addr

000X0010

37

1001 OSSS

96

DBdata

EB

1010 ISSS

AE

EE data

E3

Bvtes
TSt

8085A

10

6

10

12

4

4

6/12

10

4

4

G/12

6/12

6/12

6/12

6/12

G/12

4

12

6/12

4

7

7

16

4

6

13

7

4

4

7

7

4

4

7

7

16

tes

8080A

10

6

10

11

4

4

5 / I l

10

-
4

5/11

5/11

5/11

5/)1

5/11

5/11

4

11

5/11

4

7

7

16

-
5

13

7

4

4

7

7

4

4

7

7

18

Machine Cycles

F R 0

S '

F R R

SW W

F

F

S/S R R'

FR R

F

F

S/S R R*

S/S R R-

S/S R R-

S/S R R"

S/S R R'

S/S R R*

F

SWW*

S/S R R"

F

F B

F R

F R R WW

F

S'

F R R W

F W

F

F

F R

F R

F

F

F R

F R

F R R W W

Machme cyclp types

F Four clock period instr fetch
S Six clock period inslr fetch

R Memory read
I I/O read
W Memory write
0 I/O wnle

B Bus idle

X Vanable or optional binary digit

iinary digits identifying a destination register B = 000, C =

3inary digtts identifying a source register E = 011, H ••

BC = 00,HL= 10

DE = 01,SP=11

•Five clock period instruction fetch with 8080A

^The longer machine cycle sequence apphes regardless of condition evaluation with 8080A

•An extra READ cycle (R) will occur for Ihis condition with 8080A

000
sss

RP

001, 0 -010 Memory= 110

100, L - 101 A = 111

Register I

All mnemonics copyright Intel Corporation 1985

134

8085A
8085A CPU INSTRUCTIONS IN OPERATION CODE SEQUENCE

OP
CODE

00
01
02
03
04
05
06
07
08
09
0A
OB
0C
CD
0E
OF
10
11
12
13
14
15
16
17
18
19
1A
IB
1C
I D
IE
IF
20
21
22
23
24
25
26
27
28
29
2A

MNEMONIC

NOP
LXI
STAX
INX
INR
DOR
MVI
RLC

-
DAD
LDAX
DCX
INR
DCR
MVI
RRC

-
LXI
STAX
INX
INR
DCR
MVI
RAL

-
DAD
LDAX
DCX
INR
DCR
MVI
RAR
RIM
LXI
SHLD
INX
INR
DCR
MVI
DAA

-
DAD
LHLD

B,D16
B
B
B
B
B,D8

B
B
B
C
C
C,D8

D,D16
D
D
D
D
D,D8

D
D
D
E
E
E,D8

H,D16
Adr
H
H
H
H,D8

H
Adr

OP
CODE

2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
38
3C
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
56

MNEMONIC

DCX
INR
DCR
MVI
CMA
SIM
LXI
STA
INX
INR
DCR
MVI
STC

-
DAD
LDA
DCX
INR
DCR
MVI
CMC
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

H
L
L
L,D8

SP,D16
Adr
SP
M
M
M,D8

SP
Adr
SP
A
A
A,D8

B,B
B,C
B,D
B,E
B,H
B L
B,M
B,A
C,B
C,C
C D
C,E
C,H
C,L
C,M
C,A
D,B
D,C
D,D
D.E
D,H
D,L

OP
CODE

56
57
58
59
5A
5B
5C
5D
5E
5F
60
61
62
63
64
65
66
67
68
69
6A
68
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F
80

MNEMONIC

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
HLT
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
ADD

D,M
D,A
E,B
E,C
E,D
E,E
E,H
E,L
E,M
E,A
H,B
H,C
H,D
H,E
H,H
H,L
H,M
H,A
L,B
L,C
L,D
L,E
L,H
L,L
L,M
L,A
M,B
M,C
M,D
M.E
M,H
M,L

M,A
A,8
A,C
A,D
A,E
A,H

' A , L
A,M
A,A
B

All mnemonics copyright Intel Corporation 1985

135

u

o

Ui
z
S
UJ

o o
o
u
z

s
z
s
U i

°8
o
2
o
LU

5
UJ

a. 0
o o

CM

H
to
a.

r̂
LI

X

<
(L
X

o

<

o

Q
Q

<

00

<J
a.

en
a

_ l

<
cc
X

Q

<

Q

Q
L3

<

00

1

CT)
G

^
<
a.
X

UJ

<

UJ

Q
a
<

00

11

<

o

<
u

<
<
GC
X

u.

