
(i)

Microsoft
MSTM-DOS
Disk Operating
System

(

c

c

(

(

MS-DOS OPERATING SYSTEM DOCUMENTATION

Documentation for the MS-DOS operating system is provided in
two manuals, each of which is described below:

The MS-DOS User's Guide

This manual gives an overview of the MS-DOS
operating system, describes the user interface,
the file system, the command structure, and each
of the available commands. It also contains
chapters on:

EDLIN.COM - The MS-DOS line editor
DEBUG.COM - The MS-DOS debugger
FILCOM.COM - The MS-DOS file comparison program

The Utility Software Package Manual

This manual provides descriptions of the following
software:

MASM.EXE - The MACRO-86 macro assembler
LINK.EXE - The MS-LINK linker
CREF.EXE - The MS-CREF cross-reference utility
LIB.EXE - The MS-LIB library manager

(iii)

(

c

(

(

(v)

MSTM-OOS
user's guide

Information in this document is subject to change without notice and does not represent a
commitment on the part of Microsoft Corporation. The software described in this document is (
furnished under a license agreement or non-disclosure agreement. The software may be used or
copied only in accordance with the terms of the agreement. It is against the law to copy the
MS-DOS Disk Operating System on cassette tape, disk, or any other medium for any purpose
other than the purchaser's personal use.

Copyright © Microsoft, Corporation, 1982

LIMITED WARRANTY
MICROSOFr CORPORATION shall have no liability or responsibility to purchaser or any other
person or entity with respect to any liability, loss or damage caused or alleged to be caused directly or
indirectly by this product, including but not limited to any interruption of service, loss of business or
anticipatory profits or consesquential damages resulting from the use or operation of this product. This
product will be exchanged within twelve months from date of purchase if defective in manufacture,
labeling or packaging, but except for such replacement the sale or subsequent use of this program is
without warranty or liability.

THE ABOVE IS A LIMITED WARRANTY AND THE ONLY WARRANTY MADE BY
MICROSOFT CORPORATION. ANY AND ALL WARRANTIES FOR MERCHANTABILITY
AND/OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

To report software bugs or errors in the documentation, please complete and return the Problem
Report at the back of this manual.

MS-DOS is a trademark of Microsoft Corporation.
XENIX is a trademark of Microsoft Corporation.
UNIX is a trademark of Bell Laboratories, Inc.
CP 1M is a trademark of Digital Research, Inc.

Document No. 8410-110-01
Catalog No. 1406
Part No. 14F07A

(vi)

(
Microsoft

Welcome to the Microsoft family of products.

The Microsoft Corporation is the recognized leader in
microcomputer software. The Microsoft BASIC interpreter, in
its several versions, is the standard high-level programming
language for microcomputers. The Microsoft Corporation
provides other software of consistently high-quality that
sets the standard for software quality.

In addition to the MS-DOS Disk Operating System and the
Microsoft BASIC interpreter, Microsoft sells other
full-feature language compilers, operating systems, and
utility software. For all this software, Microsoft strives
to offer a family of software products that both look alike
from one product to the next, and can be used together for
effective program development.

For more information about other
contact:

Microsoft Corporation
The Microsoft Building
10700 Northup Way
C-97200
Bellevue, WA 98004
(206) 828-8080

(Vii)

Microsoft products,

(

c

c

Package Contents

1 disk with the following files:

CHKDSK.COM
COMMAND.COM
CREF.EXE
DEBUG.COM
EDLIN.COM
EXE2BIN.EXE
FILCOM.COM
FORMAT. COM
IO.SYS (hidden file)
LIB.EXE
LINK.EXE
MASM.EXE
MSDOS.SYS (hidden file)
SYS.COM

2 Manuals:

The MS-DOS Disk Operating System User's Manual
The Microsoft utility Software Package Manual

System Requirements

The MS-DOS Operating System requires an 8086 or
8088 microcomputer system. The operating system
itself runs in and requires 32K bytes of memory.

(

c

c

(
Chapter 1

1.1
1.2
1.3
1.4

CONTENTS

INTRODUCTION
Features and Benefits of MS-DOS
Provided Software
System Start-Up
Syntax Notation

Chapter 2 SYSTEM STRUCTURE
2.1 System Resources
2.2 File System
2.3 User Interface
2.4 Command Types

Chapter 3 COMMANDS
CHKDSK
COpy

Chapter

Chapter

Chapter

4
4.1
4.2
4.3
4.4

5
5.1
5.2
5.3

6
6.1
6.2
6.3

DATE
DEL
DIR
EXE2BIN
FORMAT
PAUSE
REM
REN
SYS
TIME
TYPE

EDLIN
Invocation
Intraline Commands
Interline Commands
Error Messages

DEBUG
Invocation
Commands
Error Messages

FILCOM
Invocation
Commands
Examples

1-1
1-4
1-6
1-7

2-1
2-4
2-8
2-16

3-3
3-5
3-9
3-10
3-11
3-12
3-14
3-15
3-16
3-17
3-18
3-19
3-20

4-1
4-3
4-14
4-36

5-1
5-2
5-35

6-2
6-3
6-10

Appendix A
Appendix B
Appendix C
Appendix D

Instructions for Single Disk Drive Users
The File Control Block
Interrupts and Function Calls
Disk Errors

(xi)

(

c

CHAPTER 1

INTRODUCTION

The MS-DOS disk operating system is one of Microsoft's
family of operating systems for 8086 and 8088
microprocessors. It provides a simple but powerful
interface between the user and a computer system's
resources. Most all Microsoft languages are available under
MS-DOS, including the BASIC Interpreter, the BASIC Compiler,
MS-Pascal, and MS-FORTRAN. In addition, the 8-bit versions
of Microsoft's languages are upward compatible with the
16-bit versions. Thus, application programs written in
8-bit Microsoft languages can be run under MS-DOS with
little or no modification.

1.1 FEATURES AND BENEFITS OF MS-DOS

The following features and benefits make MS-DOS the
operating system of choice for 8088 and 8086 microcomputers:

Easy Conversion from 8080 to 8086
MS-DOS allows as much transportability of 8-bit
machine language software as is reasonably
possible. For instance, MS-DOS emulates system
calls to the 8-bit CP/M operating system.
Therefore, by simply running assembly language
source code through the Intel conversion program,
almost all 8080 programs created for the CP/M
operating system can be made to work without
modification in the MS-DOS environment. In most
cases, converting programs from CP/M-80 to MS-DOS
is easier than converting to other 16-bit operating
systems.

Device Independent I/O
MS-DOS simplifies I/O to different peripheral
devices by assigning a reserved filename to each
device. These names are built-in to MS-DOS and are
detected by the MS-DOS file system. Thus, for
example, programs designed only for disk file I/O

- 1 -

INTRODUCTION Page 1-2

can have their input come from the terminal
keyboard or their output sent to the printer. c-

Advanced Error Recovery Procedures
MS-DOS does not necessarily require rebooting when
disk errors occur. If a disk error occurs at any
time during any program, MS-DOS retries the
operation three times. If the operation cannot be
completed successfully, MS-DOS returns an error
message, then waits for the user to enter a
response. Thus, the user can attempt to recover
from the error rather than reboot the operating
system.

Complete Program Relocatability
The architecture of the 8086 CPU limits each
segment of memory to 64K-bytes and requires
intersegment references to be fixed for a given
load address. MS-DOS works around this limitation
through its special executable object module
format. During program development, the Microsoft
linker can combine object modules created with any
of Microsoft's BASIC, Pascal, or FORTRAN compilers
or by Microsoft's macro assembler. These modules
can be combined to create an executable module
requiring any number of segments.

Powerful, Flexible File Characteristics
In MS-DOS, there is no practical limit on file or
disk size. MS-DOS uses 4-byte XENIX Operating
System compatible logical pointers for a disk
capacity of up to 1 gigabyte. (Microsoft's XENIX
is a licensed version of the UNIX system. XENIX is
available for a variety of l6-bit microcomputer
systems through a license agreement from
Microsoft.)

MS-DOS remembers the exact physical end-of-file
marker. Thus, should one open a file with a
logical record length greater than the physical
record length, ~S-DOS remembers exactly where the
file ends to the byte, rather than rounded to 128
bytes.

Written entirely in 8086 Assembly Lar.guage
Because it is written entirely in 8086 assembly
language, MS-DOS provides significant speed
improvements over operating systems that are
largely translated from their 8-bit counterparts.

Fast, Efficient File Structure
MS-DOS employs a highly efficient disk structure
which eliminates the need for "extents," minimizes
access to the directory track, and provides for
duplicate directory information and verifications

-2-

c

INTRODUCTION Page 1-3

after writes.

No Need to Log in Disks

No

As long as no file is currently being written,
disks can be swapped without logging in. One
benefit of this feature is that the MS-DOS
debugger, DEBUG.COM can be used without reloading
for different programs on different disks.

Physical File/Disk Size Limitation
Unlike operating systems that
8-megabytes per disk, MS-DOS
breaking a 24-megabyte hard
separate logical drives.

are
does

disk

limited to
not
into

require
three

No Overhead for Non-128-Byte Physical Sectors
Since MS-DOS does its own blocking and deblocking
of disk sectors, there is no reason to worry about
different physical sector sizes when writing the
low level routines for a particular computer
system.

Time and Date Stamps
When a file is modified, MS-DOS automatically
records the time and date of the modification.

100% IBM Compatible
International Business Machines Corporation has
chosen MS-DOS (called IBM Personal Computer DOS) to
be the preferred operating system for the IBM
Personal Computer. IBM has already announced
Microsoft BASIC, Pascal, and FORTRAN along with
other accounting, financial planning, and word
processing software that runs under MS-DOS.

- 3 -

INTRODUCTION Page 1-4

1.2 PROVIDED SOFTWARE

The software provided with the MS-DOS operating system is
described below:

CHKDSK.COM

CHKDSK.COM is
contents of
"Commands."

COMMAND. COM

a command used to check and verify the
a disk. It is further described in Chapter 3,

COMMAND. COM is the command interpreter used to interface
between the user and the underlying operating system. It
allows the user to perform file management functions such as
rename and delete, as well as to load and execute programs.
COMMAND.COM is further described in Chapter 2, "System
Structure."

CREF.EXE

CREF.EXE is the Microsoft MS-CREF cross-reference utility
used to create a cross-reference listing from an assembly
source listing. CREF.EXE is further described in the
utility Software Package Manual.

DEBUG.COM

DEBUG.COM is a debugger program used to provide a controlled
testing environment for executable object files. DEBUG.cm1
is further described in Chapter 5, "DEBUG."

EDLIN.COM

EDLIN.COM
performed
available
described

is the MS-DOS line editor. Intraline editing is
using the special editing keys that are also

at the MS-DOS command level. EDLIN.COM is further
in Chapter 4, "EDLIN."

EXE2BIN.COM

EXE2BIN.CO~t is used to convert .EXE files to .COM files. In
general, only assembly language programs that have been
specially formulated may undergo such conversions.
EXE2BIN.COM is further described in Chapter 3, "Commands."

- 4 -

(

INTRODUCTION Page 1-5

FORMAT. COM

FORMAT.COM is used to format disks so that they can be used
with MS-DOS. FORMAT. COM is described in Chapter 3,
"Commands."

FILCOM.COM

FILCOM is a
differences
be compared.
"FILCOM."

file comparison program used to check for
between files. Either text or binary files may

FILCOM is further described in Chapter 6,

IO.SYS

IO.SYS is the lowest level of the MS-DOS operating system,
interfacing to all I/O devices. It is an MS-DOS "hidden
file" and does not show up when a directory command is
executed. IO.SYS is automatically loaded into memory when
your system is booted up. See Chapter 2, "System Structure"
for more information.

LIB.EXE

LIB.EXE is the Microsoft MS-LIB
create, maintain, and manipulate
LIB.EXE is further
Utility Software Package Manual.

LINK.EXE

library manager used to
libraries of object files.
described in the

LINK.EXE is the Microsoft MS-LINK linker used to link object
files and object libraries to create executable .COM and
.EXE files. LINK.EXE is further described in the
Utility Software Package Manual.

MASM.EXE

MASM.EXE is Microsoft's relocatable macro assembler for 8086
and 8088 microprocessors, MACRO-86. MASM.EXE is further
described in the Utility Software Package Manual.

- 5 -

INTRODUCTION Page 1-6

MSDOS.SYS

MSDOS.SYS is the heart of the MS-DOS operating system, where
most management of system resources takes place. MSDOS.SYS
is intimately tied to COMMAND.COM and IO.SYS. Note that
MSDOS.SYS is an MS-DOS "hidden file" anrl does not show up
when a di rectory command is executed. t-1SDOS. SYS is
automatically loaded into memory when your system is booted
up. For further information, see Chapter 2, "System
Structure."

SYS.COM

SYS.COM is used to transfer MSDOS.SYS and IO.SYS from a
system disk to a formatted disk that does not contain the
MS-DOS operating system on it. It is further described in
Chapter 3, "Commands."

1.3 SYSTEM START-UP

To start-up your system, follow your manufacturer's
instructions. Next, insert your system disk in drive A:.
At this point, your MS-DOS will be booted up and loaded from
disk into program memory. A banner then appears containing
the r·tS-DOS version number. Next, COMMAND.COM is loaded into
memory and a banner containing appears for it to. Then you
are prompted to set the date and time with the DATE and TIME
commands.

For example, you might type:

Current time is 00:00:00.00
Enter new time:lO:30
Current date is 1-1-80
Enter new date:3-25-82

Finally, the MS-DOS prompt appears with the letter of the
driver and a colon:

A:

The cursor is indicated in this manual with an underline
character. At this point you are at the MS-DOS command
level and are under the supervision of COMMAND. COM.

The first thing that you should do is create a back-up of
your system disk. This is done by first inserting a blank
disk into drive B:. Next type:

FORMAT B:/S

FORMAT formats the disk in drive B: so that it can be used

-6-

(

(

INTRODUCTION Page 1-7

with MS-DOS. The /S causes hidden system files to be copied
to the newly formatted disk after it has been formatted.
When FORMAT is done, you should then type:

COPY A:*.* B:

This command copies all files on the system disk to the new
disk. At this point, you should remove th n original system
disk and store it in a safe place. Use the copy of the
system disk from now on.

1.4 SYNTAX NOTATION

The following notation is used throughout this manual in
descriptions of command and statement syntax:

[] Square brackets indicate that the enclosed entry is
optional.

< > Angle brackets indicate user entered data. When
the angle brackets enclose lower case text, the
user must type in an entry defined by the text;
for example, <filename>. when the angle brackets
enclose upper case text, the user must press the
key named by the text; for example, <RETURN>.

{} Braces indicate that the user has a choice between
two or more entries. At least one of the entries
enclosed in braces must be chosen.

Ellipses indicate that an entry may be repeated as
many times as needed.

CAPS Capital letters indicate portions of statements or
commands that must be entered exactly as shown.
When capital letters appear within angle brackets,
they indicate typing of a control character such as
<CONTROL-C> or <RETURN>.

All other punctuation, such as commas, colons, slash marks,
and equal signs, must be entered exactly as shown.

- 7 -

('

(

(

CHAPTER 2

SYSTEM STRUCTURE

This chapter gives a structural overview of the MS-DOS
operating system, describing:

1. System resources

2. The file system

3. The user interface

4. Command types

By acquiring an understanding of each of these subjects, you
will gain a sound understanding of the structure of the
MS-DOS operating system.

2.1 SYSTEM RESOURCES

Each time
up" the
from disk
operating

your computer is turned on, it normally will "boot
operating system by automatically loading MS-DOS
into memory. The area of memory in which the
system is loaded is referred to as system memory.

MS-DOS, itself, consists of three files:

COMMAND.COM
MSDOS.SYS
IO.SYS

These three files combine to form an operating system that
controls all system resources. Note that MSDOS.SYS and
IO.SYS are "hidden" files that are not displayed when a
directory command is executed. The relationship between
these three files and system resources is shown in Figure
2.1.

- 9 -

SYSTEM STRUCTURE

MS-DOS

COMMAND.COM

I System
Memory

MSDOS.SYS

I
IO.SYS

===== ===== ==================== -- -- --
RESOURCES

v
Rest of Memory v

/\/\/\/\/\/\/\/\/\/\ Disk
Space

/\/\/\/\/\/\/\/\/\/\

== ---
->

>
>
>

Page 2-2

Printer
Keyboard
Di s r?lay
Other

Figure 2.1 MS-DOS and Its Resources

System resources include peripheral
terminals, printers, and serial lines.
most important system resources are its
memory--these are described below.

-10 -

devices such as
However, a system1s

disk space and its

(

c

SYSTEM STRUCTURE Page 2-3

2.1.1 Disk Space

In MS-DOS, disk space is divided into four parts:

The Reserved Sectors
This region contains information that is used each
time MS-DOS is booted up. This information is
system dependent, but typically will include a
simple bootstrap loader.

The Directory
The directory
on a given
filename, its
modification.

contains information about each file
disk, including the file's complete
size, and its time and date of last

The File Allocation Table

Files

2.1.2

The file allocation table (FAT) contains location
information for the data making up each file on a
given disk. Note that MS-DOS does not require a
file's contents to reside in physically contiguous
disk sectors.

The great majority of disk space is reserved for the
contents of files. An individual file does not
necessarily reside in contiguous sectors on disk,
and may be "scattered" in memory to decrease waste
of disk space.

Memory

Besides controlling a system's disk space and its other
devices, MS-DOS must also control main memory. This means
that MS-DOS must be capable of loading files into memory
either as data files or as files that are to be executed.
The actual loading of files is performed by IO.SYS, the
lowest level of the MS-DOS operating system. Loading of
executable files is supervised by COMMAND. COM. For most
well-designed programs, control is returned to MS-DOS after
either normal or abnormal termination of a program.

Note that part of COMMAND.COM may be overlaid to make room
for a particularly large executable file. After execution
of such d file, MS-DOS automatically loads the overlaid part
of COMMAND.COM back into system memory, and normal execution
of COMMAND.COM resumes. If the overlaid part of COMMAND.COM
is not available on disk because the disk on which it
resides has been removed, the following message appears:

Insert DOS disk in default drive
and strike any key when ready

-11-

SYSTEM STRUCTURE Page 2-4

Also, if an incorrect version of COMMAND.COM is found, then ~
the a similar message appears:

Invalid COMMAND.COM
Insert DOS disk in default drive
and strike any key when ready

2.2 FILE SYSTEM

The preceding discussion of system resources discussed many
of the internal aspects of the operating system. A file
system, on the other hand, can be thought of as the external
organization of system resources. It provides a way of
talking about files and devices. Note that MS-DOS supports
"device independent I/O", which means that the distinction
between files and devices is an internal distinction, but
not an external one. Therefore, the user can treat files
and devices alike, and can refer to either with "filenames."

Note, however, that disk space is special, since it is
divided into drives: the disk space in a drive and on a
particular disk is further divided into files, as shown
below: (

Drives

Files

A:
11\

f f f

B:
/1\

f f f

Disk Space

I
C:

/1\
f f f

D:
11\

f f f

• •• 0:
11\

f f f

Disks are named so that up to 15 can be referred to. They
are named with the letters A through 0, where each letter is
followed by a colon (:). This colon separates the name of
the disk from the names of individual files on the disk.
This letter-colon combination is called a drive designation.

-12 -

(

c

SYSTEM STRUCTURE Page 2-5

2.2.1 Naming Conventions

MS-DOS supports a three-part name for files (and devices)
called a file specification. A full file specification
contains a drive designation, a filename, and a filename
extension.

The format of a file specification is:

[<d>:]<filename>[.<ext>]

The parts of a file specification are described below:

<d>: is the drive designation as described in the preceding
section.

<filename> is an internal name consisting of from 1 to 8
characters. Internally, all filenames are exactly 8
characters: this means that filenames with seven or fewer
characters have all remaining characters padded with spaces.
MS-DOS performs this padding automatically. Legal
characters in filenames are:

A-Z 0-9 $ & @

% < >

\ { }
Any of the above characters is legal in any position in the
filename. Note that lowercase characters are converted to
uppercase wherever they occur in a file specification. This
means that a filename such as "FiLe.ExT" is converted to the
filename "FILE.EXT."

.<ext> is the filename extension consisting of three or
fewer characters. Padding of spaces occurs as described
above for filenames. Legal characters are the same as for
filenames. All characters are legal in any position in the
extension, and all lowercase characters are converted to
uppercase characters, just as for filenames. Filenames with
no extensions can also be specified by typing only a period
after the filename. It is usually only necessary to use
this form when a given command requires a default extension.

-13-

SYSTEM STRUCTURE Page 2-6

2.2.2 Wild Card Characters

There are two wild card characters that can be used in file
specifications: the asterisk (*) and the question mark (?).
By using these characters, a short hand notation is created
for specifying multiple files. This notation is
particularly useful when file specifications are required as
parameters for commands. HS-DOS makes full use of this
capability for commands such as the directory, delete, and
copy commands: DIR, DEL, and COPY.

The two wild card characters are described below:

? When COMMAND sees a question mark (?), it matches
any single character found in that position in a
filename.

For example, examine the following command:

DEL AB?DE.EXT

This directory command neletes all files whose
names begin with AB, end with DE, and have the
filename extension .EXT. For example, MS-DOS might
delete the following files:

ABCDE.EXT
ABODE. EXT
ABIDE. EXT

* When COMMAND.COM sees an asterisk (*) in a filename
parameter, it matches all characters found in those
positions in any filename in the appropriate
directory. The asterisk (*) is a shorthand for a
series of question marks (?). So, for example, the
following are equivalent:

DEL
DEL

.
??????? ???