<

X

Q
o
<

CO

00
u

z

GO

a

m

<
1L
o

m

_ i

Q
C2

<
i n
CO

,
n
<l

t)
o

u
G

U

<
GC
o

00

5

Q
o
<

CD

1

Q
CJ

a

<
(L
o

CO

<
Q
a
<

00

oo G

CO

LU

u

LU

<
UL
o

M
CQ

CD

o
Q

<

CO

CO

H
to
CL

LL

a

X

<
cc
u

00

o

o
a
<

CO

o
CL
tL

o
LU

_ i

<
a.
(J

i n
CO

D

o
(_1

<
<
CO

X

n

() a.

cu

^
<
UL
U

en
CO

LU

o
u
<
m
CO

j _

TJ

<
o

->
tN
LU

<
<
tL
U

i ^
CO

X

o
LI

<
C)
CO

- J

X
X

n
u;

CO

CL

> u

CO

-J

CJ

u
<1

o
00

^
•n

<
n
n
o

':r
tu

o

Q.

> u

CQ

S

o
LI

<
LU

oa

X

X
t o

) a.

i n
UJ

a

a.

> U

<
CO

<
o
LI

<
LL
CO

a)
u

<
(0
UJ

LU

CL

• ^

H
W
11

r>
LU

X

Q.

LLJ
U-
11

on
LU

_J

Q.

_ l
T

Q.

m
UJ

^
Q.

Cl

<
i i j

-1

<
ill

<
Q.

^ 5 5 5 S
CJ

m
CO

CO

-) CO

o
m

U

C)
CQ

u

~) CO

O i

U

n
CQ

CH

- 1
t o

rsi

o>

U

LU
CD

LU

-) t o

n
a>

U

u
CQ

X

~) CO

^
o>

X

X

m
UJ

N

z
CL

o
U

_J

- 1
t o

lO
0)

^
•n

<
I I I
n
u

()
UJ

tn

o
CL.

(J

2

-) t o

t o
(7>

)
n
UJ

^ •n

<
N

IN
o

<

t o

o>

o

X

LU
LU

^
<

">

ro
o

CD

t o

m
CJ5

Lf)

H
to
n

U-
UJ

i _

TT

<
N
P'
U

M-
U

o

CO

m
(7)

Q.

a

n
LL

03

X

-) a.

i n
U

Q

CO

< •

Ui

2*

CL

Q
f-)
a

u.

U

u
<
to
o

OJ

to

CO
<y>

^
n

<.

—>
fN
LL

o

CO
CL

P^

u

X

CO

CJ
CD

u

m
LL

N
1L

m
(J

_ l

CO

n
C55

,
r j

<

n
U

LL

, " <
H
LU
U-

u

^

t o

111
0)

=-
CL

X
t o

•>

Q.

m
LL

<
u

<

t o

u
tJi

00
u

o

LL

1

m
o

CQ

<
Z

<
o

<.

tD

H
t o
01

r^
LL

, Tl

<

M
o

C)
(J

u

<
z
<

<

5
LC

LL

1

<
- I

< o

n
u

Q

<
^ <i

rv)

<l

_ j

t o

LL

o

u
<
I I I

o

UJ

<
y

<.
t n

<.

,
T)

<

*>
<
LL

-

t o
LL

11
U

X

<
^ <
^
<L

UJ

m
LL

C)
* i '

cc

o
Q

_1

<
^ <
i n

<

,
n

<

^ U

o
u.

u

n
d .

,_
U

S

<
Z

<
to

1

n
u.

, Tl

<
t j

—)
CNi
D

<
<
<̂ <
^
<l.

m
a

n
o

UJ
LL

cn
U

1-
_J
U

cn
LJ

CQ

<
X
X

00

r̂

1-
to
X

LL
LL

^ Tl

<.
C)
P"
u

' : f

u

o

<
X
X

0)

<.