However, the asterisk is typed more easily.

The command DEL *.* deletes all files stored on the
disk in the default drive. regardless of filename
or extension.

Here are some other examples, with their equivalents in
question mark characters:

DEL FILE.* DEL FILE.???
(Delete all variations of FILE
regardless of extension)

TYPE * .EXT TYPE ????????EXT

-14-

(

(

SYSTEM STRUCTURE Page 2-7

DEL *.EXT DEL ????????EXT
(Delete all files with the
filename extension .EXT)

DEL ABC*.E* DEL ABC?????E??
(Delete all files whose names
begin with ABC and that have
a filename extension that
begins with .E)

2.2.3 Device Filenames

Certain 3-letter filenames are reserved for the names of
devices. These names are listed below:

AUX

CON

Used when referring to input from or output to an
auxiliary device.

Used when referring to either keyboard input or to
output to the terminal screen.

LST or PRN

NUL

Used when referring to the line printer.

Used when you do not want to create a particular
file, but the syntax of a command requires an input
or output filename.

Even if given device designations or extensions, these
filenames remain associated with the devices listed above.
Thus, A:CON.LST still refers to the terminal console and is
not the name of a disk file. This device naming scheme
permits treating devices as if they were files, and is a
consequence of MS-DOS's device independent I/O.

-15-

SYSTEM STRUCTURE Page 2-8

2.3 USER INTERFACE

MS-DOS acts as an interface between the user and a computer
system's resources, with communication from the user
normally occurring through keyboard input. This keyboard
input is the raw data that is used to edit the MS-DOS
command line. When editing is complete, the command line is
passed on to CO~rnAND.COM where it is scanned for command
names and parameters. Thus, the user interface consists of
two levels of processing: command line editing and command
interpretation. These levels are discussed in the next two
sections.

2.3.1 Command Line Editing

MS-DOS offers a variety of functions that operate on the
command line buffer. These functions make command line
editing a simple and efficient task, very much in contrast
to the nuisance it can be in other operating systems. The
command line buffer is intimately related to another buffer
called the "template," which is used in many of MS-DOS's
special editing functions.

The model for command line input is as follows:

1. When text is entered from the keyboard, it is held
in the command line until the <RETURN> key is
pressed.

2. Pressing <RETURN>
command line to
processing.

causes the
be sent

contents of
to COMMAND.COM

the
for

3. Pressing <RETURN> also copies the command line to
the template.

Thus, the template always contains the last entered command
line.

The command line is altered by entering one the following
kinds of input:

Alphanumerics
Punctuation
Special editing functions
Control character functions

Alphanumeric and punctuation characters are entered into the
command line as they are typed. Later, COMMAND.COM will
convert all lowercase letters to uppercase.

-16-

(

(

SYSTEM STRUCTURE Page 2-9

The special editing and control character functions greatly
increase MS-DOS's ease of use. All of the MS-DOS commands,
from DEBUG to FILCOM, can make use of these functions
wherever input is required from a terminal. These functions
are always resident in the operating system.

2.3.1.1 Special Editing Functions - Because they depart
from the "normal" way in which most operating systems handle
command input, the special editing functions deserve
particular emphasis. They relieve the user of repeatedly
typing in the same sequences of keys because the last
command line entered is automatically placed in the template
and "remembered."

Therefore, by using the template and executing the special
editing functions, you receive the following advantages:

1. A command line can be instantly repeated in two
key-strokes.

2. An erroneous command line
retried, without reentering
line.

can be edited and
the entire command

3. A command line similar to a preceding command line
can be edited and executed with a minimum of
typing.

The relationship between the command line and the template
is shown in Figure 2.2.

User Input

I
y

Command Line I .------------. I Template

y

COMMAND. COM

Figure 2.2 The Command Line and the Template

Table 2.1 contains a complete list of the special editing
commands. Each command is more fully described in Chapter
4, "EDLIN," where these special editing commands become a
subset of the commands available within the MS-DOS editor,
EDLIN, and are called the intraline editing commands.

-17-

SYSTEM STRUCTURE Page 2-10

Note that the special editing commands may be assigned to
the keys that make the best use of a specific terminal
keyboard. Therefore, each command is identified by a
functional name rather than by a specific key code. For an
application on a specific terminal, the codes are configured
for specific terminal keys.

Table 2.2 Special Editing Functions

Key Editing Function

<Cl> Copy one character from the template to
the command line

<CM> Copy all characters up to the character
specified from the template to the
command line

<CT> Copy all remaining characters in the template
to the command line

<Sl> Skip over (do not copy) a character in
the template

<SM> Skip over (do not copy) the characters
in the template up to the character
specified

<QI> Void the current input: leave the template
unchanged

<INS> Enter insert mode

<REP> Exit insert mode (toggle from insert) :
this is the default

<NT> Make the new line the new template

As an example of the use of the special editing keys and
command entry in general, pretend that you have entered the
following command:

DrR PROG.COM<RETURN>

This command displays contents of the file PROG.COM on the
terminal screen. It also has the useful side effect of
saving the command line in the template. To repeat the
command, all you have to do is type two keys: <CT> and
<RETURN> •

-18-

(

c

SYSTEM STRUCTURE Page 2-11

The repeated command is displayed on the screen, as you
type, as shown below:

<CT>OIR PROG.COM<RETURN>

Note that pressing the <CT> key causes the contents of the
template to be copied to the command line buffer; pressing
<RETURN> causes the command line to be processed by
COMMAND.COM.

Now pretend that you want to display the contents of the
file PROG.ASM. To do this we will make use of the template,
and type

<CM>C

Entering <CM>C copies characters from the template to the
command line buffer up to the character "C":

DIR PROG.

Note that the underline is your cursor. Now type:

.ASM

The result is:

OIR PROG.ASM

The desired command line is now in the command line buffer.
To send this command line on to COMMAND.COM, the command
interpreter, simply enter <RETURN>.

The template now contains the following command line:

OIR PROG.ASM

Now assume that we want to execute the following command:

TYPE PROG.ASM

To do this, we type:

TYPE<INS> <CT><RETURN>

Note that normal alphanumeric characters are entered
directly into the command line buffer, automatically
replacing corresponding characters in the template. This
automatic replacement is turned off when the <INS> key is
typed. Thus, the characters "TYPE" replace the characters
"DIR " in the template. To insert a space between "TYPE"
and "PROG.ASM," we first typed <INS> and then a space .
Finally, to copy the rest of the template to the command
line, we typed <CT>, followed by a <RETURN>.

-19-

SYSTEM STRUCTURE Page 2-12

When <RETURN> is typed, the entire command line is copied to
the template, in this case: (

TYPE PROG.ASM

If we had misspelled "TYPE" as "BYTE", a command error would
occur. Still, we could save the mistyped command line by
creating a new template with the <NT> key:

BYTE PROG.ASM<NT>

We can then edit this erroneous command line by typing:

T<Cl>P<CT>

The <Cl> key copies a single character from the template to
the command line buffer. The resulting command line then is
what we want:

TYPE PROG.ASM

As an alternative, we could have used the same template
containing BYTE *.ASM, and used the <Sl> and <INS> commands
to achieve the same result:

<Sl><Sl><Cl><INS>YP<CT>

To illustrate how the command line buffer is affected as you
type, examine the keys typed on the left and their affect on
the contents of the command line buffer, shown on the right:

<Sl>
<Sl>
<Cl> T
<INS>YP TYP
<CT> TYPE PROG.ASM

Skips over 1st template char}
Skips over 2nd template char}
Copies 3rd template char}
Inserts two characters}
Copies rest of template}

Note that <Sl>, like <SM>, does not affect the command line
buffer; rather, it effects the template by deleting the
first character in the template. Similaraly, <SM> deletes
characters in the template up to a given character (this
character is the next one typed).

As you can see from the above examples, these special
editing function keys can add greatly to your effectiveness
at the keyboard. The next section describes control
character functions that complement the above functions.

-~-

(

SYSTEM STRUCTURE Page 2-13

2.3.1.2 Control Character Functions - While commands are
being entered, MS-DOS recognizes seven control character
functions. These control characters and the functions
associated with them are shown in Table 2.2.

Table 2.2 Control Character Functions

Control Function
Character

<CONTROL-N> Cancel echoing of output to line printer.

<CONTROL-C> Abort current command.

<CONTROL-H> Remove last character from command line,
and erase character from terminal screen.

<CONTROL-J> Insert physical end-of-line, but do not empty
command line. Use Linefeed to extend the
current logical line beyond the physical
limits of one terminal line.

<CONTROL-P> Echo terminal output to the line printer.

<CONTROL-S> Suspend display of output to terminal screen.
Press any key to resume.

<CONTROL-X> Cancel the current line, empty the command
line, and then output a back slash (\) ,
carriage return, and line feed.
The template used by the Special Editing
commands is not affected.

-21 -

SYSTEM STRUCTURE Page 2-14

2.3.2 Command Interpretation

The MS-DOS user interface permits editing of command lines
with the special editing and control character functions
described in the preceding section. Once a command line has
been edited, it is sent to COMMAND.COM for processing.
COM~AND.COM is the hub of the operating system, acting as
the interface between the lower levels of the operating
system and user input. It is in COMMAND.COM that the
commands that are entered on the command line are
interpreted.

Commands themselves are of one of two types: either
internal or external. Internal commands are all resident in
memory as part of COMMAND. COM; they are loaded into memory
when the operating system is booted up. External commands,
on the other hand, are loaded into memory from disk only
when needed. External commands reside in disk files that
have a name with either a .COM or .EXE extension. Note that
COMMAND.COM itself is an external command. A picture of the
command interface is shown in Figure 2.3.

Command COMMAND. COM
Line ------->

v

Memory

(External commands
loaded and executed
by COMMAND.COM)

Internal
Commands

Disk Space

* External Commands
(.COM and .EXE

Files)

* Batch Files
(.BAT files)

* Data Files

Figure 2.3 ~S-DOS Command Structure

Command interpretation begins when COMMAND.COM scans the
command line for the name of a legal command. If it is an
internal command, it is executed immediately; if it is a
batch file, commands are executed indirectly from a .BAT

-~-

(

(

SYSTEM STRUCTURE Page 2-15

file; if it is an external .COM or .EXE command, the
appropriate file is loaded from disk into memory where it is
executed. (The batch facility and .BAT commands are
discussed later in this chapter.)

COMMAND.COM provides MS-DOS' characteristic colon prompt (:)
in the form of a drive designation letter and a colon (:).

For example:

A:

The cursor is the focus of any editing actions that you
perform. The cursor is indicated by an underline in this
manual; the symbol itself is implementation dependent.

At system
start-up,
currently
enter the

A:

start-up, the default prompt is always A:.
the user may specify the default (that

selected drive). To select a new drive,
designation letter followed by a colon:

(prompt; default drive)

After
is, the
simply

A:B:<RETURN>
B:

(user enters new drive designation)
(new prompt; new default drive)

Note that COMMAND's main goals are to identify commands
typed at the command line and then to execute them. All
commands consist of a command name followed by optional
parameters. When parameters are present, they must be
separated from the command name and from each other.
Spaces, tabs, and commas are the only legal separators.

For example:

COpy OLDFILE.REL,NEWFILE.REL

RENAME THISFILE THATFILE

COMMAND.COM is able to execute several different types of
commands: these types are described later in this chapter.

-~-

SYSTEM STRUCTURE Page 2-16

2.4 COMMAND TYPES

CO~MAND.COM allows you to execute four different types of
commands:

1. Internal commands such as DIR, REN, TYPE and DEL.

2. .COM commands such as CHKDSK.COM, DEBUG.COM, and
EDLIN.COM.

3. .EXE commands such as LINK.EXE, MASM.EXE, and
CREF.EXE.

4. .BAT command files that contain multiple instances
of the above commands.

The internal commands and the simplest, most commonly used
external commands are described in Chapter 3, "Commands."
You should study all of these commands carefully.

Use of the MS-DOS batch facility is discussed in the next
section of this chapter. The batch facility allows you to
indirectly execute a set of commands contained in a file.
This facility allows you to tailor commands for a particular
purpose without a great deal of programming effort.

Separate chapters are also provided on three
programs:

EDLIN - The MS-DOS line editor
DEBUG - The MS-DOS debugger
FILCOM - The MS-DOS file comparison program

utility

Finally, most of the .EXE files provided with the MS-DOS
operating system are described in the
Utility Software Package Manual. The programs described in
this manual make up a powerful and complete assembly
language development system.

This software includes:

MASM.EXE - The MACRO-86 macro assembler for 8088
and 8086 microprocessors

LINK.EXE - The MS-LINK linker
CREF.EXE - The MS-CREF assembler cross-reference

utility
LIB.EXE - The MS-LIB library manager facility

-u-

(

(

SYSTEM STRUCTURE Page 2-17

2.4.1 Internal Commands

Internal commands are incorporated in COMMAND.COM and are
always available when COMMAND.COM is resident in memory.
Unlike the external commands, discussed in the next section,
these commands need not be available on disk when they are
executed. Note that most internal commands are simple and
easy to use. This is in contrast to some of the external
commands which are larger and more complex.

The internal commands are listed below. Each is described
thoroughly in the next chapter.

COpy
DATE
DEL
DIR
REM

REN
PAUSE
TIME
TYPE

2.4.2 External Commands

Any file with the filename extension
considered valid as an external command.
executed by entering the name of the file
.EXE extension. Programs that you
languages will be .EXE files.
External commands include:

ASM86
CHKDSK
COMMAND
CREF
DEBUG
EDLIN

EXE2BIN
FORMAT
FILCOM
LINK
LIB
SYS

.COM or .EXE
Such commands

less its .COM
create with

is
are
or

most

Note that .EXE files created with the MACRO-86 assembler can
be converted to .COM files with the command EXE2BIN.EXE.
The format of a .COM file is special, so .EXE files cannot
be arbitrarily converted. Note also that all .COM commands
execute in less than 64K of memory; .EXE files, on the
other hand, may require more than 64K of memory to execute.

-25-

SYSTEM STRUCTURE Page 2-18

2.4.3 Batch Commands

The MS-DOS batch facility allows files containing commands
to be submitted for processing internally by MS-DOS.
"Batches" of commands in such files are processed as if they
were typed at a terminal. Each batch file must be named
with the .BAT extension, and is submitted for execution by
entering its filename less that extension. Optional
parameters may be given as well. Therefore, the invocation
syntax is as follows:

<filespec> [<parameters>]

By creating a .BAT file with prototype commands
positional parameters, parameters may be passed
file when it is executed. You may specify
positional parameters, named %0 through %9.

containing
to the .BAT

up to 10

The parameters are substituted in their order on the
invocation line for corresponding occurrences in the batch
file. If the dummy parameter %0 is used, the batch facility
substitutes the name of the batch command itself for
parameter %0. Thus, the batch facility permits creation of
batch commands that can be used on more than just one set of
files, and that can be used to reexecute themselves.

For example, a batch file might look like this when viewed
from within EDLIN, the MS-DOS line editor:

1 : REM This is file NEWDISK.BAT
2 : REM (the .BAT extension must be given)
3: PAUSE Insert disk in B:
4 : FORMAT B:/S
5 : DIR B:
6 : CHKDSK B:

To execute this .BAT file, simply enter the filename without
the .BAT extension:

NEWDISK

The result is the same as if each of the lines in the .BAT
file were entered at the terminal as individual commands.

To pass parameters to the .BAT file, the user must create a
.BAT file containing prototype commands with dummy entries.

-26 -

(

(

SYSTEM STRUCTURE

For example:

1: REM This is A:ASMFILE.BAT
2: REM START BATCH FILE
3: COpy %l.ASM %2.ASM
4: MASM %2,%2,%2;
5: TYPE %2.PRN
6: TYPE %O.BAT

Assume that this file exists as A:ASMFILE.BAT.

Page 2-19

To execute this .BAT file and pass parameters, enter:

A:ASMFILE A:MYPROG B:MYPROG

The result is the same as if you had entered each of the
following commands at your terminal:

REM This is A:ASMFILE.BAT
REM START BATCH FILE
COpy A:MYPROG.ASM B:MYPROG.ASM
MASM B:MYPROG,B:MYPROG,B:MYPROG;
TYPE B:MYPROG.PRN
TYPE A:ASMFILE.BAT

When you boot up your system, COMMAND.COM searches for the
file A:AUTOEXEC.BAT. If a file with that name exists on
disk, then the batch facility is automatically invoked to
execute the commands contained in AUTOEXEC.BAT. In such a
case, execution of the TIME and DATE commands at start-up is
bypassed. If COMMAND.COM does not find AUTOEXEC.BAT, then
t~e normal MS-DOS prompt is displayed instead.

Two MS-DOS commands are available expressly for their use in
batch files: REM and PAUSE. REM permits the inclusion of
remarks and comments in batch files; PAUSE prompts the user
with an optional message and permits either continuing or
aborting execution of a batch file at a given point. REM
and PAUSE are further described in Chapter 3, "Commands."

-27 -

(

c

c

CHAPTER 3

COMMANDS

NOTE

Users of single-drive systems
should refer to Appendix A for
the additional procedures
required when executing many
of the following commands.

The following notation is used in the descriptions in this
chapter.

filespec

filename

d:

Refers to an optional drive designation
followed by a filename followed by a period and
an optional three letter filename extension.
For example:

B:ABODE.BAS {refers to a disk file
on disk B:}

FILE. BAS {refers to a disk file
on the default disk}

CON {refers to the user's
terminal console}

CON. BAS {same as above}

Refers to any valid name for a
including an optional extension.
parameter does not refer to a device
disk drive designation alone.

Refers to a disk drive designation

- 29.-

disk file,
A filename

or to a

COMMANDS Page 3-2

All of the commands described in this chapter are listed
below:

CHKDSK Scan the directory of the default or designated
drive and check for consistency.

COpy Copy file(s) specified.

DATE Display and set date.

DEL Delete files specified. ERASE is a synonym for
this command.

DIR List requested directory entries.

EXE2BIN Convert .EXE file to a .COM file.

FORMAT Format a disk to receive MS-DOS files.

PAUSE Pause for input in a batch file.

REM Display a comment in a batch file.

REN Rename first file as second file. RENAME is a
synonym for this command.

SYS

TIME

TYPE

Transfer MS-DOS system files from drive A:
the drive specified.

Display and set time.

Display the contents of file specified.

-~-

to

(

(

COMMANDS CHKDSK Page 3-3

NAME TYPE
CHKDSK External

SYNTAX

FUNCTION

COMMENTS

CHKDSK [d:]

Scan the directory of the default or designated
drive and check it for consistency.

CHKDSK should be run occasionally on each disk
to verify the integrity of the directory
structure. If any errors are found, the
appropriate error message is displayed and
corrective action is attempted.

After the disk has been
displays error messages,
status report.

checked, CHKDSK
if any, and then a

A sample status report follows:

160256 bytes total disk space
8192 bytes in 2 hidden files

30720 bytes in 8 user files
121344 bytes available on disk

65536 bytes total memory
53152 bytes free

If an error is detected, CHKDSK returns one of
the following error messages:

Allocation error for file <filename>
The named file had a data block allocated
to it that did not exist (that is, a data
block number larger than the largest
possible block number). CHKDSK trun~ates
the file short of the bad block.

Disk not initialized
No directory or file allocation table was
found. If files exist on the disk, and the
disk has been physically harmed, it may
still be possible to transfer files from
this disk to recover data.

Directory error-file: <filename>
No valid data blocks are allocated to the
named file. CHKDSK deletes the file.

-31-

COMMANDS CHKDSK Page 3-4

Files cross-linked: <filename> and <filename>
The same data block is allocated to both
files. .No corrective action is taken. To
correct the problem, first use the COpy
command to make copies of both files:
then, delete the originals. Review each
file for validity and edit as necessary.

File size error for file <filename>
The size of the file in a directory is
different from its actual size. The size
in the directory is automatically adjusted
to indicate its actual size on the disk.
(The amount of useful data may be less than
the size shown because the last data block
may not be used fully.)

XXXXXX bytes of disk space freed
Disk space shown as allocated was not
actually allocated and has been freed.

-32-

(

(

COMMANDS COpy Page 3-5

NAME

SYNTAX

FUNCTION

COMMENTS

TYPE
COpy Internal

COpy filespec [filespec]

Copy the first filespec to the second.

If the second filespec parameter is not given,
the copy is on the default drive and has the
same name as the original (first filespec
parameter) . If the first filespec is on the
default drive and the second filespec is not
given, the COpy is aborted. (Copying files to
themselves is not allowed.) MS-DOS returns the
error message:

File cannot be copied onto itself
o File(s) copied

The second parameter may take three forms. If
the second parameter is a drive designation
(d:) only, the original file is copied with the
same name to the designated drive. If the
second parameter is a filename only, the
original file is copied to a file with the name
specified on the default drive. If the second
parameter is a full filespec, the original file
is copied to a file with the name specified on
the designated drive.

The COpy command also allows file concatenation
while copying. Concatenation is invoked by
simply listing any number of files as
parameters to COPY, separated by "+".

For example,

COpy A.XYZ + B.COM+B:C.TXT BIGFILE.CRP

The above command concatenates the contents of
A.XYZ, B.COM, and B:C.TXT and places them in
the file on the ~efault drive called
BIGFILE.CRP.