CO
D Q

X

D D
0 . t o

t n CO

Q 0

Q UJ

< <
X X
X X

< CQ

< <

-^ ^

I
I
I
I
§
B a>
c
S

u>
CO

8085A
8085A INSTRUCTION SET SUMMARY BY FUNCTIONAL GROUPING

Mnemonic Description

MOVE, LOAD, AND STORE
MOVrl r2

MOV Mr

MOVrM

MVIr

MVI M

LXIB

LXI D

LXI H

STAXB

STAXD

LDAXB

LDAXD

STA

LDA

SHLD

LHLD

XCHG

Move register to registet

Move register to memory

Move memory to register

Move immediate register

Move immediate memory

Load immediate register

Pair B & C

Load immediate register

Pair D & E

Load immediate register

Pair H & L

Store A mdirect

Store A indirect

Load A indirect

Load A indirect

Store A direct

Load A direct

Store H & L direct

Load H S L direct

Exchange D & E H & L

Registers

STACK OPS

PUSHB

PUSHD

PUSHH

PUSH PSW

POPB

POPD

POPH

POP PSW

XTHL

SPHL

LXISP

INXSP

DCXSP

Push register Pair B &
C on stack

Push register Pair D &
E on stack

Push register Pair H &
L on stack

Push A and Flags
on stack

Pop register Pair B &
C off stack

Pop register Pair D &
E off stack

Pop register Pair H 8
L off stack

Pop A and Flags

off stack

Exchange top of

stack H & L

H S L to stack pointer

Load immediate stack
pomter

Increment stack pointer

Decrement stack
pointer

D?

Q

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

(1

"6

1

1

1

0

0

D

a

0

0

0

0

a
0

0

0

0

0

0

0

Instruction

D5

D

1

0

0

1

0

0

1

0

0

0

0

0

0

1

1

0

0

D4

0

1

D

D

1

0

1

0

0

1

0

1

1

1

0

0

0

0

1

0

1

a

1

0

1

0

1

I

1

1

Code

"3

D

0

D

0

0

0

0

0

0

0

0

0

0

0

0

0

a

0

0

1

0

0

1

1)