The concatenation operation is normally carried
out in text (or ASCII) mode, meaning a
<CONTROL-Z> (IA hex) in the file is interpreted

-33-

COMMANDS COpy Page 3-6

The concatenation operation is normally carried
out in text (or ASCII) mode, meaning a
<CONTROL-Z> (IA hex) in the file is interpreted
as the end-of-file mark. To combine binary
files, this interpretation of the end-of-file
may be overridden with the /B switch, which
forces the command to use the physical
end-of-file as the end of file (that is, the
file length seen in the DIR command) .

For example,

COPY/B A.COM + B.COM

Also, in the above
name was given.
the end of A.COM
leaving the result

example, no resulting file
In this case, COpy seeks to

and appends B.COM to it,
named A.COM.

ASCII and binary files may be arbitrarily
combined by using /B on binary files and /A on
ASCII files. A switch (/A or /B) takes effect
on the file it is placed after and applies to
all subsequent files until another switch is
found.

A /A or /B switch on the destination file
determines whether or not a <CONTROL-Z> is
placed at the end of the file. (Source files
read while /A is in effect have <CONTROL-Z>
stripped off. If /A is in effect when the file
is written, a single <CONTROL-Z> will be put
back.) Thus, an additional <CONTROL-Z> would be
appended with a command such as:

COpy A.ASM/B B.ASM/A

This occurs because the /B on the first file
prevents the <CONTROL-Z> from being stripped,
and the /A on the second puts one on. The
primary practical application may be the
reverse, where a <CONTROL-Z> is stripped from
the file.

For example:

COPY PROG.COM/B + ERRS. TXT/A NEWPROG.COM/B

It is assumed here that ERRS. TXT was generated
by an editor, but is actually considered
constant data (error messages) by the program
it is being appended to. Since the result is a

-M-

(

COMMANDS

(

COpy Page 3-7

Even when not concatenating files, the /A and
/B switches- are still processed. When not
concatenating, the copy command defaults to
binary copy. By using the /A switch, the
result file may be truncated at the first
end-of-file mark:

COPY A.TXT/A B.TXT

B.TXT may be shorter than A.TXT
contained an embedded <CONTROL-Z>.
have exactly one <CONTROL-Z>,
character of the file.

if A.TXT
B.TXT will
the last

Concatenation with ambiguous file names is
allowed, and the COpy command normally "does
what you want". To combine several files
specified with an ambiguous name into one file,
use a command like:

COpy *.LST COMBIN.PRN

All files matching *.LST are combined into one
file called COMBIN.PRN. Another type of task
is performing several individual
concatenations:

COpy *.LST + *.REF *.PRN

In this example, for each file found matching
*.LST, that file is combined with the
corresponding .REF file, with the result given
the same name but with the extension .PRN.
Thus, FILEl.LST will be combined with FILEl.REF
to form FILEl.PRN, then XYZ.LST with XYZ.REF to
form XYZ.PRN, and so on. The following COpy
command combines all files matching *.LST, then
all files matching *.REF, into one file call
COMBIN.PRN:

COpy *.LST + *.REF COMBIN.PRN

It is easy to enter a concatenation COpy
command where one of the source files is the
same as the destination, yet this often cannot
be detected. For example, the following
command is an error if ALL.LST already exists:

COpy *.LST ALL.LST

-35-

COMf.1ANDS COpy Page 3-8

COpy *.LST ALL.LST

This is not detected, however, until it is
ALL.LST's turn to be appended. At this point
it could already have been destroyed.

COpy handles this problem like this: as each
inpui file is found, its name is compared with
the destination. If they are the same, that
one input file is skipped, and the message
"Content of destination lost before copy" is
printed. Further concatenation proceeds
normally. This allows "summing" files, with a
command like

COpy ALL.LST + *.LST

This command appends all *.LST files, except
ALL.LST itself, to ALL.LST. The error message
is suppressed in this case, since this is
produced by a true physical append to ALL.LST.

-36-

(

c

COMMANDS

NAME
(

SYNTAX

FUNCTION

COMMENTS

DATE Page 3-9

TYPE
DATE Internal

DATE [<mm>-<dd>-<yy>]

Display and set the date.

If entered without a parameter, DATE returns
with the message:

Current date is <mm>-<dd>-<yy>
Enter new date:

Press <RETURN> if you do not want to change the
date shown.

Optionally, the date may be given
parameter to the DATE command as in:

DATE 3-9-81

In this case, no message appears.

as a

The new date must be entered
only: letters are not

using numerals
permitted. The

allowable parameters are:

<mm> = 1-12
<dd> = 1-31
<yy> = 80-99 or 1980-2099

The date, month, and year entries may be
separated by hyphens (-) or slashes (I).
MS-DOS is programmed to change months and years
correctly, whether the month has 31, 30, 29, or
28 days. (Note that MS-DOS handles leap years,
too.)

If the parameters or separators are not legal,
MS-DOS returns the message:

Invalid date
Enter new date:

DATE then waits for entry of a legal date.

-37-

COMMANDS

NAME

SYNTAX

FUNCTION

COMMENTS

DEL Page 3-10

TYPE
DEL Internal

DEL filespec

Delete all the files with the filespec
specified.

If the filename is *.*, the prompt "Are you
sure?" appears. If a "y" or "y" is typed as a
response, then all files are deleted as
requested. ERASE is a synonym for this
command.

-38-

(

COMMANDS

N~E

(

SYNTAX

FUNCTION

COMMENTS

DIR Page 3-11

TYPE
DIR Internal

DIR [filespec] [/P] [/W]

List the files in a directory

If no parameter is present (DIR) , all directory
entries on the default drive are listed. If
only the drive specification is present
(DIR d:), all entries on the disk in the
specified drive are listed. If only filename
is present (DIR filename) with no extension,
then all files with the filename specified on
the disk in the default drive are listed. If a
full file specification is present (DIR
d:filename.ext), all files with the filename
specified on the disk in the drive specified
are listed. In all cases, files are listed
with their size in bytes and the time and date
of their last modification.

The wild card characters question mark (?) and
asterisk (*) may be used in the filename
parameter. Refer to Section 2.2.2,
"Filenames," for examples of the use of the
wild card characters. Note that for the
convenience of the user, the following
invocations of the DIR command are equivalent:

COMMAND EQUIVALENT

DIR DIR *.*
DIR FILE DIR FILE.*
DIR .EXT DIR *.EXT
DIR DIR *

Two switches may be given with DIR. The /P
switch selects Page Mode. with /P, display of
the directory pauses after the screen is
filled. To resume display of output, type any
key.

The /W switch selects Wide Display. with /W,
only file names are displayed without other
file information. Files are displayed five per
line.

-~-

COMMANDS

NAME

SYNTAX

FUNCTION

COMMENTS

EXE2BIN Page 3-12

TYPE
EXE2BIN External

EXE2BIN filespec Cd:] [filename] [.extl

Convert files from .EXE format to binary format

The first parameter is the input file; if no
extension is given, it defaults to .EXE. The
second parameter is the output file. If no
drive is given, the drive of the input file is
used; if no filename is given, the filename of
the input file is used; if no extension is
given, .BIN is used.

The input file must be in valid .EXE format
produced by the linker. The "resident", or
actual code and data part of the file, must be
less than 64K. There must be no STACI~ segment.
Two kinds of conversion are possible depending
on the specified initial CS:IP:

1. If CS:IP is not specified, a pure binary
conversion is assumed. If segment fix-ups
are necessary, the following prompt
appears:

Fix-up needed - base segment (hex):

By typing a legal hexadecimal number and
then <RETURN>, execution will continue.

2. If CS:IP is specified as lOOH, then it is
assumed the file is to be run as a .COM
file ORGed at lOOH, and the first lOOH of
the file is to be deleted. tlo segment
fix-ups are allowed, as .COM files must be
segment relocatable.

If CS:IP does not meet one of these criteria or
meets the .COM file criterion, but has segment
fix-ups, the following error message is
displayed:

File cannot be converted

Note that to produce standard .COM files \'1i th
the MACRO-86 assembler, one must both ORG the
file at lOOH and specify the first location as

-40-

(

COMMANDS

(

EXE2BIN Page 3-13

the start address (this is done in the END
statement) .

For example:

ORG
START:

END

lOOH

START

-41-

COMMANDS

NAME

SYNTAX

FUNCTION

COMMENTS

FORMAT Page 3-14

TYPE
FORMAT External

FORMAT d: [IS]

Format the disk in the drive designated to
accept MS-DOS files.

Initialize the directory and file allocation
tables. The reserved sectors are copied onto
track 0, sector 1. (This occurs whether or not
the /S switch is given.)

If the /S switch is present, FORMAT copies
operating system files from the disk in the
default drive to the newly formatted disk. The
files copied are copied in the following order:

IO.SYS
MSDOS.SYS
COMMAND.COM

-42 -

(

(

COMMANDS

NAME

SYNTAX

FUNCTION

COMMENTS

PAUSE Page 3-15

TYPE
PAUSE Internal

PAUSE [comment]

Suspend execution of the batch file.

During the execution of a batch file, you may
need to change disks or to perform some other
action between the execution of batch commands.
The PAUSE command exists for just such
purposes. PAUSE suspends execution until you
type any key, except <CONTROL-C>.

When COMMAND encounters PAUSE, it prints:

Strike a key when ready .

Pressing any key except <CONTROL-C> resumes
execution of the batch file. If you type
<CONTROL-C>, another prompt is displayed:

Abort batch job (YIN)?

If you type "y" in response to this prompt,
execution of the remainder of the batch command
file is aborted and control returns to the
operating system command level. Therefore,
PAUSE can be used to break a batch file into
pieces, allowing you to end the batch command
file at an intermediate point.

The optional comment may be entered on the same
line as PAUSE. You may also want to prompt the
user of the batch file with some meaningful
message when the batch file has paused. For
example, you may want to change disks in one of
the drives. An optional prompt message may be
given in such cases. The comment prompt is
displayed before the "Strike a key" message.

-43-

COMr-1ANDS

NAME

SYNTAX

FUNCTION

COMMENTS

REM Page 3-16

TYPE
REM Internal

REM [comment]

Display remark entered on same line as REM when
encountered during execution of batch file.

The REM command has no other effect. The only
delimiters for the comment are anyone of the
three legal delimiters to start the comment
(blank space, tab, comma).

-44-

(

COMMANDS

N~E

SYNTAX

FUNCTION

COMMENTS

(

~N Page 3-17

TYPE
REN Internal

REN filespec filename

Change the name of the first parameter
(filespec) to the second parameter (filename).

The first parameter (filespec) must be given a
drive designation if the file disk resides in a
drive other than the currently logged (default)
drive. Any drive designation for the second
parameter (filename) is ignored. The file will
remain on the disk where it currently resides.

The wildcard characters, question mark (?) and
asterisk (*), may be used in either parameter.
All files matching the first filespec are
renamed. If wildcard characters appear in the
second name, corresponding character positions
are not changed.

For example, the following command changes the
names of all files with the .LST extension to
similar names with the .PRN extension:

REN *.LST *.PRN

Another example causes the file ABODE on drive
B: to be renamed ADOBE:

REN B:ABODE ?D?B?

The file remains on drive B:.

An attempt to rename a file to a name already
present in the directory will result in the
error message "Duplicate file name or file not
found."

Note that REN~E is a synonym for the REN
command.

-45-

COM!-tANDS

NAME

SYNTAX

FUNCTION

COMl-1ENTS

SYS Page 3-18

TYPE
SYS External

SYS d:

Transfer the MS-DOS system files from the disk
in the default drive to the drive specified by
d: •

SYS is normally used to update a system or to
place the system on a formatted disk that
contains no files. An entry for d: is
required.

The files transferred are copied
following order:

in the

IO.SYS
MSDOS.SYS

Note that COMMAND.COM is
that IO.SYS and MSDOS.SYS
that do not appear when
executed.

-46-

not transferred and
are both hidden files
the DIR command is

(

(

COMMANDS TIME Page 3-19

NAME TYPE
TIME Internal

SYNTAX
TIME [<hh>[:<mm>[:<ss>]]]

FUNCTION

COMMENTS

Display and set the time.

If the TIME
parameters,
dlsplayed:

command is
then the

entered without any
following message is

Current time is <hh>:<mm>:<ss>.<cc>
Enter new time:

Simply type <RETURN> if you do not want to
change the time shown. Optionally, a new time
may be given as a parameter to the TIME command
as in:

TIME 8:20:00

The new time must be entered using numerals
only: letters are not allowed. The allowable
parameters are:

<hh> = 00-24
<mm> = 00-59
<ss> = 00-59

The hour, minute, and second entries must be
separate by colons.

MS-DOS uses whatever time is entered as the new
time as long as the parameters and separators
are legal. If the parameters or separators are
not legal, MS-DOS returns the message:

Invalid time
Enter new time:

MS-DOS then waits for entry of a legal time.

-47-

COMMANDS TYPE Page 3-20

NAME TYPE
TYPE Internal

SYNTAX
TYPE filespec

FUNCTION

COMMENTS

Display the contents of the file on the console
screen.

Use this command to examine a file without
modifying it. Use DIR to find the name of a
file and EDLIN to alter the contents of a file.
The only formatting performed by TYPE is that
tabs are expanded to spaces consistent with tab
stops every eighth column. Note that display
of binary files causes control characters to be
sent to your computer, including bells,
formfeeds, and escape sequences.

-48-

(

(

CHAPTER 4

EDLIN

EDLIN is a text editor used to edit files that are divided
into lines. Each line may be up to 255 characters, the last
character of each being the end of line character, the
carriagp. return. Line numbers are not actually present in
saved text, but when a file is displayed, lines are numbered
dynamically. When a file is created or edited, line numbers
begin at 1 and are incremented by one through the end of the
file. When new lines are inserted between existing lines,
all line numbers following the inserted text are
automatically incremented by the number of lines inserted.
When lines are deleted between existing lines, all line
numbers following the deleted text are decremented
automatically by the number of lines deleted. Consequently,
lines numbers always run from 1 through n (the last number).

4.1 INVOCATION

To invoke EDLIN, enter:

EDLIN <filespec>

If the file specified exists, EDLIN loads the file into
memory. If the whole file is loaded, EDLIN returns the
message "End of input file" and an asterisk (*) prompt. If
the file is "larger than memory", then EDLIN fills 3/4 or
available memory with the first part of the file and then
returns the asterisk (*) prompt, but not the "End of input
file" message. (This is just like the Append command with
no parameter. See Section 4.3, "Interline Commands," for
more information on Append.)

You may then edit
the part of a
write out to disk
then append lines

the existing file. When you want to edit
file that is not in memory, you must first
some of the file that is in memory, and
into memory.

-49-

EDLIN Page 4-2

These commands are:

[<n>]W

where <n> is the number of lines to be written out: and

[<n>] A

where <n> is the number of lines to be appended.

When the editing session ends, the file is saved on the same
drive where it was found by typing:

E

If the file specified does not exist, EDLIN creates the file
and returns the message NEW FILE. and then displays the
asterisk (*) prompt, indicating that the editing session may
begin.

IMPORTANT

When creating a new file, be
sure to specify on which drive
the file should be saved. The
command to end the editing
session and save the file does
not allow parameters.
Therefore, if the drive is not
designated during EDLIN
invocation, the file is saved
on the default drive.

EDLIN commands belong to two types: intraline and
interline. Intraline commands perform editing functions
within a single line. The commands used to perform
intraline editing are the control character functions and
the special editing commands discussed in Chapter 2. The
special editing functions are described in more detail in
the following section than they were in Chapter 2. Note,
however, that these are the same commands that are used at
the MS-DOS command level. The only difference between them
is that the EDLIN commands operate on the line currently
being edited, rather than the MS-DOS command line.

-50-

(

(

EDLIN Page 4-3

4.2 INTRALINE COMMANDS

Intra1ine commands include the special editing functions and
the control character functions: only the special editing
functions are discussed here. See Section 2.3.1.2 for more
information on the control character functions.

The special editing commands all may be assigned to the keys
that make the best use of a specific terminal keyboard.
Therefore, each command is identified by a functional name
rather than by a specific key, and each is configurab1e to a
particular keyboard key code. A code has been given to each
command for ease of reference during the examples which
demonstrate the function. (For an application on a specific
terminal, the codes should be replaced by the names of the
specific terminal keys.) Table 4.1 summarizes the commands,
codes, and functions. Descriptions of the special editing
functions follow the table.

- 51 -

EDLIN Page 4-4

Table 4.1 Special Editing Commands
(

Command Code Function

Copy One character <Cl> Copy one character from
F 5 the template to the new

line

Copy up to character <CM> Copy all characters from
the template to the new

F 6 line up to the character
specified

Copy Template <CT> Copy all remaining
F 7 characters in the

template to the new line

Skip One character <Sl> Do not copy (sk ip over) a
F 8 character in the template

Skip up to character <SM> Do not copy (skip over)
the characters in the

F 9 template up to the
character specified

Quit Input <QI> Void the current input:
leave the template
unchanged

Insert mode <INS> Enter insert mode
F 2

Replace mode <REP> Exit insert mode

F 3 (toggle from insert) ;
this is the default

New Template <NT> Make the new line
the new template

ESC [> 3 1

-52-

C

EDLIN <Cl> Page 4-5

KEY
<Cl>

FUNCTION
Copy one character from the template to the
input buffer.

COMMENTS

EXAHPLE

Pressing the <Cl> key copies one character from
the template to the input buffer. When the
<Cl> key is pressed, one character is inserted
in the buffer and insert mode is automatically
turned off if it was on. Use the <Cl> key to
advance the cursor one column across the line.

Assume the screen shows:

l:*This is a sample file.
1:*

"At the beginning of the intraline edit, the
cursor is positioned at the beginning of the
line (indicated by the underline). Pressing
the <Cl> key copies the first character (T) to
the second of the two lines displayed:

l:*This is a sample file
<Cl> l:*T

Each time the <Cl> key is pressed, one more
character appears:

<Cl> l:*Th
<Cl> l:*ThI
<Cl> l:*This

- 53-

EDLIN

KEY

FUNCTION

COMMENTS

EXAMPLE

<CM> Page 4-6

<CM>

Copy multiple characters up to a given
character

Pressing the <CM> key copies all characters up
to a given character from the template to the
input buffer. The given character is the next
character typed and is not copied or shown on
the screen. Pressing the <CM> key causes the
cursor to move to the single character that is
this command's only parameter. If the template
does not contain the specified character,
nothing is copied. Pressing <CM> also
automatically turns off insert mode if it is
on.

Assume the screen shows:

l:*This is a sample file.
1:*

At the beginning of the intraline edit, the
cursor is positioned at the beginning of the
line (indicated by the underline). Pressing
the <CM> key copies all characters up to the
character pressed immediately after the <CM>
key.

l:*This is a sample file
<CM>p l:*This is a sam

-M -

(

EDLIN

(
KEY

FUNCTION

COMMENTS

EXAMPLE:

<CT> Page 4-7

<CT>

Copy template to input buffer

Pressing <CT> copies all remaining characters
from the template to the input buffer.
Regardless of the cursor position at the time
the <CT> key is pressed, the rest of the line
appears, and the cursor is positioned after the
last character on the line.

Assume the screen shows:

l:*This is a sample file.
1:*

At the beginning of the intraline edit, the
cursor is positioned at the beginning of the
line (indicated by the underline). Pressing
the <CT> key copies all characters from the
template (shown in the upper line displayed) to
the line with the cursor (the lower line
displayed) :

l:*This is a sample file
<CT> l:*This is a sample file.

Also, insert mode is automatically turned off
if it was on.

-55-

EDLIN

KEY

FUNCTION

COMMENTS

EXAMPLE:

<51> Page 4-8

<51>

5kip over one character in the template

pressing the <51> key skips over one character
in the template. Each time you press' the <Sl>
key, one character is deleted (not copied) from
the template. The action of the <51> key is
similar to the <Cl> key, except that <51> skips
a character in the template rather than copies
it to the input buffer.

Assume the screen shows:

l:*This is a sample file.
1:*

At the beginning of the intraline edit, the
cursor is positioned at the beginning of the
line (indicated by the underline). Pressing
the <Sl> key skips over the first character
("Til) •

l:*This is a sample file
<51> 1:*

The cursor position does not move, only the
template is affected. To see how much of the
line has been (skipped over), press the <CT>
key, which moves the cursor beyond the last
character of the line.

l:*This is a sample file.
<51> 1:*
<CT> l:*his is a sample file.

-56-

(

EDLIN

(
KEY

FUNCTION

Cor1MENTS

EXAMPLE

<SM> Page 4-9

<SM>

Skip multiple characters in the template

Pressing the <SM> key skips over all characters
up to a given character in the template. The
given character is the next character typed,
and is not copied and not shown on the screen.
If the template does not contain the specified
character, nothing is skipped over. The action
of the <SM> key is similar to the <CM> key,
except that <SM> skips over characters in the
template rather than copies them to the input
buffer.

Assume the screen shows:

l:*This is a sample file.
1:*

At the beginning of the intra1ine edit, the
cursor is positioned at the beginning of the
line (indicated by the underline). Pressing
the <SM> key skips over (deletes) all the
characters in the template up to the character
pressed after the <SM> key:

l:*This is a sample file
<SM>p 1:*

The cursor position does not move. To see hmv
much of the line has been skipped over, press
the <CT> key to copy the template. This moves
the cursor beyond the last character of the
line:

l:*This is a sample file:
<SM>p 1:*
<CT> l:*ple file.

-57-

EDLIN <OI> Page 4-10

KEY
<OI>

FUNCTION

COMMENTS

EXAMPLE

Quit input and flush the input buffer.

Pressing the <QI> key flushes the input buffer,
but it leaves the template unchanged. <OI>
also prints a back slash (\), carriage return,
and line feed, and turns insert mode off if it
was on. The cursor is positioned at the
beginning of the line. Pressinq the <CT> key
copies the template to the input buffer just as
the line was before <OI> was pressed.

Assume the screen shows:

l:*This is a sample file.
1:*

At the beginning of the intraline edit, the
cursor is positioned at the beginning of the
line (indicated by the underline). Assume you
want to replace the line by typing:

l:*This is a sample file.
Sample File l:*Sample File_

Now, to reedit the line, press <OI>:

l:*This is a sample file.
<OI> l:*Sample File\

<RETURN>
original
editing
original
buffer:

1:

can now
line or to
functions.

template

be pressed to keep the
perform any other intraline

If <CT> is pressed, the
is copied to the input

<CT> 1: This is a sample file.

-~-

(

(

EDLIN

(
KEY

FUNCTION

COMMENTS

EXA.t.1PLE

<INS> Page 4-11

<INS>

Enter insert mode

Pressing the <INS> key causes entry into insert
mode. The current position in the template is
not changed. The cursor does move as each
character is inserted. However, when you have
finished inserting characters, the cursor is
positioned at the same character as it was
before the insertion began. Thus, characters
are inserted before the character the cursor
points to.

Assume the screen shows:

l:*This is a sample file.
1:*

At the beginning of the intraline edit, the
cursor is positioned at the beginning of the
line (indicated by the underline). Assume you
press the <CM> and Up" keys:

l:*This is a sample file
<CM>p l:*This is a sam

Now press the INS key and insert the three
characters Us", "0", and Un".

l:*This is a sample file.
<CM>p l:*This is a sam
<INS>son l:*This is a samson

If you now press the <CT> key, the rest of the
template is copied to the line:

l:*This is a samson
<CT> l:*This is a samsonple file.

If you were to press the <RETURN> key, instead,
the remainder of the template would be
truncated, and the input buffer ended at the
end of the insert:

<INS>son<RETURN> l:*This is a samson

-59-

EDLIN

KEY

FUNCTION

COMMENTS

EXAMPLE

<REP> Page 4-12

<REP>

Enter Replace mode.

Pressing the <REP> key causes exit from insert
mode and entry into replace mode. All
characters entered overstrike and replace
characters in the template. (Replace mode is
the default.) When you start to edit a line,
this mode is in effect. Each character typed
replaces a character in the template. If the
<RETURN> key is pressed, the remainder of the
template is truncated.

Assume the screen shows:

l:*This is a sample file.
1:*

At the beginning of the intraline edit, the
cursor is positioned at the beginning of the
line (indicated by the underline). Assume you
then press <CM>p, <INS>son, <REP>ite, and then
<CT>:

<CM>p
<INS>son
<REP>ite
<CT>

l:*This
l:*This
l:*This
l:*This
l:*This

is a sample file.
is a sam
is a samson
is a samsonTte
is a samsonite-file.

If you type in characters that extend beyond
the length of the template, the remaining
characters in the template are automatically
appended when you type <CT>.

-60-

(

EDLIN

(
KEY

FUNCTION

COMMENTS

EXAMPLE

<NT> Page 4-13

<NT>

Create new template

Pressing the <NT> Key copies the current
contents of the input buffer to the template.
The contents of the old template are then
destroyed. Pressing <NT> outputs an at sign
character (@), a carriage return, and a line
feed. The input buffer is also emptied and
insert mode is turned off.

NOTE

<NT> performs the same functions as the
<QI> key, except that the template is
changed and an at sign character (@) is
printed instead of a backslash (-).

Assume the screen shows:

l:*This is a sample file.
1:*

At the beginning of the intraline edit, the
cursor is positioned at the beginning of the
line (indicated by the underline). Assume that
you enter <CM>p, <INS>son, <REP>ite, and then
<CT>:

l:*This is a sample file.
<CM>p l:*This is a sam
<INS>son l:*This is a samson
<REP>ite l:*This is a samsonIte -<CT> l:*This is a samsonite file.

At this point, assume that you want this line
as the new template, so you press the <NT> key:

<NT> l:*This is a samsonite file.@

Additional editing can now be done using the
above new template.

-61-

EDLIN <NT> Page 4-14

4.3 INTERLINE COMMANDS

Interline commands perform editing functions on whole
lines at a time. The interline commands are summarized
in the following list and are described in detail with
examples following the description of command
parameters.

Table 4.1 Interline Commands

Command Purpose

<line> Edit Line
A Append Lines
D Delete Lines
E End Editing
I Insert Text
L List Text
Q Quit Editing
R Replace Text
S Search Text
W Write Lines

-62-

(

(

(

EDLIN Interline Commands Page 4-15

4.3.1 Parameters

Each interline command accepts some optional
parameters. The following list of parameters indicates
their form. The effect of a parameter depends on the
command it is used with.

PARAMETER

<line>

?

DEFINITION

<line> indicates a
entered by the user.
separated from other
parameters, and the
or space to separate.

line number to be
Line numbers must be

line numbers, other
command. Use a comma

<line> may be specified one of three ways:

Number any integer less than 65534. If a
number larger than the largest
existing line number is specified,
then <line> indicates the line
after the last line number.

Period (.) If a period is specified for
<line>, then <line> indicates the
current line number. The current
line is the last line edited, and
not necessarily the last line
displayed. The current line is
marked on your screen by an
asterisk (*) between the line
number and the first character.

Pound (#) The pound sign indicates the
line after the last line number.
Specifying # for <line> has the
same effect as specifying a number
larger than the last line number.

<RETURN> A carriage return entered
without any of the <line>
specifiers listed above directs
EDLIN to use a default value
appropriate to the command.

The question mark parameter directs EDLIN
to ask the user if the correct string has
been found. The question mark is used only
with the Replace and Search commands.
Before continuing, EDLIN waits for either a
"Y" or <RETURN> for a yes response, or for
any other key for a no response.

-63-

EDLIN

<string>

Interline Commands Page 4-16

<string> represents text to be found, to be
replaced, or to replace other text. The
<string> _parameter is used only with the
Search and Replace commands. Each <string>
must be terminated by a <CONTROL-Z> or a
<RETURN> (see the Replace command for
details). No spaces should be left between
strings or between a string and its command
letter, unless you want spaces as part of a
string.

- 64-

(

EDLIN

(
NAME

SYNTAX

FUNCTION

COMMENTS

EXAHPLE

<line> Edit Page 4-17

Edit

[<line>]

Edit line

When a line number is entered, EDLIN displays
the line number and text, then, on the line
below, reprints the line number. The line is
then ready for editing. You may use any of the
available intraline commands to edit the line.
The existing text of the line serves as the
template until the <RETURN> key is pressed.

If no line number is entered (that is, only the
<RETURN> key is pressed), the line after the
current line, marked with an asterisk (*), is
edited. If no changes of the current line are
needed and the cursor position is at the
beginning or end of the line, press the
<RETURN> key to accept the line as is.

WARNING

~f the <RETURN> key is pressed while
~he cursor is in the middle of the
~ine, the remainder of the line is
Itruncated.

Assume the following file exists and is ready
to edit:

1: This is a sample file.
2: used to demonstrate
3: the editing of line
4:* four.

To edit line 4, enter:

4

-65-

EDLIN <line> Edit Page 4-18

The contents of the line are displayed along
with a cursor below the line:

4:* four.
4:*

Now type:

<INS>number 4: number
<CT><RETURN> 4: number-four.

S:*

-66-

(

EDLIN

(NAME

SYNTAX

FUNCTION

COMMENTS

(A)ppend Page 4-19

Append

[<n>] A

Append lines from input file to editing buffer

Use this command for extremely large files that
will not fit into memory all at one time. By
writing out part of the editing buffer to the
output file with the Write command, room is
made for lines to be appended with the Append
command. If A is typed without a parameter,
lines are appended to the part of the file
currently in memory until available memory is
3/4 full or until there are no more lines to
append.

Use the w command to write out lines to the
output file. If the parameter <n> is given,
then <n> lines are appended to that part of the
file that currently is in memory. If <n> is
not given, then as much of the input file as
possible is read into the editing buffer until
the editing buffer is three quarters full.

-67-

EDLIN

NAME

SYNTAX

FUNCTION

COMMENTS

EXAMPLE

(D)elete Page 4-20

Delete

[<line>] [,<line>] 0

Delete the specified lines and all lines in
between

If the first <line> is omitted, the first
<line> defaults to the current line (the line
with the asterisk next to the line number). If
the second <line> is omitted, then just the
first <line> is deleted. When lines have been
deleted, the line immediately after the deleted
section becomes the current line and has the
same line number as the first <line> had before
the deletion occurred.

Assume the following file exists and is ready
to edit:

1: This is a sample file.
2: Use: to demonstrate dynamic line numbers
3: See what happens when you
4: Delete and Insert

25: (The 0 and I commands)
26: (Use <CONTROL-C> to exit insert mode)
27:*Line numbers

To delete multiple lines, enter <line>,<line>
0:

5,24 0

The result is:

1: This is a sample file.
2: Use: to demonstrate dynamic line numbers
3: See what happens when you
4: Delete and Insert
5*(The 0 and I commands)
6: (Use <CONTROL-C> to exit insert mode)
7: Line numbers

-68-

c

EDLIN

(

(D)elete Page 4-21

To delete a single line, enter:

6 D

The result is:

1: This is a sample file.
2: Use: to demonstrate dynamic line numbers
3: See what happens when you
4: Delete and Insert
5: (The D and I commands)
6:*Line numbers

Next, delete a range of lines
following file:

1: This is a sample file.

from the

2: Use: to demonstrate dynamic line numbers
3:*See what happens when you
4: Delete and Insert
5: (The D and I commands)
6: (Use <CONTROL-C> to exit insert mode)
7: Line numbers

To delete beginning with the current line,
enter:

,6 D

The result is:

1: This is a sample file.
2: Use: to demonstrate dynamic line numbers
3:*Line numbers

-69-

EDLIN

NAME

SYNTAX

FUNCTION

COMr4ENTS

EXAMPLE

(E) nd Page 4-22

End

E

End the editing session

Save the edited file on disk, rename the
original input file "filename.BAK", and then
exit EDLIN to the MS-DOS command level. If the
file was created during the editing session, no
.BAK file is created.

The E command takes no parameters. Therefore,
you cannot tell EDLIN on which drive to save
the file. The drive must be selected when the
editing session is invoked. If the drive is
not designated when EDLIN was invoked, the file
is saved on the disk in the default drive. (It
will still be possible to COPY the file to a
different drive. However, this is done
automatically if the drive is designated during
invocation.)

You must be sure that the disk contains enough
free space for the entire file to be written.
If the disk does not contain enough free space,
the write is aborted and the edited file lost,
although part of the file may be written out.

The only possible command is:

E<RETURN>

After execution of the E command, control is
returned to COMMAND.COM and the MS-DOS prompt
is displayed.

-70-

(

EDLIN

(NAME

SYNTAX

FUNCTION

COMMENTS

EXAMPLE

(I)nsert Page 4-23

Insert

[<line>] I

Insert line(s) of text immediately before the
specified <line>.

If you are creating a new file, the I command
must be given before text can be inserted. In
this case, the insert begins with line number
1.

EDLIN remains in insert mode until a
<CONTROL-Z> or a <CONTROL-C> is entered.
Successive line numbers appear automatically
each time <RETURN> is pressed. When the insert
is finished and insert mode has been exited,
the <line>, which now immediately follows the
inserted lines, becomes the current line. All
line numbers following the inserted section are
incremented by the number of lines inserted.

If <line> is not specified, the default is the
current line number (the lines are inserted
immediately before the current line). If
<line> is an integer larger than the last line
number, or if # is specified as <line>, the
inserted lines are appended to the end of the
file. In this case, the last line inserted
becomes the current line. (This is the same as
when the file is being created.)

Assume the following file exists and is ready
to edit:

1: This is a sample file.
2: Use: to demonstrate dynamic line numbers
3: See what happens when you
4: Delete and Insert
5: (The D and I commands)
6: (Use <CONTROL-C> to exit insert mode)
7:*Line numbers

To insert text before a specific line (not the
current line), enter <line> I:

-71-

EDLIN (I)nsert Page 4-24

4 I

The result is:

4:

Now, enter the new text for lines 4 and 5:

4 : fool around with
5 : those very useful commands that

Then to end the insertion, type:

6 : <CONTROL-Z>

Now type L to list the file: the result is:

1: This is a sample file.
2: Use: to demonstrate dynamic line numbers
3: See what happens when you
4: fool around with
5: those very useful commands that
6:*Delete and Insert
7: (The D and I commands)
8: (Use <CONTROL-C> to exit insert mode)
9: Line numbers

To insert lines immediately before the current
line, enter:

I

The result is:

6 :

Now, insert the following text terminated with
a <CONTROL-Z>:

6: perform the two major editing functions,

Now to List the file and see the result, type:

L

The result is:

1: This is a sample file.
2: Use: to demonstrate dynamic line numbers
3: See what happens when you
4: fool around with
5: those very useful commands that
6: perform the two major editing functions,
7:*Delete and Insert
8: (The D and I commands)

-72-

(

l

EDLIN

(

(I)nsert Page 4-25

9: (Use <CONTROL-C> to exit insert mode)
10: Line numbers

To append new lines to the end of the file,
enter:

11 I

This produces the following:

11:

Now, enter the following new lines:

11: The insert command can place new lines
12: anywhere in the file; there's no space problems.
13: because the line numbers are dynamic;
14: They'll slide all the way to 65533.

End insertion by typing <CONTROL-C>. The new
lines will appear at the end of all previous
lines in the file. Now enter the list command:

L

The result is:

1: This is a sample file.
2: Use: to demonstrate dynamic line numbers
3: See what happens when you
4: fool around with
5: those very useful commands that
6: perform the two major editing functions,
7: Delete and Insert
8: (The D and I commands)
9: (Use <CONTROL-C> to exit insert mode)

10: Line numbers
11: The insert command can place new lines
12: anywhere in the file; there's no space problems.
13: because the line numbers are dynamic;
14: They'll slide all the way to 65533.

-73-

EDLIN

NAME

SYNTAX

FUNCTION

COMMENTS

EXAMPLE

(L)ist Page 4-26

List

[<line>] [,<line>] L

List the specified range of lines, including
the two lines specified.

If the first <line> is omitted, the first
<line> defaults to the current line. If the
second <line> is omitted, 23 lines are listed:
the eleven lines before <line>, the <line>, and
the eleven lines after <line>. The current
line remains unchanged. If the current line is
one of the lines listed, it contains an
asterisk between the line number and the first
character.

Assume the following file exists and is ready
to edit:

1: This is a sample file.
2: Use: to demonstrate dynamic line numbers
3: See what happens when you
4: Delete and Insert
5: (The 0 and I commands)

l5:*The current line contains an asterisk.

26: (Use <CONTROL-C> to exit insert mode)
27: Line numbers

To list a range of lines without reference to
the current line, enter <line>,<line> L:

2,5 L

The result is:

2: Use: to demonstrate dynamic line numbers
3: See what happens when you
4: Delete and Insert
5: (The D and I commands)

-74-

(

(

EDLIN (L)ist Page 4-27

To list a range of lines beginning with the
current line, enter ,<line> L:

,26 L

The result is:

15:*The current line contains an asterisk.

26: (Use <CONTROL-C> to exit insert mode)

To list a range of 23 lines around a specified
line, enter <line>, L:

13, L

The result is:

13: The specified line is listed first in the range.
14: The current line remains unchanged by the L command.
15:*The current line contains an asterisk.

35: <CONTROL-C> exits interline insert command mode.

To list a range of 23 lines centered around the
current line, enter only L:

L

The result is:

2: Use: to demonstrate dynamic line numbers
3: See what happens when you
4: Delete and Insert
5: (The D and I commands)

13: The current line is listed in the middle of the range.
14: The current line remains unchanged by the L command.
15:*The current line contains an asterisk.

24: <CONTROL-C> exits interline insert command mode.

-75-

EDLIN (Q)uit Page 4-28

NAME
Quit

SYNTAX
Q

FUNCTION

COIv1MENTS

EXAMPLE

Quit the
editing
operating

editing
changes,
system.

session, do
and exit

not save any
to the MS-DOS

No .BAK file is created. The Q command takes
no parameters. It is simply a fast means of
exiting an editing session. As soon as the Q
command is given, EDLIN displays the message:

Abort edit (Y/N)?_

Press "Y" to quit the editing session:press "N"
(or any other key except <CONTROL-C» if you
decide to continue the editing session.

Assume the following file exists and is ready
to edit:

1: This is a sample file.
2 : Use: to demonstrate dynamic line numbers
3 : Compare the before and after
4 : See ,-{hat happens when you
5: Delete and Insert
6 : Line numbers

Now, to delete line 3, enter:

3 D

To list the file, enter "L":

1: This is a sample file.
2: Use: to demonstrate dynamic line numbers
3: See what happens when you
4: Delete and Insert
5: Line numbers

-76 -

c

(

(

EDLIN

(

(Q)uit Page 4-29

Now, to keep the changes and to quit the
editing session, enter:

Q

The result is:

Abort edit (YIN)?

Enter "Y" to exit to the operating system
command level:

Abort edit (Y/N)?Y
A:

- 77 -

EDLIN

NAME

SYNTAX

FUNCTION

COMMENTS

(R)eplace Page 4-30

Replace

[<line>] [,<line>] [?] R<stringl><CONTROL-Z><string2>

Replace all occurrences of <stringl> in the
specified range with <string2>.

As each occurrence of <stringl> is found, it is
replaced by <string2>. Each line in which a
replacement occurs is displayed. If a line
contains two or more replacemments of <stringl>
with <string2>, then the line is displayed once
for each occurrence. When all occurrences of
<stringl> in the specified range are replaced
by <string2>, the R command terminates and the
asterisk prompt reappears.

If a second string is to be given as a
replacement, then <stringl> must be terminated
with a <CONTROL-Z>. If the <string2> is to be
omitted, then <stringl> may be terminated with
either a combination <CONTROL-Z><RETURN>, or
simply a <RETURN>. <String2> must also be
terminated with a <CONTROL-Z><RETURN>
combination or with a simple <RETURN>. If
<stringl> is omitted, then the replacement is
terminated immediately. If <string2> is
omitted, then <stringl> is deleted from all
lines in the range. If the first <line> is
omitted in the range argument (as in ,<line»
then the first <line> defaults to the line
after the current line. If the second <line>
is omitted (as in <line> or <line>,) the second
<line> defaults to #. Therefore, this is the
same as <line>,#. Remember that # indicates
the line after the last line of the file.

If the question mark (?) parameter is given,
the Replace command stops at each line with a
string that matches <stringl>, displays the
line with <string2> in place, and then displays
the prompt "O.K.?". If the user presses "yn or
the <RETURN> key, then <string2> replaces
<stringl>, and the next occurrence of <stringl>
is found. Again, the "O.K.?" prompt is
displayed. This process continues until the
end of the range or until the end of the file.
After the last occurrence of <stringl> is

-78-

(

EDLIN

(

EXAMPLE

(R}eplace

found, EDLIN returns the asterisk prompt.

If you press any key besides "Y" or <RETURN>
after the nO.K.?" prompt, the <stringl> is left
as it was in the line, and the Replace goes to
the next occurrence of <stringl>. If <stringl>
occurs more than once in a line, each
occurrence of <stringl> is replaced
individually, and the "O.K.?" prompt is
displayed after each replacement. In this way,
only the desired <stringl> is replaced, and you
prevent replacement of embedded strings.

Assume the following file exists and is ready
for editing:

1: This is a sample file.

Page 4-31

2: Use: to demonstrate dynamic line numbers
3: See what happens when you
4: fool around with
5: those very useful commands that
6: perform the two major editing functions,
7: Delete and Insert
8: (The D and I commands)
9: (Use <CONTROL-C> to exit insert mode)

10: Line numbers
11: The insert command can place new lines
12: anywhere in the file; there's no space problems.
13: because the line numbers are dynamic;
14: They'll slide all the way to 65533.

To replace all occurrences of <stringl> with
<string2> in a specified range, enter:

2,12 Rand<CONTROL-Z>or<RETURN>

The result is:

5: those very useful commors that
7: Delete or Insert
8: (The D or I commands)
8: (The D or I commors)

11: The insert commor can place new lines

-79-

EDLIN (R)eplace

Note that in the above replacement, some
unwanted substitutions have occurred. To avoid
these, and confirm each replacement, the same
original file can be used:

5: those very useful commands that

7: Delete and Insert
8: (The D and I commands)

11: The insert command can place new lines

only with a slightly different command. This
time, to replace only certain occurrences of
the first <string> with the second <string>,
enter:

2? Rand<CONTROL-Z>or<RETURN>

The result is:

5: those very useful commors that
O.K.? N
7: Delete or Insert
O.K.? Y
8: (The D or I commands)
O.K.? Y
8: (The D or I commors)
O.K.? N

11: The insert commor can place new lines
O.K.? N
*

Now, enter the List command (L) to see the
result of all these changes:

5: those very useful commands that

7: Delete or Insert
8: (The D or I commands)

11: The insert command can place new lines

-M-

Page 4-32

(

EDLIN

(
NAME

SYNTAX

FUNCTION

COMNENTS

EXAHPLE

(S)earch

Search

[<line>] [,<line>] [?] S<string>

Search the specified range of lines for the
specified string.