D2

S

s
t

1

1

0

0

0

0

0

0

0

0

0

0

0

0

1

1

I

1

0

0

0

0

0

0

0

0

0

Dl

s
s
1

1

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

1

Do

s
s
0

0

0

1

1

I

0

0

0

0

0

0

0

0

Page

64

64

64

54

64

65

55

55

66

56

55

55

65

56

55

66

56

6 16

6 15

5 15

6 15

6 15

5 16

5 16

5 15

5 16

5 16

56

59

63

All mnemonics copyright Intel Corporation 1985

137

Mnemonic

JUMP

JMP

JC

JMC

JZ

JMZ

JP

JM

JPE

JPO

PCHL

CALL

CALL

CC

CNC

CZ

CNZ

CP
CM

CPE

CPO

RETURN

RET

RC

RNC

RZ

RNZ

RP

BM

RPE

RPO

RESTART

RSI

Description

Jump unconditional

Jump on carry

Jump on no carry

Jump on zero

Jump on no zero

Jump on positive

Jump on minus

Jump on parity even

Jump on parity odd

H & L to program

counter

Call unconditional

Call on carry

Call on no carry

Call on zero

Call on no zero

Call on positive

Call on minus

Call on parity even

Call on parity odd

Return

Return on carry

Return on no carry

Return on zero

Return on no zero

Return on positive

fleturn on minus

Return on parity even

Return on parity odd

Restart

INPUT/OUTPUT

IN

OUT

Input

Output

INCREMENTAND DECREMENT

INRr

OCRr

INR M

OCRM

INXB

INX D

INX H

OCX 8

OCX D

OCXH

Increment register

Decrement register

Increment memory

Decrement memory

Increment B & C
registers

Increment D & E
registers

Increment H & L
registers

Decrement B & C

Decrement 0 & E

Decrement H & L

Dy

0

0

0

Q

0

0

0

0

0

0

06

a
0

0

0

0

0

0

0

0

Q

Instruction

°5

0

0

0

0

0

G

G

0

0

0

1

1

1

1

0

0

0

0

0

1

1

1

1

A

0

0

D

D

1

1

0

0

t

0

0

1

D,

0

1

1

0

0

1

1

0

0

0

0

1

1

G

0

1

1

0

0

0

1

1

0

0

1

1

0

0

A

1

1

0

D

I

1

0

1

0

0

1

0

Code

»3

0

0

0

A

1

0

0

0

0

0

0

0

0

1

1

1

11

D2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

1

1

t

0

0

0

0

0

0

Dl

0

0

0

0

a
0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

t

1

1

1

1

1

"0

1

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

D

1

0

0

0

0

0

0

0

0

t

1

1

0

1

0

1

1

1

I

1

I

1

Page

5 13

5-13

5 13

513

513

513

513

5-13

5-13

5-15

5-13

5-14

5-14

5-14

5-14

5-14

5 14

5-14

5-14

5-14

5-14

5-14

5-14

5-14

5-14

514

5-14

5-14

5-14

5-16

5-16

5-8

5-8

5-8

5-8

5-9

5-9

5-9

5-9

5-9

5-9

All mnemonics copyright Intel Corporation 1985

138

Mnemonic Description
Instruction Code (1)

D7 De O5 D4 O3 O2 Di Do Page

ADD

AODt

ADCr

ADDM

ADCM

ADI

ACI

DADB

DAD D

DAD H

DAOSP

Add register to A

Add register to A

with carry

Add memory to A

Add memory to A

with carry

Add immediate to A

Add immediate to A
with carry

Add B 8 C to H & L

Add D & E to H 8 L

Add H & L to H 8 L

Add stack pointer to
H 8 L

SUBTRACT

SU6r

SBBr

SUBM

SBB M

SUI

SBI

LOGICAL

ANAc

XRAr

ORAr

CMPr

ANAM

XRAM

ORAM

CMPM

ANI

XRI

ORI

CPI

ROTATE

RLC

RRC

RAL

RAR

Subtract register
lrom A

Subtract register from
A with borrow

Subtract memory
from A

Subtract memory from
A with borrow

Subtract immediate
from A

Subtract immediate

from A with borrow

And register with A

Exclusive OR register

with A

OR register with A

Compare register with A

And memory with A

Exclusive OR memory
with A

OR memory with A

Compare memory with A

And immediate with A

Exclusive OR mmediate
with A

OR immediate with A

Compare immediate
w lh A

Rbtate A left

Rotate A right

Rotate A left through
carry

Rotate A right through
carry

0

0

0

0

1

t

0 0

0 0

0 0

0 0

1 0

1 0

1 0

1 0

1 1

1 I

1 0

1 0

1 0

1 0

1 0

t 0

1 0

1 0

1 1

1 1

1 f

1 1

0 0

0 0

D 0

0 0

0

0

c
0

0

0

0

0

1

1

0

fl

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

1

1

0

0

f

1

0

0

f

1

0

1

0

1

0

1

1

1

1

1

G

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

S

s

1

1

1

1

0

0

0

0

s

s

1

1

1

1

s
s

s
s

1

s
s

1

1

1

1

0

0

0

0

s

s

1

f

1

1

s
s

s
s

1

s
s

0

0

0

0

1

1

1

1

s

s

a

0

0

0

s
s

s
s
0

0

0

0

0

0

0

0

1

1

1

1

56

56

56

57

56

57

59

59

59

59

57

57

57

58

57

58

59

5 10

5 to

5 11

5 10

5 10

511

511

5 10

5 10

5 11

5 11

511

5 12

5 12

5 12

All mnemonics copyright Intel Corporation 1985

139

Mnemonic Descriptton

SPECIALS

CMA Complement A

STC Set carry

CMC Complement carry

DAA Decimal ad|ust A

CONTROL

El Enable Interrupts

Dl Disable Interrupt

NOP No operation

HLT Halt

NEW 8085A INSTRUCTIONS

RIM Read Interrupt Mask

SIM Set Interrupt Mask

D?