The <string> must be terminated with a
<RETURN>. The first line that matches <string>
is displayed and becomes the current line. The
Search co~mand terminates when a match is
found. If no line contains a match for
<string>, the message "Not found" is displayed.

If the optional parameter, question mark (?),
is included in the command, EDLIN displays the
first line with a matching string: it then
prompts the user with the message "O.K.?". If
the user presses either the "Y" or <RETURN>
key, the line becomes the current line and the
search terminates. If the user presses any
other key, the search continues until another
match is found, or until all lines have been
searched (then the "Not found" message is
displayed) •

If the first <line> is omitted (as in ,<line>
S<string», the first <line> defaults to the
line after the current line. If the second
<line> is omitted (as in <line> S<string> or
<line>, S<string», the second <line> defaults
to #, which is the same as <line>,# S<string>.
If <string> is omitted, no search is made and
the command terminates immediately.

Assume the following file exists and is ready
for editing:

1: This is a sample file.

Page 4-33

2: Use: to demonstrate dynamic line numbers
3: See what happens when you
4: fool around with
5: those very useful commands that
6: perform the two major editing functions,
7: Delete and Insert
8: (The D and I commands)

-81-

EDLIN (S)earch Page 4-34

9: (Use <CONTROL-C> to exit insert mode) (
10: Line numbers
11: The insert command can place new lines
12: anywhere in the file; there's no space problems.
13: because the line numbers are dynamic;
l4:*They'11 slide all the way to 65533.

To search for the first occurrence of a string,
enter:

2,12 Sand<RETURN>

The result is:

5: those very useful commands that

To get the "and" in line 7, modify the search
command by entering:

<Sl><CT>,12 Sand<RETURN>

The search then continues from the line after
the current line (line 5), since no first line
is given. The result is:

7: Delete and Insert

To Search through several
string until the correct
enter:

1, ? Sand

The result is:

occurrences of a
string is found,

5: those very useful commands that
O.K.?

If you press any key except "Y" or <RETURN>,
the search continues, so type "N" here:

O.K.? N

Continue:

7 Delete and Insert
O.K.?

Now press press ny" to terminate the search:

O.K.? Y
*

-82-

(

EDLIN (W)rite

N~E

Write

SYNTAX

FUNCTION

COMMENTS

[<n>]W

Write lines from the editing buffer to the
output file

The Write command is used when editing files
that are larger than available memory. By
executing the Write, lines are written out to
the output file and room is made in the input
buffer for more lines to be appended from the
input file. If W is typed with no <n>
parameter, then lines are written until memory
is 1/4 full.

If the <n> parameter is given, then <n> lines
are written out. Note that lines are written
out beginning with the start of the file;
subsequent lines in the editing buffer are
renumbered beginning with one. A later Append
command will append lines to any remaining
lines in the editing buffer.

-M-

Page 4-35

EDLIN Error Messages Page 4-36

4.4 ERROR MESSAGES

EDLIN error messages occur either when you try to invoke
EDLIN or during the actual editing session.

4.4.1 Errors When Invoking EDLIN

Cannot edit .BAK file--rename file

Cause: The user attempted to edit a file with the
filename extension .BAK. .BAK files cannot be
edited because the extension is reserved for
backup copies.

Cure: If the user needs the .BAK file for editing
purposes, the user must either RENAME the file
with a different extension or COpy the .BAK
file but with a different filename extension.

No room in directory for file

Cause:

Cure:

When the user attempted to create a
either the file directory was full
specified an illegal disk drive or
filename.

new file,
or the user
an illegal

Check the EDLIN invocation command line for
illegal filename and illegal disk drive
entries. If the command is no longer on the
screen and if the user has not yet entered a
new command, the EDLIN invocation command can
be recovered by pressing the <CT> key.

If the invocation command line contains no
illegal entries, run the CHKDSK program for the
specified disk drive. If the status report
shows the disk directory full, remove the disk
and insert and format a new disk. If the
CHKDSK status report shows the disk directory
is not full, check the EDLIN invocation command
for an illegal filename or illegal disk drive
designation.

- M -

(

(

(

EDLIN Error Messages Page 4-37

4.5 ERRORS WHILE EDITING

Entry Error

Cause: The last command entered contained a syntax
error.

Cure:

Line too long

Cause:

Cure:

Reenter the command with the correct syntax.

During Replace command mode, the string
as the replacement causes the line to
beyond the limit of 254 characters.
aborts the Replace command.

given
expand

EDLIN

Divide the long line into two lines, then retry
the Replace command.

Disk Full--file write not completed

Cause: The user gave the End command, but the disk did
not contain enough free space for the whole
file. EDLIN aborts the E command and returns
the user to the operating system. Some of the
file may have been written to the disk.

Cure: Only a portion (at most) of the file will have
been saved. The user should probably delete
whatever file was saved and restart the editing
session. None of the file not written out will
be available after this error. Always be sure
that the disk has sufficient free space for the
file to he written, before you begin your
editing session.

-~-

(

c

c

(

CHAPTER 5

DEBUG

DEBUG is a debugging program used to provide a controlled testing
environment for binary and executable object files. Note that
EDLIN is used to alter source files; DEBUG is EDLIN's
counterpart for binary files. DEBUG eliminates the need to
reassemble a program to see if a problem has been fixed by a
minor change. It allows you to alter the contents of a file or
the contents of a CPU register, and then to immediately reexecute
a program to check of the validity of the changes.

All DEBUG commands may be aborted at any time by pressing
<CONTROL-C>. <CONTROL-S> suspends the display, so that the user
can read it before the output scrolls away. Entering any key
other than <CONTROL-C> or <CONTROL-S> restarts the display. All
of these commands are consistent with the control character
functions available at the MS-DOS command level.

5.1 INVOCATION

To invoke DEBUG, enter:

DEBUG [<filespec> [<arqlist>]

For example, if a <filespec> is specified, then the following is
a typical invocatiqn:

DEBUG LINK.EXE

DEBUG then loads FILE.EXE into memory starting at 100 hexadecimal
in the lowest available segment. The BX:CX registers are loaded
with the number of bytes olaced into memory. The DEBUG prompt is
a right angle bracket (».

An <arglist> may be specified if <filespec> is present.
are filename parameters and switches that are to be passed
program <filespec>. Thus, when <filespec> is loaded into
it is loaded as if it had been invoked with the command:

-~-

These
to the

memory,

DEBUG Page 5-2

<filespec> <arglist>

Here, <filespec> is the file to be debugged, and the <arglist> is
the rest of the command line that is used when <filespec> is
invoked and loaded into memory.

If no <filespec> is specified, then DEBUG is invoked as follows:

DEBUG

DEBUG the returns with the prompt, signaling that it is ready to
accept user commands. Since no filename has been specified,
current memory, disk sectors, or disk files can be worked on by
invoking later commands.

5.2 COMMANDS

Each DEBUG command consists of a single letter followed by one or
more parameters. Additionally, the control character and the
special editing functions described in Chapter 2, all apply
inside DEBUG.

If a syntax error occurs in a DEBUG command, DEBUG reprints the
command line and indicates the error with an up-arrow (~) and the
word error.

For example:

dcs:100 cs:110
~ error

All commands and parameters may be entered in either upper or
lower case. Any combination of upper and lower case may be used
in commands.

The DEBUG commands are summarized in Table 5.1 and are described
in detail with examples following the description of command
parameters.

-~-

(

DEBUG Page 5-3

(
Table 5.1 DEBUG Commands

DEBUG Command Function

C<range> <address> Compare

D[<address> [L<va1ue>] 1 Dump
D[<range>]

E<address> [<list>] Enter

F<range> <list> Fill

G[=<address> [< address> •••]] Go

H<address> <address> Hex

I<va1ue> Input

L[<address> [<drive><record><record>]] Load

H<range> <address> Move

N<fi1espec> Name

O<va1ue> <byte> Output

Q Quit

R[<register-name>] Register

S<range> <list> Search

T [=<address>] [<value>] Trace

U[<address> [L<va1ue>]] Unassemble
U[<range>]

W[<address> [<drive><record><record>]] Write

(

-89-

DEBUG Page 5-4

5.3 PARAMETERS

As the summary above shows, all DEBUG commands accept parameters,
except the Quit command. Parameters may be separated by
delimiters (spaces or commas), but a delimiter is required only
between two consecutive hexadecimal values. Thus, the following
commands are equivalent:

dcs:lOO 110
d cs:lOO 110
d,cs:lOO,110

Also, entries may be made in any combination upper or lower case.

PARAMETER

<drive>

<byte>

DEFINITION

A one digit hexadecimal value to indicate which drive
a file will be loaded from or written to. The valid
values are 0-3. These values designate the drives as
follows: O=A:, l=B:, 2=C:, 3=0:.

A two digit hexadecimal value to be placed in or read
from an address or register.

(

<record> A 1 to 3 digit hexadecimal value used to indicate the <=
logical record number on the disk and the number of
disk sectors to be written or loaded. Logical
records correspond to sectors. However their
numbering differs since they represent the entire
disk space.

<value>

<address>

A hexadecimal value up to four digits used to specify
a port number or the number of times a command should
repeat its functions.

A two part designation consisting of either an
alphabetic segment register designation or a four
digit segment address plus an offset value. The
segment designation or segment address may be
omitted, in which case the default segment is used.
OS is the default segment for all commands except G,
L, T, U, and W, for which the default segment is CS.
All numeric values are hexadecimal.

For example:

CS:OlOO
04BA:OlOO

The colon is required between a segment designation
(whether numeric or alphabetic) and an offset.

-90-

DEBUG

(
<range>

<list>

<string>

Page 5-5

Either two <address>s: e.g., <address> <address>~ or
one <address>, an L, and a <value>: e.g.,
<address> L <value> where <value> is the number of
lines the command should operate on.

Examples:

CS:lOO 110
CS:lOO L 10

The following is illegal:

CS:100 CS:110
" error

The limit for <range> is 10000 hex. To specify a
<value> of 10000 hex within four digits, enter 0000
(or 0).

A series of
<list> must
line.

Example:

<byte>
be the

values
last

fcs:100 42 45 52 54 41

or of <string>s.line.
parameter on the command

Any number of characters enclosed in quote marks.
Quote marks may be either single (') or double(").
Within <string>s, the opposite set of quote marks may
be used freely as literals. If the delimiter quote
marks must appear within a <string>, the quote marks
must be doubled. For example, the following strings
are legal:

'This is a "string" is okay.'
'This is a "string" is okay.'

However, this string is illegal:

'This is a 'string' is not.'

Similarly, these strings are legal:

"This is a 'string' is okay."
"This is a ""string"" is okay."

However, this string is illegal:

"This is a "string" is not."

Note that the double quotations are not necessary in
the following strings:

-91-

DEBUG Page 5-6

"This is a "string" is not necessary."
'This is a ""string"" is not necessary.' (

The ASCII values of the characters in the string are
used as a <list> of byte values.

-92-

DEBUG

(
NAl·1E

SYNTAX

FUNCTION

CO"IMENTS

EXAl-1PLE

(C) ompare

Compare

C<range> <address>

Compare the portion of memory specified by
<range> to a portion of the same size beginning
at <address>.

If the two areas of memory are identical, there
is no display and DEBUG returns with the MS-DOS
prompt. If there are differences, they are
displayed as:

<addressl> <by tel> <byte2> <address2>

The following commands have the same effect:

ClOO,200 300

or

ClOOLlOO 300

Each command compares the block of memory from
100 to 200H with the block of memory from 300
to 400H.

- 93-

Page 5-7

DEBUG

NAI1E

SYNTAX

FUNCTION

COM:4ENTS

EXAr·1PLE

(D) ump

Dump

D[<address>[L <value>]]
D[<range>]

Display the memory contents of either a single
address, a range of addresses, or the number of
lines specified by <value> beginning at the
<address> specified.

If a single address only is specified, the
contents of 128 bytes are displayed. If a
range of addresses is specified, the contents
of the range are displayed. If the D command
is entered without parameters, the result is
the same as if the user specified a single
address, except that the display begins at the
current location in the DS (data) segment.

The dump is displayed in two portions: a
hexadecimal dump (each byte is shown in
hexadecimal value) and an ASCII dump (the bytes
are shown in ASCII characters). Nonprinting
characters are denoted by a period (.) in the
ASCII portion of the display. Each display
line shows sixteen bytes with a hyphen between
the eighth and ninth bytes. At times, displyas
are split in this manual to fit them on the
page.

Each displayed line begins on a 16-byte
boundary and the first line contains fewer
bytes than the rest of the displayed lines.

Assume the following command is entered:

dcs:100 110

DEBUG displays:

04BA:OIOO 42 45 52 54 41 20 54 00
BERTA T.

04BA:OI08 20 42 4F 52 4C 41 4E 44
BORLAND

-94-

Page 5-8

(

,(

DEBUG

(

(D)ump Page 5-9

If you enter the command:

dcs:100 110

DEBUG displays:

04BA:0100 42 45 52 54 41 .•• 4E 44 BERTA T. BORLAND

If the following command is entered:

D

the display is formatted as described above.
Each line of the display begins with an
address; incremented by 16 from the address on
the previous line. Each subsequent D (entered
without parameters) displays the bytes
immediately following those last displayed.

If the user enters the command:

DCS:100 L 20

the display is formatted as described above,
but all of the bytes for 20H lines are
displayed.

If the user enters the command:

DCS:100 115

the display is formatted as described above,
but all the bytes in the range of lines from
100H to l15H in the CS segment are displayed.

-%-

DEBUG

NAME

SYNTAX

FUNCTION

COMMENTS

(E)nter

Enter

E<address>[<list>]

Enter the <address>, display its contents, and
wait for the user's input.

If the optional <list> of hexadecimal values is
entered, the replacement of byte values occurs
automatically. (If an error occurs, no byte
values are changed.) If the <address> is
entered without the optional <list>, DEBUG
displays the address and its contents, then
repeats the address on the next line and waits
for the user's input. At this point, the Enter
command waits you to perform one of the
following actions:

1. Replace a byte value with a value the user
types in. The user simply types the value
after the current value. If the value
typed in is not a legal hexadecimal value
or if more than two digits are typed, a
bell sounds and the illegal or extra
character is not echoed.

2. Press the space bar to advance to the next
byte. To change the value, simply enter
the new value as described in (1.) above.
If the user spaces beyond an eight-byte
boundary, DEBUG starts a new rlisplay line
with the address displayed at the
beginning.

3. Type a hyphen (-) to return to the
preceding byte. If the user decides to
change a byte behind the current position,
typing the hyphen returns the current
position to the previous byte. When the
hyphen is typed, a new line is started with
the address and its byte value displayed.

4. Press the <RETURN> key to terminate the
Enter command. The <RETURN> key may be
pressed at any byte position.

-96-

Page 5-10

(

DEBUG

EXA..~PLE

(E)nter

Assume the following command is entered:

ECS:IOO

DEBUG displays:

04BA:OIOO EB.

To change this value to 41, enter "41" as
shown:

04BA:OIOO EB.41

To step through the subsequent bytes, press the
space bar to see:

04BA:OIOO EB.41 10. 00. BC.

To change BC to 42:

04BA:OIOO EB.41 10. 00. BC.42 .

Now, realizing that 10 should be 6F; enter the
hyphen as many times as needed to return to
byte 0101 (value 10), then replace 10 with 6F:

04BA:OIOO
04BA:Ol02
04BA:OlOl

EB.41
00.-
10.6F

10. 00. BC.42-

Pressing the <RETURN> key ends the Enter
command and returns to the DEBUG command level.

-97-

Page 5-11

DEBUG

NAME

SYNTAX

FUNCTION

COMME"'lTS

EXAMPLE

(F) ill

Fill

F<range> <list>

Fill the addresses in the <range> with the
values in the <list>.

If the <range> contains more bytes than the
number of val~es in the <list>, the <list> will
be used repeatedly until all bytes in the
<range> are filled. If the <list> contains
more values than the number of bytes in the
<range>, the extra values in the <list> will be
ignored. If any of the memory in the <range>
is not valid (bad or nonexistent), the error
will be propagated into all succeeding
locations. The F command does not abort as the
E command does. The F command is a multiple
version of the E command in that it allows the
user to change more than one address at a time.

Assume the following command is entered:

F04BA:lOO L 100 42 45 52 54 41

DEBUG fills memory locations 04BA:lOO through
04BA:200 with the bytes specified. The five
values are repeated until all lOOH bytes are
filled.

-98-

Page 5-12

(

(

DEBUG (G)o

N~E

Go

SYNTAX
G[=<address>[<address> .•.]]

FUNCTION

COMMENTS

Execute the program currently in memory.

If the Go command is entered alone, the program
executes as if the program had run outside
DEBUG.

If =<address> is set, execution begins at the
address specified. If the segment designation
is omitted from =<address>, only the
instruction pointer is set. If the segment
designation is included in =<address>, both the
CS segment and the instruction pointer are set.
The equal sign (=) is required, so that DEBUG
can distinguish the start =<address> from the
breakpoint <address>es.

with the other optional addresses set,
execution stops at the first <address>
encountered, regardless of that address'
position in the list of addresses to halt
execution, no matter which branch the program
takes. When program execution reaches a
breakpoint, the registers, flags, and decoded
instruction are displayed for the last
instruction executed. (The result is the same
as if you had entered the Register command for
the breakpoint address.)

Up to ten breakpoints may be set. Breakpoints
may be set only at addresses containing the
first byte of an 8086 opcode. If more than 10
breakpoints are set, DEBUG returns the BP Error
message.

The user stack pointer must be valid and have
six bytes available for this command. The G
command uses an IRET instruction to cause a
jump to the program under test. The user stack
pointer is set, and the user Flags, Code
Segment register, and Instruction Pointer are
pushed on the the user stack. (Thus, if the
user stack is not valid or is too small, the
operating system may crash.) An interrupt code
(OCCH) is placed at the specified breakpoint

-~-

Page 5-13

DEBUG

EXAMPLE

(G) 0

address(es). When an instruction with the
breakpoint code is encountered, all breakpoint
addresses are restored to their original
instructions. If execution is not halted at
one of the breakpoints, the interrupt codes are
not replaced with the original instructions.

Assume the following command is entered:

GCS:7550

The program currently in memory executes up to
the address 7550 in the CS segment. Then DEBUG
displays registers and flags, after which the
Go command is terminated.

After a breakpoint has been encounterd, if you
enter the Go command again, then the program
executes just as if the user had entered the
filename at the MS-DOS command level. The only
difference is that program execution begins at
the instruction after the breakpoint rather
than at the usual start address.

- 100 -

· Page 5-14

(

c

(

DEBUG (H) ex

NAME
Hex

SYNTAX
H<address> <address>

FUNCTION

COMMENTS

EXAMPLE

Perform hexadecimal arithmetic on the two
parameters.

First, DEBUG adds the two parameters, then
subtracts the second parameter from the first.
The results of the arithmetic is displayed on
one line; first the sum, then the difference.

Assume the following command is entered:

HlOA 19F

DEBUG performs the calculations and then
returns the results:

02A9 0095

-101-

Page 5-15

DEBUG

NAME

SYNTAX

FUNCTION

COMMENTS

EXAUPLE

(I) nput

Input

I<va1ue>

Input and display one byte from the port
specified by <value>.

A 16-bit port address is allowed.

Assume the following command is entered:

12F8

Assume also that the byte at the port is 42H.
DEBUG inputs the byte and displays the value:

42

-102-

Page 5-16

(

c

DEBUG

(
NAHE

SYNTAX

FUNCTION

COMMENTS

EXAMPLE

(L)oad

Load

L[<address> [<drive> <record> <record>]]

Load a file into memory.

Set BX:CX to the number of bytes read. The
file must have been named either with the DEBUG
invocation command or with the N command. Both
the invocation and the N commands format a
filename properly in the normal format of a
file control block at CS:5C.

If the L command is given without any
parameters, DEBUG loads the file into memory
beginning at address CS:IOO and sets BX:CX to
the number of bytes loaded. If the L command
is given with an address parameter, loading
begins at the memory <address> specified. If L
is entered with all parameters, absolute disk
sectors are loaded, not a file. The <record>s
are taken from the <drive> specified (the drive
d€signation is numeric here--O=A:, l=B:, 2=C:,
3=0:): DEBUG begins loading with the first
<record> specified: and continues until the
number of sectors specified in the second
<record> have been loaded.

Assume the following commands are entered:

A: DEBUG
>NFILE.COM

Now, to load FILE.COM, enter:

L

DEBUG loads the file and returns the DEBUG
prompt. Assume you want to load only portions
of a file or certain records from a disk. To
do this, enter:

L04ba:lOO 2 OF 60

DEBUG then loads 109 (60 hex) records beginning
with logical record number 15 into memory

-103-

Page 5-17

DEBUG (L)oad

beginning at address 04BA:0100. When the
records have been loaded, DEBUG simply returns
the its prompt.

If the file has a .EXE extension, then it is
relocated to the load address specified in the
header of the .EXE file: the <address>
parameter is always ignored for .EXE files.
Note that the header itself is stripped off the
.EXE file before it is loaded into memory.
Thus the size of a .EXE file on disk will
differ from its size in memory.

If the file named by the Name command or
specified on invocation is a .HEX file, then
entering the L command with no parameters
causes loading of the file beginning at the
ad~ress specified in the .HEX file. If the L
command includes the option <address>, DEBUG
adds the <address> specified in the L command
to the address found in the .HEX file to
determine the start address for loading the
file.

-104-

Page 5-18

(

DEBUG

(
NAME

SYNTAX

FUNCTION

COMMENTS

EXAMPLE

(

(L)oad

Move

M<range> <address>

Move the block of memory specified by <range>
to the location beginning at the <address>
specified.

Overlapping moves (moves where part of the
block overlaps some of the current addresses)
are always performed without loss of data.
Addresses that could be overwritten are moved
first. The sequence for moves from higher
addresses to lower addresses is to move the
data beginning at the block's lowest address
and working towards the highest. The sequence
for moves from lower addresses to higher
addresses is to move the data beginning at the
block's highest address and working towards the
lowest.

Note that if the addresses in the block being
moved will not have new data written to them,
the data there before the move will remain:
that is, the M command really copies the data
from one area into another, in the sequence
described, and writes over the new addresses.
This is why the sequence of the move is
important.

Assume you enter:

MCS:IOO 110 CS:500

DEBUG first moves address CS:IIO to address
CS:510, then CS:IOF to CS:50F, and so on until
CS:100 is moved to CS:500. You should enter
the D command, using the <address> entered for
the M command, to review the results of the
move.

-105-

Page 5-19

DEBUG

NAME

SYNTAX

FUNCTION

COMMENTS

(N) arne

Name

N<filename>[<filename> •••]

Set filenames

The Name command performs two distinct
functions, both having to do with filenames.
First, Name is used to assign a filename for a
later Load or write command. Thus, if you
invoke DEBUG without naming any file to be
debugged, then the N<filename> command must be
given before a file can be Loaded. Second,
Name is used to assign filename parameters to
the file being debugged. In this case, Name
accepts a list of parameters that are used by
thp file being debugged.

These functions ov€rlap. Consider the
following set of DEBUG commands:

>NFILEl.EXE
>L
>G

Because of the two-pronged effect of the Name
command, the following happens:

1. (N)ame assigns the filename FILEl.EXE to
the filename to be used in any later Load
or Write commands.

2. (N)ame also assigns the filename FILE.EXE
to the first filename parameter to be used
by any program that is later debugged.

3. (L)oad loads FILE.EXE into memory.

4. (G)o causes FILE.EXE to be executed with
FILE.EXE as the single filename parameter
(that is, FILE.EXE is executed as if FILE
FILE.EXE had been typed at the command
level.

-106-

Page 5-20

(

DEBUG

(

EXAMPLE

(

(N) arne

A more useful chain of commands might go like
this:

>NFILEl.EXE
>L
>NFILE2.DAT FILE3.DAT
>G

Here, Name sets FILEl.EXE as the filename for
the subsequent Load command. The Load command
loads FILEl.EXE into memory, and then the Name
command is used again, this time to specify the
parameters to be used by FILEl.EXE. Finally,
when the Go command is executed, FILEl.EXE is
executed as if FILEl FILE2.DAT FILE3.DAT had
been typed at the MS-DOS command level. Note
that if a write command were executed at this
point, then FILEl.EXE--the file being
debugged--would be saved with the name
FILE2.DAT! To avoid such undesired results,
you should always execute a Name command before
either a Load or a Write.

There are four distinct regions of memory that
can be affected by the Name command:

CS:5C
CS:6C
CS:80
CS:8l

FCB for file 1
FCB for file 2
Count of characters
All characters entered

A File Control Block (FCB) for the first
filename parameter given to the Name command is
set-up at CS:5C. If a second filename
parameter is given, then an FCB is setup for it
beginning at CS:6C. The number of characters
typed in the Name command (exclusive of the
first character, "N") is given at location
CS:80. The actual stream of characters given
by the Name command (again, exclusive of the
letter "N") begins at CS:8l. Note that this
stream of characters may contain switches and
~nd delimiters that would be legal in any
command typed at the MS-DOS command level.

A typical use of the Name command would be:

DEBUG PROG.COM
-NPARAMl PARAM2/C
-G

-107 -

Page 5-21

DEBUG (N) arne

In this case, the Go command executes the file
in memory as if the following command line had
been entered:

PROG PARAMI PAHAt-12/C

Testing and debugging therefore reflect a
normal runtime environment for PROG.COM.

-108-

Page 5-22

(

(

DEBUG

NAME
(

SYNTAX

FUNCTION

COMMENTS

EXM~PLE

(0) utput

Output

O<value> <byte>

Send the <byte> specified to the output port
specified by <value>.

A l6-bit port address is allowed.

Enter:

02F8 4F

DEBUG outputs the byte value 4F to output port
2F8.

-109-

Page 5-23

DEBUG

NAME

SYNTAX

FUNCTION

COMMENTS

EXAMPLE

(Q)uit

Quit

Q

Terminate the debugger.

The Q command takes no parameters and exits
DEBUG without saving the file currently being
operated on. You are returned to the MS-DOS
commands level.

To end the debugging session, enter:

Q<RETURN>

DEBUG is terminated, and control returns to the
MS-DOS command level.

-110-

Page 5-24

(

DEBUG

NAME

SYNTAX

FUNCTION

COMMENTS

(R)egister

Register

R[<register-name>]

Display the contents of one or more CPU
registers.

If no <register-name> is entered, the R command
dumps the register save area and displays the
contents of all registers and flags.

If a register name is entered, the 16-bit value
of that register is displayed in hexadecimal,
and then a colon appears as a prompt. The user
then either enters a <value> to change the
register, or simply presses the <RETURN> key if
no change is wanted.

The only valid <register-name>s are:

AX
BX
CX
DX
SP

BP
SI
DI
OS
ES

SS
CS
IP
PC
F

(IP and PC both refer
to the instruction
pointer.)

Any other entry for <register-name> results in
a BR ~rror message.

If F is entered as the <register-name>, DEBUG
displays a two character alphabetic code. To
alter. the flag, enter the opposite two letter
code. The flags are either set or clear.

- 111 -

Page 5-25

DEBUG

EXM1PLE

(R)egister

The flags with their codes for set and clear
are listed below:

FLAG NAME SET CLEAR

Overflow OV l::N

Direction DN Decrement UP Increment

Interrupt EI Enabled DI Disabled

Sign NG Negative PL Plus

Zero ZR NZ

Auxiliary AC NA
Carry

Parity PE Even PO Odd

Carry CY NC

Whenever the user enters the command RF, the
flags are displayed in the order shown above in
a row at the beginning of a line. At the end
of the list of flags, DEBUG displays a static
hyphen (-): then the DEBUG prompt (». Your
may enter new flag values as alphabetic pairs.
The new flag values can be entered in any
order. You are not required to leave spaces
between the flag entries. To exit the R
command, press the <RETURN> key. Flags for
which new values were not entered remain
unchanged.

If more than one value is entered for a flag,
DEBUG returns a DF Error message. If the you
enter a flag code other than those shown above,
DEBUG returns a BF Error message. In both
cases, the flags up to the error in the list
are changed: flags at and after the error are
not.

At start up, the segment registers are set to
the bottom of free memory, the Instruction
Pointer is set to OIOOH, the Stack Pointer is
set to 005AH, all flags are cleared, and the
remaining registers are set to zero.

-112-

Page 5-26

(

(

DEBUG

(

(R)egister

Enter:

R

DEBUG displays all registers, flags, and the
decoded instruction for the current location.
If the location is CS:llA, then DEBUG might
display:

AX=OEOO BX=OOFF CX=0007
SI=005C DI=OOOO DS=04BA
IP=OllA NV UP DI NG NZ
04BA:OllA CD2l

If you enter:

RF

DX=OlFF SP=039D BP=OOOO
ES=04BA SS=04BA CS=04BA
AC PE NC

INT 21

DEBUG displays the flags:

NV UP DI NG NZ AC PE NC -

Now enter any valid flag designation, in any
order, with or without spaces.

For example:

NV UP DI NG NZ AC PE NC - PLEICY<RETURN>

DEBUG responds only with the DEBUG prompt. To
see the changes, enter either the D, R, or RF
com'lland:

RF
NV UP EI PL NZ AC PE CY -

Press <RETURN> to leave the flags this \'1ay, or
to ~nter different flag values.

-113-

Page 5-27

DEBUG

NAME

SYNTAX

FUNCTION

COMMENTS

EXAr-1PLE

(S)earch

Search

S<range> <list>

Search the range specified for the <list> of
bytes specified.

The <list> may contain one or more bytes, each
separated by a space or comma. If the <list>
contains more than one byte, only the first
address of the byte string is returned. If the
<list> contains only one byte, all addresses of
the byte in the <range> are displayed.

If you enter:

SCS:lOO 110 41

DEBUG might return the response:

04BA:Ol04
04BA:OlOD
>

-114 -

Page 5-28

(

(

DEBUG

(
NAME

SYNTAX

FUNCTION

CO~ENTS

EXAMPLE

(

(T) race

Trace

T[=<address>] [<value>]

Execute one instruction and
contents of all registers,
decoded instruction.

disT?lay
flags, and

the
the

If the optional =<address> is entered, tracing
occurs at the =<address> specified. If
=<address> includes the segment designation,
then both CS and the instruction pointer are
specified. If =<address> omits the segment
designation, only the instruction pointer is
specified. The optional <value> causes DEBUG
to execute and trace the number of steps
specified by <value>.

The T command uses the hardware trace mode of
the 8086 or 8088 microprocessor. Consequently,
the user may also trace instructions stored in
ROM.

Enter:

T

DEBUG returns a display of the registers,
flags, and decoded instruction for that one
instruction. Assume that the current position
is 04BA:OllA: then DEBUG might return the
display:

Page 5-29

AX=OEOO BX=OOFF CX=0007
SI=005C DI=OOOO DS=04BA
IP=OllA NV UP DI NG NZ
04BA:OllA CD2l

DX=OlFF SP=039D BP=OOOO
ES=04BA SS=04BA CS=04BA
AC PE NC

INT 21

Now enter:

T=OllA 10

DEBUG executes ten instructions beginning at
OllA in the current segment and then displays
all registers and flags for each instruction as

-115-

DEBUG (T) race

it is executed. The display scrolls away until
the last instruction is executed. Then the
display stops, and you can see the register and
flag values for the last few instructions
performed. Remember that <CONTROL-S> suspends
the display at any point, so that you can study
the registers and flags for any instruction.

-116-

Page 5-30

(

DEBUG

NAME

SYNTAX

FUNCTION

cm·mENTS

EXAMPLE

(

(U) nassemble

Unassemble

U[<address>[L <value>]
U[<range>]

Disassemble bytes and display the source
statements that correspond to them, along with
addresses and byte values.

The display of disassembled code looks like a
listing for an assembled file. If you enter
the U command without parameters, 20
hexadecimal bytes are disassembled to show
corresponding instructions. If you enter the U
command with the <range> parameter, then DEBUG
disassembles all bytes in the range up to 20
hexadecimal bytes. If there are fewer bytes in
the <range> than the number displayed when U is
entered without parameters, then only the bytes
in the <range> are displayed.

If you enter the U command with the <address>
parameter, then DEBUG disassembles the default
number of bytes, beginning at the <address>
specified. If you enter the U command with the
<address> L <value> parameters, then DEBUG
disassembles all bytes beginning at the address
specified for the number of lines specified by
<value>. Entering the U command with the
<address> L <value> parameters overrides the
default limit (20H bytes).

Enter:

U04BA:lOO

-117-

Page 5-31

DEBUG (U) nassemble

DEBUG disassembles 16
address 04BA:0100:

04BA:0100 206472
04BA:0103 69
04BA:0104 7665
04BA:0106 207370
04BA:0109 65
04BA:010A 63
04BA:010B 69
04BA:010C 66
04BA:010D 69
04BA:010E 63
04BA:010F 61

If you enter:

u04ba:0100 0108

The display shows:

04BA:0100 206472
04BA:0103 69
04BA:0104 7665
04BA:0106 207370

However, if you enter:

u04ha:100 120

bytes beginning

AND [SI+72] ,AH
DB 69
JBE 016B
AND [BP+DI+70] ,DH
DB 65
DB 63
DB 69
DB 66
DB 69
DB 63
DB 61

AND [SI+72] ,AH
DB 69
JBE 016B
AND [BP+DI+70],DH

at

Then the display appears exactly the same as
above with the UCS:100 command.

If, however, you enter the command:

UCS:100 L 20

all of the bytes in the
instructions beginning at
through address CS:120 are
displayed. This applies to
formats.

twenty lines of
address CS:100
disassembled and

both display

If the bytes in some addresses are altered, the
disassembler alters the instruction statements.
The U command can be entered for the changed
locations, the new instructions viewed, and the
disassembled code used to edit the source file.

-118-

Page 5-32

(

(

DEBUG (W) rite

NAME
~'Vr i te

SYNTAX
W[<address>[<drive> <record> <record>]]

FUNCTION

COMMENTS

Write the file being debugged to a disk file.

If only the W appears, BX:CX must already be
set to the number of bytes to be written; the
file is written beginning from CS:lOO. If the
W command is given with just an address, then
the file is written beginning at that address.
If a G or T command was used, BX:CX must be
reset before using the write command without
parameters. (Note that if a file is loaded and
modified, the name, length, and starting
address are all set correctly to save the
modified file as long as the length has not
changed.)

The file must have been named either with the
DEBUG invocation command or with the N command
(see Name above). Both the invocation and the
N commanns format a file name properly in the
normal format of a file control block at CS:5C.

If the W command is given without parameters,
BX:CX must be set to the number of bytes to be
written. Then, DEBUG writes the BX:CX number
of bytes to the disk file. The debugged file
is written to the disk from which it was
loaded. This means that the debugged file is
written over the original file that was loaded
into memory.

If the W command is given with parameters, the
write begins from the memory address specified;
the file is written to the <drive> specified
(the drive designation is numeric here--O=A:,
l=B:, 2=C:, 3=D:); DEBUG writes the file
beginning at the logical record number
specified by the first <record>; and continues
until the number of sectors specified in the
second <record> have been written.

-119-

Page 5-33

DEBUG

EXAMPLE

(W)rite

~"lARNING

Writinq to absolute sectors is
EXTREMELY dangerous because the process
bypasses the file handler.

Enter:

W

DEBUG writes out the file to disk then displays
the DEBUG prompt:

W
>

Another example:

WCS:IOO I 37 2B

DEBUG writes out the contents of memory,
beginning with the address CS:IOO to the disk
in drive B:. The data written out starts in
disk logical record number 37H and consists of
2BH records. When the write is complete, DEBUG
displays the prompt:

WCS:IOO I 37 2B
>

- 120-

Page 5-34

(

DEBUG Error Messages Page 5-35

5.4 ERROR MESSAGES

During the DEBUG session, you may receive any of the
following error messages. Each error terminates the DEBUG
command with which it is associated, but does not terminate
DEBUG itself.

ERROR CODE

BF

BP

BR

DF

DEFITHTION

Bad Flag
The user attempted to alter a
the characters entered were not
acceptable pairs of flag values.
Register command for the
acceptable flag entries.

flag,
one of

See
list

but
the
the
of

Too many Breakpoints

Bad

The user specified more than ten
breakpoints as parameters to the G
command. Reenter the Go command with ten
or fewer breakpoints.

Register
The user
invalid
command
names.

entered the R
register name.

for the list of

command with an
See the Register
valid register

Double Flag
The user entered a two values for one
flag. The user may specify a flag val~~
only once per RF command.

- 121-

c

c

c

c

CHAPTER 6

FILCOM

The FILCOM File Comparison Utility compares the contents of two
files. The differences between the two files are output to a
third file. The files being compared may be either source files
(files containing source statements of a programming language) or
binary files (files output by the MACRO-86 assembler, the MS-LINK
Linker Utility, or by one of the Microsoft high-level language
compilers).

Limitations on Source Comparisons

FILCOM uses all available memory as
buffer space to hold the source
files. If the source files are
larger than available memory,
FILCOM comparisons what it is able
to load into the buffer space. If
no matches are found within the
portions of the files in the buffer
space, FILCOM outputs only the
message:

FILES ARE DIFFERENT

For binary files larger than
available memory, FILCOM compares
both files completely, overlaying
the portion in memory with the next
portion from disk. All differences
are output the same as for binary
comparisons of files that fit
completely in memory.

-123-

FILCOM Page 6-2

6.1 INVOCATION

FILCOM can be invoked in one of two ways.

Method 1:

Enter:

FILCOM

FILCOM responds with the first prompt and then waits:

Source 1 Filename [.ASM]:

Method 2:

Enter:

FILCOM <sourcel>, [<source2>], [<list>] [/<switch> .•.]

FILCOM and the filenames must be separated by commas. The
slash mark is the only delimiter allowed between a filename
and a switch letter. Switches may be placed after any of
the entries in the invocation command line, but before the
comma.

If you want to select the default for Source 2 but not for
List, enter two consecutive commas between Source 1 and List
entries.

For example:

FILCOM ALPHA"GAMMA

When method 2 is used, FILCOM responds with a banner but no
prompts, and performs the comparison. Method 2 permits
FILCOM commands to be used in a batch file under MS-DOS, as
well as permitting you to enter all commands on one line at
one time. When FILCOM is finished, the operating system
prompt reappears.

- 124-

(

(

(

FILCOM Page 6-3

6.2 COMMANDS

Commands to FILCOM consist of responses to three prompts for
file specifications, plus optional switches. The file
specifications may be entered one at a time as the prompts
appear, or all at once as part of the FILCOM invocation
command (method 2).

6.2.1 File Specifications

All file specifications take the form:

d:filename.ext

where: d: is the letter of a disk drive. If the
designation is omitted, FILCOM defaults
operating system's (current) default drive.

filename is a 1-8 character name of the file .

drive
to the

. ext is a 1-3 character extension to the filename.
See Section 5.2.3, Defaults and Shortcuts, for a
list of the default filename extensions used under
FILCOM and their effects.

-125-

FILCOM Page 6-4

6.2.2 Prompts

If invocation method 2 is used, FILCOM displays no prompts;
it simply performs the comparison and exits to the operating
system.

If invocation method 1 is used (or else method 2 with an
illegal filename or the name of a nonexistent file for the
first source file), FILCOM displays the first prompt:

Source 1 Filename [.ASM]:

Enter the name of one of the files you want compared. If
the filename extension for this file is .ASM, the extension
may be omitted from the entry. Otherwise, the extension
must be included.

Nhen a legal response has been entered, FILCOM responds with
the second prompt:

Source 2 Filename [sourcel.BAK]:

Enter the name of the file you want compared to Source 1.
FILCOM defaults to the backup file for the file named for
the first prompt. If the response to prompt 1 is TEST
(meaning TEST.ASM), FILCOM will display as default for
Source 2 the filename TEST.BAK. If you want to compare the
Source 1 file with its backup file, simply press <RETURN>.
Otherwise, enter a filename. Likewise, if the Source 2 file
has a filename extension of .BAK, the extension may be
omitted. Otherwise, the extension must be entered, too.

When a legal response to the second prompt has been entered,
FILCOM responds with the third prompt:

List Filename [sourcel.DIF]:

Enter the name of the file to receive the list of
differences. FILCOM defaults to the name given for Source 1
with a default filename extension of .DIF. Again, if the
response to prompt 1 was TEST (meaning TEST.ASM), FILCOM
displays TEST.DIF as the default List filename. If this
default filename is acceptable to you for the List file,
simply press the carriage return key. Otherwise, enter the
filename. Likewise, if the filename extension .DIF is
acceptable to you, the extension may be omitted, even if you
do specify a filename. If .DIF is an unacceptable filename
extension, enter an extension along with the filename.

When FILCOM is finished comparing the two source files and
has output the differences to the List file, the operating
system prompt reappears.

-126-

(

(

(

FILCOM Page 6-5

6.2.3 Defaults And Shortcuts

FILCOM recognizes the following default extensions:

Prompt Extension

Source 1 .ASM

• OBJ 1
.EXE
.COM

Source 2 .BAK

List .DIF

Effect

Default Source 1 filename extension.
May be overridden .

Causes default to binary comparison

Default Source 2 Filename extension.
May be overridden.

Default List Filename extension.
May be overridden.

-127-

FILCOM Page 6-6

Shortcuts

Two shortcuts for entering commands are supported. Both
shortcuts use default responses for any prompts to which a
response is not entered.

Carriage return key

The Source 1 Filename (.ASM] prompt requires at
least a filename response.

The Source 2 Filename [sourcel.BAR] and List
Filename [sourcel.DIF] prompts show a default
entry; the filename entered for Source I and a
default filename extension. To select the default
entry, simply press the <RETURN> key.

Example:

Source I Filename [.ASM]: TEST
Source 2 Filename [TEST. BAR] : <RETURN>
List Filename (TEST.DIF]: <RETURN>

These responses cause FILCOM to compare TEST.ASM
with TEST.BAR and to output any differences in the
file TEST.DIF.

<RETURN> only may be entered for either of the
prompts, regardless of what you plan to enter for
the other. For example, the <RETURN> may be used
to select the default for Source 2, yet allows a
nondefault entrv for List.

Example:

Source 1 Filename [.ASM]: TEST
Source 2 Filename [TEST. BAR] : <RETURN>
List Filename (TEST.DIF]: PAST.PRN

These responses cause FILCOM to compare TEST.ASM
with TEST. BAR and to output any differences in the
file PAST.PRN (default for Source 2 was selected,
but not for List.)