0

0

0

0

1

1

0

0

0

0

D6

0

0

0

0

1

1

0

1

0

0

Instruction Code (1)

D5 D4 D3 02

1

1

1

1

1

1

0

1

1

1

0

1

1

0

1

1

0

1

0

t

1

0

1

0

1

0

0

0

0

0

1

1

1

1

0

0

0

1

0

0

Dt

1

1

1

1

1

1

0

1

0

0

Do

1

I

1

1

1

1

0

0

0

0

Page

5 12

512

5 12

59

5 17

5 17

517

517

5 17

5 18

NOTES 1 DDSorSSS B000 C001 D010,E011,H 100,L 101,Memory 110 A 111

2 Two possible cycle times 16/12) indicate instruction cycles dependent on condition flags

All mnemonics copyright Intel Corporation 1985

When a register or data word contains a binary number, it
is necessary to establish the order in which the bits of the
number are written. In the Intel 8085A, BIT 0 is referred to as
the Least Significant Bit (LSB), and BIT 7 (of an 8-bit num­
ber) is referred to as the Most Significant Bit (MSB).
An 8085A program instruction may be one, two or three
bytes in length. Multiple-byte instructions must be stored in
successive memory locations; the address of the first byte is
always used as the address of the instruction. The exact in­
struction format will depend on the particular operation to
be executed.

140

REFERENCE H/ 8085 HARDWARE CHARACTERISTICS

I I I I t J L

3:
;UMUL*rOM I TIMP R

•ECOOER

CYCL(

;{r.
>antM couHTER

K OUT I A0 WR ALt Sg S, IOlM

8085A CPU FUNCTIONAL BLOCK DIAGRAM

J W

MEWOAT AOORESSES

SOFTWARE
nST INSTRUCTIONS

U RESPONSE TQ -

S08SA HARDWARE ANO SOFT­
WARE RST BRANCH LOCATIONS

141

INDEX

, (comma) command 38
; (semicolon) command 36
8085 hardware characteristics 141
8085 mnemonics 119

addressing modes 54
direct addressing 55
immediate addressing 55
register addressing 57
register indirect addressing 56

ASCII codes 95-102
assembler commands 25, 68
assembler pseudo ops 77
assembler switches 68
assembling a source program 9, 25
assembly command 25
assembly language 1, 49
assembly language fields 52
assembly listing 9, 25, 27, 28
assembly tips 30
breakpoints 34
C command 35
calculator (ZBUG) ^ 40
CALL 11, 12, 13 '
calling ROM subroutines 64
changing memory 22, 23
CHGET 65
CONtinuation Error 36, 38 i
CPI 14 j
D command 35
data 12
DB (define byte) 60, 61 |
DC (define string) 60, 62
debugging programs 10, 31, 39
display modes 31, 72

half-symbolic mode 33
numeric mode 32
symbolic mode 32

143

DS (define storage) 60, 61
DW (define word) 60, 61
END 12, 15, 58, 59
entry conditions 65
EQU 59
error messages 74-76
examination modes 19. 71

ASCII mode 20
byte mode 20
mnemonic mode 21
word mode 20

examining memory addresses 33
executing the program 5, 34
exit conditions 66
EXPression Error 23
G command 34
hexadecimal numbers 2
I command 41
inserting data 60
JNZ 14
K command 33
labels 52
LDA 14
loading ZBGASM 4, 5
logical operators 45
machine code (8085) 11
memory allocation 28, 29
memory map
mnemonic 12
MRM? 28
MVI 14
numbering system modes 40, 72

input mode 40, 41
output mode 40

object code 5, 9
OM Error 27
opcodes 11
operand 11, 42, 54

144

operators 12, 13, 42, 43, 54
arithmetic 43
logical 45, 46
relational 45

ORG 13, 58
preserving register contents 66
pseudo ops 12, 58
Q command 40
R command 36
register flags 36
registers 36, 50
relational operators 45
restoring register contents 66
restricted memory locations 28
ROM addresses 65, 18
ROM subroutines 63, 64, 79-94
saving programs

in RAM 5. 25
on tape 25

SET 59, 60
stepping through a program 37
symbols 12, 59, 60, 72
T command 40
transferring blocks of memory 38
U command 38
writing a program 50
X command
Y command 35
ZBUG commands 18, 31, 40, 58, 69
ZBUG debugger 4

145

11/86-TM 874-9893

Cat. No. 26-3823
. •^•••«VJ"iu ^ i ' '

r / ' , ' fh:^y

Printed in U S A

i.. :,-^u

<. »! .

1

TRS-80®

Model 100 Portable Computer

Debug/Assembler