-128-

(

(

(

(

FILCOM Page 6-7

Semicolon (;)

The semicolon character (;) also selects the
default responses to the Source 2 and List prompts.
If the semicolon is entered following the Source 2
Filename prompt, the List Filename prompt will not
appear. That is, the semicolon selects the default
response for all remaining prompts. Unlike the
carriage return key, 'once you enter semicolon,
comparing begins, and you have no chance to enter
another response for that comparison. Indeed, you
may think of the semicolon as a message to FILCOM
that you want to use all default responses only.

This is especially useful when using invocation
method 2:

Example:

FILCOM TEST;

This entry causes FILCOM to display its banner and
then perform the desired comparison. FILCOM
compares TEST.ASM with TEST.BAK and outputs the
differences in the file TEST.DIF (the same as the
example under "Carriage Return Key" above).

Now, consider this sample invocation:

FILCOM
Source 1 Filename [.ASM]: TEST;

This set of commands and
same result as the two
that you have no chance to
the defaults for Source 2
semicolon.

- 129 -

responses produces the
previous examples. Note
enter alternatives to

or List when you use the

FILCOM Page 6-8

6.2.4 Switches

FILCOM supports five switches. Switches are single letters
appended to the (method 2) invocation command line or to any
of the prompt responses to control the file comparison. A
switch must always be preceded by a slash.

FILCOM switches are one of two types: source comparison or
binary comparison.

Source Comparison Switches

/A

/C

/<n>

Force a source comparison of files with filename
extensions .OBJ, .EXE, and .COM. FILCOM defaults
to binary comparison on files with these filename
extensions. Files with any other filename
extensions default to source comparison.
Therefore, /A is not required for files that do not
have one of these three filename extensions.

Include comments in comparison. A comment starts
with a semicolon (:), and ends with an end-of-line
character. By default, comments are not included
in comparisons. Thus, only functional changes in
source files are detected by FILCOM. This means
that comments in two files, even if different, are
ignored when searching for consecutive lines that
match (see the /<n> switch below for an explanation
of "match").

<n> is a number from I through 9. Default is 3.
<n> specifies how many consecutive lines in the two
files must be the same before FILCOM considers that
the two files match at that point. (Refer to
examples I and 2 below for a demonstration of the
effects of the /<n> switch).

When FILCOM finds <n> lines that match, it outputs
the lines that are different since the last <n>
lines that matched, plus the first line of the
current <n> lines that match. The first match line
should help locate where differences occurred.

/S Include spaces and tabs in comparisons. By
default, spaces and tabs are not included in
comparisons. Thus, only functional changes in
source files are detected by FILCOM. This means
that spaces and tahs in the two files, even if the
same, are ignored and are not used to find matches.

-130-

(

(

(

c

FILCOM Page 6-9

Binary Comparison Switch

/B Force binary comparison of files that default to
source comparison (files without the filename
extensions .OBJ, .EXE, or .COM). Instead of a
source comparison of lines, FILCOM compares the two
files byte-by-byte. For differences, FILCOM
outputs the offset location into the files an0 the
differing bytes in hexadecimal. (Refer to example
3 for a demonstration.)

- 131 -

FILCOM Page 6-10

6.3 EXAMPLES

Example 1:.

Assume these two ASCII files are on disk:

ALPHA.ASM BETA.ASM

FILE A FILE B

A A
B 3
C C
0 G
E H
F I
G J
H 1
I 2
M P
N Q
0 R
P S
Q T
R TJ
S V
T 4
U 5
V W
W X
X Y
Y Z
Z

To compare the two files and output the differences on the
terminal screen, enter the following (method 2) command
line:

FILCO~1 ALPHA, BETA. ASH, CON

FILCOM is directed to compare ALPHA.ASM with BETA.ASM and
output the differences on the terminal screen. All other
defaults remain intact (do not use tabs, spaces, or comments
for matches, and conduct a source comparison).

The output appears as follows on the terminal screen:

--A:ALPHA ASM
FILE A <------------~---first difference

A <------------------~
--A:BETA ASM
FILE B <----------~

A <----------------------first match
-132-

(

(

FILCOM

--A:ALPHA ASM
FILE A ~------------~--first difference

A ~----------------~~

--A: BETA ASM
FILE B ~----------~
A ~------------------~-first match

--A:ALPHA
D
E } ~

F
G •
--A:BETA
G ~

--A:ALPHA
K

ASM

ASM I
ASM

L } .------........
M

N ~----------------~

--A:BETA ASM
1
2 } .-----~I-'
3

second difference

second match

third difference

N .----------------~---third match

--A:ALPHA ASM
W ~--------------------~

--A:BETA
4

ASM

5 .--------------------_+_
W • ----------.....

fourth match

fourth difference

-133-

Page 6-11

FILCOr-1 Page 6-12

Example 2

Using the same two source files, output the differences on
the line printer. Also, require that four successive lines
must be the same to constitute a match.

Using invoke method 2 again, enter:

FILCOM ALPHA,BETA.ASM,PRN/4

The following output should appear on the line printer:

--A:ALPHA
FILE A
A

ASM

i I <-------~\
G >-

These lines are listed as
different because the /4
switch specifies that 4
consecutive lines must be
found identical in the
two files before they are
considered a match.

--A:BETA ASM /
FILE B

~ } <-------'
C
G

--A:ALPHA ASM
K
L
H
N

--A:BETA ASM
1
2
3
N

--A:ALPHA ASM
W

--A:BETA ASM
4
5
W

-134-

(

c

(

(

FILCOM Page 6-13

Example 3

Using the same two source files again, force a binary
comparison, then output the differences on the terminal
screen.

Using invoke method l,enter:

FILCOM

FILCOM responds:

Source 1 Filename [.ASM]:

Entries and responses should appear as follows:

Source 1 Filename [.ASM]: ALPHA/B
Source 2 Filename [ALPHA.BAK]: BETA.ASM
List Filename [ALPHA.DIF]: CON

The IB switch at the end of the Source
forces binary comparison. This switch,
others, may be entered at the end of any
response entries. The switches may be,
not be, entered on the same response line.

The screen display should appear as follows:

ADDRESS ALPHA ASM BETA ASM
00006 41 42
00012 44 47
00015 45 48
00018 46 49
OOOlB 47 4A
OOOlE 48 31
00021 49 32
00024 4A 33
00027 4B 4E
0002A 4C 4F
0002D 4D 50
00030 4E 51
00033 4F 52
00036 50 53
00039 51 54
0003C 52 55
0003F 53 56
00042 54 34
00045 55 35
00048 56 57
0004B 57 58
0004E 58 59
00051 59 5A

-135-

1 line
and the
of the

but need

(

c

c

APPENDtX A

Instructions for Single Disk Drive Users

For single disk drive users the commands are exactly the
same syntax as for two drive users. The difference lies in
your perception of the "arrangement" of the drives.

You must think of his system as having two disk drives:
drive A: and drive B:. However, instead of A: and B:
designating physical disk drive mechanisms, the A: and B:
designate diskettes. Therefore, when the user specifies
drive B: while operating on drive A: (the prompt is A:),
MS-DOS prompts the user to "switch drives" by swapping
diskettes.

The prompts are:

Insert diskette for drive A: and strike any key
when ready

Insert diskette for drive B: and strike any key
when ready

These procedures apply to
internal and external)
different drive as a part
include:

any MS-DOS COMMAND commands (both
that can request or direct a

of its syntax. These commands

CHKDSK [d:]
COpy <filespec>[filespec]
DEL <filespec> [filespec ••.]
DIR [d:] [filename]
FORMAT d: [IS]
RENAME <filespec> <filename>
TYPE <filespec>

Also, if any of these commands are used in a BATCH file and
call for a different drive, the single disk drive procedures
apply. Execution is halted and the appropriate prompt is
displayed.

-137 -

Page A-2

EXAMPLE

The following example may serve as an illustration for all
of the commands listed above:

A:COPY COMMAND.COM B: Insert diskette for drive
B: and depress space bar when ready

1 File(s) copied

Insert diskette for drive A: and depress space bal
when ready
A:

-138-

(

APPENDIX B

MS-DOS File Control Block Definition

The MS-DOS File Control Block (FCB) is defined as follows:

byte a

bytes 1-8

bytes 9-11

bytes 12-13

bytes 14-15

bytes 16-19

bytes 20-21

Drive Code. Zero specifies the
drive, l=drive A, 2=drive B, etc.

default

File name. If the file is less than 8
characters, the name must be left justified
with trailing blanks.

Extension to file name. If less than 3
characters, must be left justified with
trailing blanks. May also be all blanks.

Current block (extent). This word (low byte
first) specifies the current block of 128
records, relative to the start of the file,
in which sequential disk reads and writes
occur. If zero, then the first block of the
file is being accessed; if one, then the
second etc. Combined with the current record
field(byte 32) a particular logical record is
identified.

Size of the record the user wishes to work
with. This word may be filled immediately
after an OPEN of the file if the default
logical record size (128 bytes) is not
desired. The Open and Create functions set
this field to 128; it is also changed to 128
if a read or write is attempted with the
field set to zero.

File size. This is the current size, in
bytes, of the file. It may read by user
programs but must not be written by them.

Date.
write
write
It is

This is normally the date of the last
to the file. It is set by all disk

operations and Create to today's date.
set by Open to the date recorded in the

-139-

bytes 22-23

bytes 24-31

byte 32

bytes 33-36

FCB-7

disk directory for the file. User
may modify this field after writing
but before closing it to change
recorded in the disk directory.

Page B-2

programs
to a file
the date

The format of
follows: bits
month of year;
All zero means

this 16-bit field is as
0-4, day of month; bits 5-8,
bits 9-15, year minus 1980.

no date.

Time. Similar to Date, above.
bits 0-4, seconds/2; bits
bits 11-15, hours.

Reserved for MS-DOS.

The format is
5-10, minutes;

Current record. Identifies the record within
the current block of 128 records that will be
accessed with a sequential read or write
function. See CUrrent Block,bytes 12-13.

Random Record. This field must only be set
if the file is to be accessed with a random
read or write function. If the record size
is greater than or equal to 64 bytes, only
the first 3 bytes are used, as a 24-bit
number representing the position in the file
of a record. If the record size if less than
64 bytes, all 4 bytes are used as 32-bit
number of the same purpose. This field is
thus large enough to address any byte in a
file of the maximum size, 230 bytes.

THE EXTENDED FCB

The extended FCB is a special format used to
search for files in the disk directory with
special attributes. It consists of 7 bytes
in front of a normal FCB, formatted as
follows:

Flag. FF hex is placed here to signal an
extended FCB.

FCB-6 - FCB-2 Zero field

FCB-l Attribute byte. If bit 1 = 1,
will be included in directory
bit 2 = 1, system files will be
directory searches.

-140-

hidden files
searches. If

included in

(

(

Page B-3

Any reference in the description of MS-DOS
function calls to an FeB, whether opened or
unopened, may use either a normal FeB or an
extended FeB. A normal FeB has the same
effect ad an extended FeB with the attribute
byte set to zero.

-141-

· (

c

(

APPENDIX C

MS-DOS INTERRUPTS AND FUNCTION CALLS

C.I INTERRUPTS

MS-DOS Reserves interrupt types 20 to 3F hex for its use.
This means absolute locations 80 to FF hex are the transfer
address storage locations reserved by the DOS. The defined
interrupts are as follows with all values in hex:

20 Program terminate. This is the normal way to exit a
program. This vector transfers to the logic in the
DOS for restoration of <CONTROL-C> exit addresses to
the values they had on entry to the program. All
file buffers are flushed to disk. All files that
have changed in length should have been closed (see
function call 10 hex) prior to issuing this
interrupt. If the changed file was not closed its
length will not be recorded correctly in the
directory. When this interrupt is executed, CS MUST
point to the 100H parameter area.

21 Function request. See section II FUNCTION REQUESTS.

22 Terminate address. The address represented by this
interrupt (88-8B hex) is the the address to which
control will transfer when the program terminates.
This address is copied into low memory of the
segment the program is loaded into at the time this
segment is created. If a program wishes to execute
a second program it must set the terminate address
prior to creation of the segment the program will be
loaded into. Otherwise once the second program
executes its termination would cause transfer to its
host's termination address.

23 <CONTROL-C> exit address. If the user types
<CONTROL-C> during keyboard input or video output,
"AC" will be printed on the console and an interrupt
type 23 hex will be executed. If the <CONTROL-C>

-143-

Page C-2

routine preserves all registers, it may end with a a (
return-from-interrupt instruction (IRET) to continue
program execution. If functions 9 or 10 (buffered
output and input), were being executed, then I/O
will continue from the start of the line. vJhen the
interrupt occurs, all registers are set to the value
they had when the original call to MS-DOS was made.
There are no restrictions on what the <CONTROL-C>
handler is allowed to do, including MS-DOS function
calls, so long as the registers are unchanged if
IRET is used.

If the program creates a new segment, loads in a
second program which itself changes the <CONTROL-C>
address, the termination of the second program and
return to the first will cause the <CONTROL-C>
address to be restored to the value it had ~efore
execution of the second program.

24 Fatal error abort vector. When a fatal error occurs
within MS-DOS, control will be transferred with an
INT 24H. On entry to the error handler, AH will
have its bit 7=0 if the error was a hard disk error
(probably the most common occurrence), bit 7=1 if
not. If it is a hard disk error, bits 0-2 include
the following:

bit 0 0 if read, 1 if write

bit 2 1 AFFECTED DISK AREA
0 0 Reserved area
0 1 File allocation table
1 0 Directory
1 1 Data area

AL, CX, DX, and DS:BX will be setup to perform a
retry of the transfer with INT 25H or INT 26H
(below) • DI will have a 16-bit error code returned
by the hardware.

The values returned are:

o write protect
2 disk not ready
4 data error
6 Seek error
8 Sector not found
A Write fault
C General disk failure

The registers will be set up for a BIOS disk call
and the returned code will be in the lower half of
the DI register with the upper half undefined. The
user stack will look as follows from top to bottom:

-144 -

IP
CS
FLAGS

Page C-3

Registers such that if an IRET is executed
the DOS will respond according to (AL)
as follows:

(AL)=O
=1

ignore the error
retry the operation
(IF THIS OPTION USED STACK OS,
' BX,CX AND OX MUST NOT BE MODIFIED!)

=2 abort the program

AX USER REGISTERS AT TIME OF REQUEST
BX
CX
OX
SI
01
BP
OS
ES
IP The interrupt from the user to the DOS
CS
FLAGS

Currently, the only error possible when AH bit 7=1
is a bad memory image of the file allocation table.

25 Absolute disk read. This transfers control directly
to the DOS BIOS. Upon return, the original flags
are still on the stack (put there by the INT
instruction). This is necessary because return
information is passed back in the flags. Be sure to
to pop the stack to prevent uncontrolled growth.
For this entry point "records" and "sectors" are the
same size. The request is as follows:

(AL)
(CX)
(DX)
(DS:BX)

Drive number (O=A, l=B, etc.)
Number of sectors to read
Beginning logical record number
Transfer address

The number of records specified are transferred
between the given drive and the transfer address.
"Logical record numbers" are obtained by numbering
each sector sequentially starting from zero and
continuing across track boundarys. For example
logical record number 0 is track 0 sector 1, whereas
logical record number 12 hex is track 2 sector 3.

~ll registers but the segment registers are
destroyed by this call. If the transfer was
successful the carry flag (CF) will be zero. If the
transfer was not successful CF=l and (AL) will
indicate the error as follows:

-145-

Return
a
2
4
6
8
C

Page C-4

Description
Attempt to write on write protected disk
Disk not ready
Data error
Seek error
Sector not found
General disk failure

A Write fault

26 Absolute disk write. This vector is the counterpart
to interrupt 25 above. Except for the fact that
this is a write the description above applies.

27 Terminate but stay resident. This vector is used by
programs which are to remain resident when COMMAND
regains control. Such a program is loaded as an
executing COM file by COMMAND. After it has
initialized itself, it must set OX to its last
address plus one in the segment it is executing in,
then execute an interrupt 27H. COMMAND will then
treat the program as an extension of MS-DOS, and the
program will not be overlaid when other programs are
executed.

C.2 FUNCTION REQUESTS

The user requests a function by placing a function number in
the AH register, supplying additional information in other
registers as necessary for the specific function then
executing an interrupt type 21 hex. When MS-DOS takes
control it switches to an internal stack. User registers
except AX are preserved unless information is passed back to
the requester as indicated in the specific requests. The
user stack needs to be sufficient to accommodate the
interrupt system. It is recommended that it be 80 hex in
addition to the user needs. There is an additional
mechanism provided for programs that conforms to CP/M
calling conventions. The function number is placed in the
CL register, other registers are set as normal according to
the function specification, and an intrasegment call is made
to location 5 in the current code segment. This method is
only available to functions which do not pass a parameter in
AL and whose numbers are equal to or less than 36. Register
AX is always destroyed if this mechanism is used, otherwise
it is the same as normal function requests. The functions
are as follows with all values in hex:

a Program terminate. The terminate and <CONTROL-C>
exit addre~ses are restored to the values they had
on entry to the terminating program. All file

-146-

(

(

buffers are flushed, but files which
changed in length but not closed will
recorded properly in the disk directory.
transfers to the terminate address.

Page C-S

have been
not be
Control

1 Keyboard input. Waits for a character to be typed
at the keyboard, then echos the character to the
video device and returns it in AL. The character is
checked for a <CONTROL-C>. If this key is detected
an interrupt 23 hex will be exec~ted.

2 Video output. The character in DL is output to the
video device. If a <CONTROL-C> is detected after
the output an interrupt 23 hex will be executed.

3 Auxiliary input. waits for a character from the

4

5

6

7

8

9

A

auxiliary input device, then returns that character
in AL.

Auxiliary output. The character in DL is output to
the auxiliary device.

Printer output. The character in DL is output to
the printer.

Direct console I/O. If DL is FF
With keyboard input character
otherwise 00. If DL is not FF
assumed to have a valid character
the video device.

hex, the AL returns
if one is ready,
hex, then DL is
which is output to

Direct console input. Waits for a character to be
typed at the keyboard, then returns the character in
AL. As with function 6, no checks are made on the
character.

Console input
identical to
echoed.

without
function

echo. This function is
1, except the key is not

Print string. On entry, DS:DX must point to a
character string in memory terminated by a "$" (24
hex). Each character in the string will be output
to the video device in the same form as function 2.

Buffered keyboard input. On entry, DS:DX point to an
input buffer. The first byte must not be zero and
specifies the number of characters the buffer can
hold. Characters are read from the keyboard and
placed in the buffer beginning at the third byte.
Reading the keyboard and filling the buffer
continues until <RETURN> is typed. If the buffer
fills to one less than the maximum, then additional
keyboard input is ignored until a <RETURN> is typed.
The second byte of the buffer is set to the number

-147-

Page C-6

of characters received excluding the carriage return (
(OD hex), which is always the last character.
Editing of this buffer is described in the main
MS-DOS document under "template editing".

B Check keyboard status. If a character is available
from the keyboard, AL will be FF hex, Otherwise AL
will be 00.

C Character input with buffer flush. First the
keyboard type-ahead buffer is emptied. Then if AL
is 1, 6, 7, 8, or OA hex, the corresponding MS-DOS
input function is executed. If AL is not one of
these values, no further operation is done and AL
returns 00.

D Disk reset. Flushes all file buffers. Unclosed
files that have been changed in size will not be
properly recorded in the disk directory until they
are closed. This function need not be called before
a disk change if all files which have been written
have been closed.

E Select disk. The drive specified in DL (O=A, l=B,
etc) is selected as the default disk. The number of
drives is returned in AL.

F Open file. On entry, DS:DX point to an unopened file
control block (FCB). The disk directory is searched
for the named file and AL returns FF hex if it is
not found. If it is found, AL will return a 00 and
the FCB is filled as follows:

If the drive code ·was 0 (default disk), it is
changed to actual disk used (A=l, B=2, etc.) This
allows changing the default disk without interfering
with subsequent operations on this file. The high
byte of the current block field is set to zero. The
size of the record to be worked with(FCB bytes E-F
hex) is set to the system default of 80 hex. The
size of the file, and the time and date are set in
the FCB from information obtained from the
directory.

It is the user's responsibility to set the record
size (FCB bytes E-F) to the size he wishes to think
of the file in terms of, if the default 80 hex is
not appropriate. It is also the user's
responsibility to set the random record field and/or
current block and record fields.

10 Close file. This function must be called after file
writes to insure all directory information is
updated. On entry, DS:DX point to an opened FCB.
The disk directory is searched and if the file is

-148-

(

11

c

Page C-7

found, its position is compared with that kept in
the FCB. If the file is not found in the directory,
it is assumed the disk has been changed and AL
returns FF hex. Otherwise, the directory is updated
to reflect the status in the FeB and AL returns 00.

Search for the first entry. On entry, DS:DX point
to an unopened FeB. The disk directory is searched
for the first matching 'name (name could have "?"'s
indicating any letter matched) and if none are found
AL returns FF hex. Otherwise, locations at the disk
transfer address are set as follows:

1. If the FeB provided for searching was an
extended FeB, then the first byte is set to FF
hex, then 5 bytes of zeros, then the attribute
byte from the search FeB, then the drive number
used (A=l, B=2, etc.), then the 32 bytes of the
directory entry. Thus the disk transfer address
contains a valid unopened extended FeB with the
same' search attributes as the search FeB.

2. If the FeB provided for searching was a normal
FeB, then the first byte is set to the drive
number used (A=l, B=2, etc.) and the next 32
bytes contain the matching directory entry.
Thus the disk transfer address contains a valid
unopened normal FCB.

- 149 -

Page C-8

Directory entries are formatted as follows:

Location Bytes Description

0 11 File name and extension

11 1 Attributes. Bits 1 or 2
make file hidden

10 10 Zero field (for expansion)

22 2 Time.
Bits 0-4 = secs*2

5-10 = min
11-15 = hrs

24 2 Date.
Bits 0-4 = day

5-8 = month
9-15 = year

26 2 First allocation unit

28 4 File size, in bytes.
(30 bits max.)

12 Search for the next entry. After function 11 has
been called and found a match, function 12 may be
called to find the next match to an ambiguous
request("?"'s in the search filename). Both inputs
and outputs are are the same as function 11. The
reserved area of the FCB keeps information necessary
for continuing the search, so it must not be
modified.

13 Delete file. On entry, DS:DX point to
FCB. All matching directory entries
If no directory entries match, AL
otherwise AL returns 00.

an unopened
are deleted.
returns FF,

14 Sequential read. On entry, DS:DX point to an opened
FCB. The record addressed by the current block (FCB
bytes C-D) and the current record(FCB byte IF) is
loaded at the disk transfer address, then the record
address is incremented. If end-of-file is
encountered AL returns either 01 or 03. A return of
01 indicates no data in the record, 03 indicates a
partial record is read and filled out with zeros. A
return of 02 means there was not enough room in the
disk transfer segment to read one record, so the
transfer was aborted. AL returns 00 if the transfer
was completed successfully.

-150-

(

Page C-9

15 Sequential write. On entry, DS:DX point to an
opened FCB. The record addressed by the current
block and current record fields is written from the
disk transfer address(or in the case of records less
than sector sizes is buffered up for an eventual
write when a sector's worth of data is accumulated).
The record address is then incremented. If the disk
is full AL returns with a 01. A return of 02 means
there was not enough room in the disk transfer
segment to write one record, so the transfer was
aborted. AL returns 00 if the transfer was
completed successfully.

16 Create file. On entry DS:DX point to an unopened
FCB. The disk directory is searched for an empty
entry, and AL returns FF if none is found.
Otherwise, the entry is initialized to a zero-length
file, the file is,opened(see function F), and AL
returns 00.

17 Rename file. On entry, DS:DX point to a modified
FCB which has a drive code and file name in the
usual position, and a second file name starting 6
bytes after the first (DS :DX+ll hex) in what is
normally a reserved area. Every matching occurrence
of the first is changed to the second(with the
restriction that two files cannot have the exact
same name and extension). If "?"'s appear in the
second name, then the corresponding positions in the
original name will be unchanged. AL returns FF hex
if no match was found, otherwise 00.

19 Current disk. AL returns with the code of the
current default drive (O=A, l=B, etc.)

lA Set disk transfer address. The disk transfer
address is set to DS:DX. MS-DOS will not allow disk
transfers to wrap around within the segment, nor to
overflow into the next segment.

lB Allocation table address. On return, DS:BX point to
the allocation table for the current drive, DX has
the number of allocation units, and AL has the
number of records per nllocation unit, and CX has
the size of the physical sector. At DS:[BX-l], the
byte before the allocation table, is the dirty byte
for the table. If set to 01, it means the table has
been modified and must be written back to disk. If
00, the table is not modified. Any programs which
get the address and directly modify the table must
be sure to set this byte to 01 for the changes to be
recorded. This byte should NEVER be set to 00 -
instead, a DISK RESET function (iOD hex) should be
performed to write the table and reset the bit.

-151-

Page C-IO

21 Random read. On entry, DS:DX point to an opened FCB
The current block and current record are set to
agree with the random record field, then the record
addressed by these fielcs is loaded at the current
disk transfer address. If end-of-file is
encountered, AL returns either 01 or 03. If 01 is
returned no more data is available. If 03 is
returned, a partial record is available, filled out
with zeros. A return of 02 means there was not
enough room in the disk transfer segment to read one
record, so the transfer was aborted. AL returns 00
if the transfer was completed successfully.

22 Random write. On entry, DS:DX point to an opened
FCB. The current block and current record are set
to agree with the random record field, then the
record addressed by these fields is written (or in
the case of records not the same as sector sizes
-buffered) from the disk transfer address. If the
disk is full AL returns 01. A return of 02 means
there was not enough room in the disk transfer
segment to write one record, so the transfer was
aborted. AL returns 00 if the transfer was
completed successfully.

23 File size. On entry, DS:DX point to an unopened
FCB. The disk directory is searched for the first
matching entry and if none is found, AL returns FF.
Otherwise the random record field is set with the
size of the file(in terms of the record size field
rounded up) and AL returns 00.

24 Set random record field. On entry, DS:DX point to
an opened FCB. This function sets the random record
field to the same file address as the current block
and record fields.

25 Set vector. The interrupt type specified in AL is
set to the 4-byte address DS:DX.

26 Create a new program segment. On entry, DX has a
segment number at which to set up a new proqram
segment. The entire 100 hex area at location zero
in the current program segment is copied into
location zero in the new program segment. The
memory size information at location 6 is updated and
the current termination and <CONTROL-C> exit
addresses are saved in the new program seqment
starting at OA hex

27 Random block read. On entry, DS:DX point to an
opened FCB, and CX contains a record count that must
not be zero. The specified number of records (in
terms of the record size field) are read from the
file address specified by the random record field

-152-

Page C-ll

into the disk transfer address. If end-of-file is
reached before all records have been read, AL
returns either 01 or 03. A return of 01 indicates
end-of-file and the last record is complete, a 03
indicates the last record is a partial record. If
wrap-around above address FFFF hex in the disk
transfer segment would occur, as many records as
possible are read and AL returns 02. If all records
are read successfully, AL returns 00. In any case
CX returns with the actual number of records read,
and the random record field and the current block/
record fields are set to address the next record.

28 Random block write. Essentially the same as
function 27 above, except for writing and a
write-protect indication. If there is insufficient
space on the disk, AL returns 01 and no records are
written. If CX is zero upon entry, no records are
written, but the file is set to the length specified
by the Random Record field, whether longer or
shorter than the current file size (allocation units
are released or allocated as appropriate).

29 Parse file name. On entry DS:SI points to a command
line to parse, and ES:DI points to a portion of
memory to be filled in with an unopened FCB.
Leading TABs and spaces are ignored when scanning.
If bit 0 of AL is equal to 1 on entry, then at most
one leading file name separator will be ignored,
along with any trailing TABs and spaces. The four
filename separators are:

= +

If bit 0 of AL is equal to 1, then all parsing stops
if a separator is encountered. The command line is
parsed for a file name of the form d:filename.ext,
and if found, a corresponding unopened FCB is
created at ES:DI. The entry value of AL bits 1, 2,
and 3 determine what to do if the drive, filename,
or extension, respectively, are missing. In each
care, if the bit is a zero and the field is not
present on the command line, then the FCB is filled
with a fixed value (0, meaning the default drive for
the drive field; all blanks for the filename and
extension fields). If the bit is a 1, and the field
is not present on the command line, then that field
in the destination FCB at ES:DI is left unchanged.
If an asterisk "*" appears in the filename or
extension, then all remaining characters in the name
or extension are set to "?".

The following characters are illegal within MS-DOS
file specifications:

-153-

Page C-12

The following characters are illegal within MS-DOS (
file specifications:

"/[]+=;,

Control characters and spaces also
as elements of file specifications.
characters are encountered while
per iod (.) or colon (:) is found
position, then parsing stops at that

may not be given
If any of these
parsing, or the
in an invalid
point.

If either "?" or "*" appears in the file name or
extension, then AL returns 01, otherwise 00. DS:SI
will return pointing to the first character after
the file name.

2A Get date. Returns date in CX:DX. ·CX has the year,
DH has the month (l=Jan, 2=Feb, etc.), and DL has
the day. If the time-of-day clock rolls over to the
next day, the date will be adjusted accordingly,
taking into account the number of days in each month
and leap years.

2B Set date. On entry CX:DX must have a valid date in
the same format as returned by function 2A above.
If the date is indeed valid and the set operation is
successful, then AL returns 00. If the date is not
valid, then AL returns FF.

2C Get time. Returns with time-of-day in CX:DX. Time
is actually represented as four a-bit binary
quantities, as follows: CH has the hours (0-23), CL
has minutes (0-59), DH has seconds (0-59), DL has
1/100 seconds (0-99) • This format is easily
converted to a printable form yet can also be
calculated upon (e.g., subtracting two times).

2D

2E

Set time. On entry, CX:DX has time in the same
format as returned by function 2C above. If any
component of the time is not valid, the set
operation is aborted and AL returns FF. If the time
is vali1, AL returns 00.

Set/Reset Verify Flag. On entry,
AL has the verify flag: 0 = no
after write. this flag is simply
system on each write, so sts
interpreted there.

-154-

DL must be 0 and
verify, 1 = verfiy
passed to the I/O
exact meaning is

(

(

APPENDIX D

Disk Errors

If a disk error occurs at any time during any command or
program, MS-DOS retries the operation three times. If the
operation cannot be completed successfully, MS-DOS returns
an error message in the following format:

<type> ERROR WHILE <I/O action> ON DRIVE x
Abort,Ignore,Retry:_

In this message,<type> may be one of the following:

WRITE PROTECT
NOT READY
SEEK
DATA
SECTOR NOT FOUND
WRITE FAULT
DISK

The <I/O-action> may be either of the following:

READING
WRITING

The drive <d> indicates the drive in which the error
has occurred.
MS-DOS waits entry of one of the following responses:

A Abort. Terminate the program requesting the disk
read or write.

I Ignore. Ignore the bad sector and pretend the
error did not occur.

R Retry. Repeat the operation. This response is
particularly useful if the operator has corrected
the error (such as with NOT READY or WRITE
PROTECT) .

-155-

Page D-2

Usually, you will want to attempt recovery by entering (
responses in the order:

R (to try again)
A (to terminate program and try a new disk)

One other error message might be related to faulty disk read
or write:

FILE ALLOCATION TABLE BAD FOR DRIVE x

This message means that the copy in memory of one of the
allocation tables has pointers to nonexistent blocks.
Possibly the disk was not FOru1ATted before use.

-156-

(

(

(

INDEX

%0 dummy (Batch) . • • . • • • 2-18
• BAT (extens ion) • • •• • 2-18
/S (Format) ••.•••••• 3-14

<C1> •
<CM> •
<CT> •
<INS>
<NT> •
<QI> •
<REP>
<Sl>
<SM> •

· 4- 5
· 4- 6
· 4-7

· 4-11
· 4-13

· 4-10
• • • • • •• • 4-12

. 4- 8
· 4- 9

Abort • • • •
AUTOEXEC.BAT •

• D-1
• 2-19

Batch • • • 2-18

CHKDSK • • • • • • • • • • • • 1-4
Command types • • • • • • • • 2-16
COMMAND.COM • • • • • • • 1-4
COM?-~aND • COM • • • • • • • 2- 3
Commands

CHKDSK • • • • • 3-3
COpy • • • • •• •••• 3-5
DATE • • • • • • • • • • • • 3-9
DEL • • • • • • • • • • • • 3-10
DIR • • • • • • • • • • • • 3-11
EXE2BIN • • • . • . . . • • 3-12
FORMAT • • • • • • • • • • • 3-14
PAUSE • •. .••• 3-15
REH • • •• •••.•• 3-16
REN • • • • • • • • • • • • 3-17
SYS • • • • • • • • 3-18
TIME • • • • • • • • • • • • 3-19
TYPE • • • • •• •• • • 3-20
Wild card char acter s (?, *) • 2-6

Concatenation • •• • 3-5
Control Characters • • 2-13
CREF. EXE • . • • • • • • • • • 1-4
Cursor • • •• •••• • • 2-15

• • D-1 Data Error • • • •
DEBUG • • • •
DEBUG Commands

• • • • 1-4

(C)ompare •••••. . • • 5-7
(D)ump • • ••••
(E)nter ••••

• 5-8
5-10

(Fill). • •••••• • 5-12

-157-

Page Index-1

(G) 0 . · · · · · · · · · 5-13
(H)ex · · · · · · · · · 5-15
(I)nput · · · · · · · · 5-16
(L)oad · · · · · · · · · · · 5-17
(M)ove · · · · · · · · · 5-18
(N)ame · · · · · · · · · · · 5-20
(O)utput · · · · · · · · · · 5-23
(Q)uit · · · · · · · · · · · 5-24
(R)egister · · · · · · · · · 5-25
(S)earch · · · · · · 5-28
(T)race · · · · · · 5-29
(U)nassemble · · · · · · · · 5-31
(W) rite · · · · · · · · · · 5-33
Flags · · · · · · · · · · · 5-26

DEBUG Errors
BF - Bad flag · · · · · 5-35
BP - Too many breakpoints · 5-35
BR - Bad register · 5-35
OF - Double flag · · · · · · 5-35

Default drive · · · · 2-15
Device innependent I/O · · · · 2-4
Directory • · · · · · · · · · 2-3
Disk Error · · · · · · · · · · 0-1
Disk Errors

Abort · · · · · · · · · · · 0-1
Data Error · · · · · · · · · 0-1
Disk Error · · · · · · · · · 0-1
File Allocation Table Bad For Drive
Ignore · · · · · · · · · · · 0-1
Not Ready Error · · · · · · 0-1
Retry · · · · · · · 0-1
Sector Not Found Error · · · 0-1
Seek Error · · · · · · · · · 0-1
Write Fault Error · · · · · 0-1
Write Protect Error · · 0-1

Drive designations · · · · 2-4
Dummy parameters (Batch) · · · 2-18

EDLIN • • • • • . • • • • • • 1-4
EDLIN Commands

Append Lines • • • • . • • • 4-19
Delete Lines • • •• •• 4-20
Edit Line ••••••••• 4-17
End Editing •••••••• 4-22
Insert Text • • • •• • 4-23
List Text • • • • • • • 4-26
Quit (EDLIN) •••••••• 4-28
Replace Text • • • • • • • . 4-30
Search Text • •• ••• 4-33
Write Lines • •• • 4-35

EDLIN Errors

x 0-2

Cannot edit .BAR file--rename file 4-36
Disk Full • 4-37
Entry error •••••••• 4-37
Line too long . • • • • • • 4-37

- 158 -

Page Index-2

(

No room in directory for file 4-36
EXE files . • • • • • • • • • 5-18
EXE2BIN ••••••.•••• 2-17
External commands • •• • 2-14, 2-17

FILCOM.COM . • . • . • 1-5
File allocation table •.•• 2-3
File Allocation Table Bad For Drive x D-2
File svstem . • • •• .• 2-4
FORMAT • • • • • • • ••• 1-4 to 1-5

Hidden files •

Ignore • • •
Internal commands
Intraline Commands

• 2-1

• D-l
• 2-17

. 4-10
Copy multiple characters • • 4-6
Copy one character • • • . • 4-5
Copy template • 4-7
Enter insert mode . • • • • 4-11
Exit insert mode • • • • • • 4-12
New template • • • • • • • • 4-13
Quit input ••••••••• 4-10
Replace mode •••••••• 4-12
Skip multiple characters • • 4-9
Skip one character • • • • • 4-8

IO.SYS •••.••.••••• 1-5, 2-3

LIB.EXE ••••
LINK. EXE • • •

!-1ASH. EXE •
Memory • .
MSDOS.SYS

Not Ready Error

. . . 1-5
• • 1-5

. 1-5
• 2-3

. 1-5

· D-l

Position~l parameters • • 2-18
Prompt • • • . •. .• • • 2-15
Provided software

CHKDSK.COM • • • . • •• 1-4
COHNAND. COM • • • • • • • • 1-4
CREF.EXE ••••..•••• 1-4
DEBUG.COM • 1-4
EDLIN.COM • • • • • 1-4
FILCOM.COM . • . • • • • . • 1-5
fORMAT.COM • •. • • 1-4 to 1-5
IO.SYS • •• • • • • 1-5
LIB.EXE •• • ••••• 1-5
LINK.EXE ••••...•.• 1-5
MASM.EXE • • • . . •• . 1-5
MSDOS.SYS ..••..••• 1-6
SYS.COM ••.•••.••. 1-6

-159-

Page Index-3

RENAME (synonym for REN)
Reserved sectors • • • •
Retry • • • • • • •

Sector Not Found Error •
Seek Error • • • •
Start-up • • . • • • • •
Syntax Notation • • • •
SYS.COM •••••••

Template •

Version number • •

• 3-17
• • • 2-3,
• • • 0-1

· 0-1
· . 0-1

• • • 1-6
• • • 1-7

• • 1-6

• • • 2-8

• 1-6

Wild card characters •
Write Fault Error ••.
Write Protect Error •••

• • 2-6
• 0-1

· . 0-1

-160-

3-14

(

(

Microsoft, Inc.
Microsoft Building

10700 Northup Way
Bellevue, WA 98004

utility
software
package
reference manual

for 8086 microprocessors

Information in this document is subject to change without notice and does not represent a
commitment on the part of Microsoft, Inc. The software described in this document is furnished
under a license agreement or non-disclosure agreement. The software may be used or copied only in
accordance with the terms of the agreement. It is against the law to copy any part of The Utility
Software Package on cassette tape, disk, or any other medium for any purpose other than the
purchaser'S personal use.

Copyright © Microsoft, Inc., 1981 .

LIMITED WARRANTY

MICROSOFT, Inc. shall have no liability or responsibility to purchaser or to any other person or entity with
respect to any liability, loss or damage caused or alleged to be caused directly or indirectly by this product,
including but not limited to any interruption of service, loss of business or anticipatory profits or
consequential damages resulting from the use or operation of this product. This product will be exchanged
within twelve months from date of purchase if defective in manufacture. labeling, or packaging, but except
for such replacement the sale or subsequent use of this program is without warranty or liability.

THE ABOVE IS A LIMITED WARRANTY AND THE ONLY WARRANTY MADE BY
MICROSOFT, INC. ANY AND ALL WARRANTIES FOR MERCHANTABILITY AND/OR
FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

To report software bugs or errors in the documentation, please complete and return the Problem
Report at the back of this manual.

The Utility Software Package, MACRO-86, MS-LINK, MS-LIB, MS-CREF, and MS-DOS
lincluding the names of its constituent programs EDLIN and DEBUG) are trademarks of
Microsoft, Inc.

8407-100
Part Number 14F06A

-162-

(

(Package Contents

1 diskette, with the following files:
MASM.EXE
LINK.EXE
LIB.EXE
CREF.EXE

1 binder with 4 manuals
MS-LINK Linker Utility Manual
MS-LIB Library Manager Manual
MS-CREF Cross Reference Facility Manual

System Requirements

Each utility requires different amounts of memory.

MS-LINK - 54K bytes of memory minimum:
44K bytes for code
10K bytes for run space

MS-LIB - 38K bytes of memory minimum:
28K bytes for code
10K bytes for run space

MS-CREF - 24K bytes of memory minimum:
14K bytes for code
10K bytes for run space

1 disk drive
1 disk drive if and only if output is sent to the
same physical diskette from which the input was
taken. None of the utility programs in this
package allow time to swap diskettes during
operation on a one-drive configuration. Therefore,
two disk drives is a more practical configuration.

-163-

(

c

c.

(Microsoft

Welcome to the Microsoft family of products.

Microsoft, Inc. is recognized as the leader in microcomputer
software. Microsoft BASIC interpreter, in its several
versions, has become the standard hi9h-level programming
language used in microcomputers. Microsoft, Inc. continues
to supply consistently high-quality software which sets the
standard for software quality for all types of users.

In addition to the Utility Software Package and Microsoft
BASIC interpreter, Microsoft sells other full-feature
language compilers, language subsets, and operating system
products. Microsoft offers a "family" of software products
that both look alike from one product to the next, and can
be used together for effective program development.

For more information about other
contact:

Microsoft, Inc.
10700 Northup Way
Bellevue, WA 98004
(206) 828-8080

-165-

Microsoft products,

(

c

~ Contents

General Introduction

Major Features
Using These Manuals
Syntax Notation
Learning More About Assembly Language Programming
Overview of Program Development

MS-LINK Linker Utility

Introduction

Chapter 1

Chapter 2

Index for MS-LINK

Running MS-LINK

Error Messages

-167-

MS-LIB Library Manager

Introduction

Chapter 1

Chapter 2

Index for MS-LIB

Running MS-LIB

Error Messages

MS-CREF Cross Reference Facility

Introduction

Chapter 1

Chapter 2

Chapter 3

Index for MS-CREF

Running MS-CREF

Error Messages

Format of MS-CREF Compatible Files

-168-

(

GENERAL INTRODUCTION

The Microsoft Utility Software Package includes four utility
programs used for developing assembly language programs. In
addition, the MS-LINK Linker Utility is used with all of
Microsoft's 16-bit language compilers.

Major Features

MS-LINK Linker Utility

MS-LINK is a virtual linker, which can link programs
that are larger than available memory

MS-LINK produces relocatable executable object code.

MS-LINK knows how to handle user-defined overlays.

MS-LINK can perform multi~le library searches, using a
dictionary library search method.

MS-LINK prompts the user for input and output modules
and other link session parameters.

MS-LINK can be run with an automatic response file to
answer the linker prompts.

-169-

MS-LIB Library Manager

MS-LIB can add, delete, and extract modules in the
user's library of program files.

.MS-LIB prompts the user for inr;mt and output file and
module names.

MS-LIB can be run with an automatic response file to
answer the library prompts.

MS-LIB produces a cross reference of symbols in the
library modules.

MS-CREF Cross Reference Facility

MS-CREF produces a cross reference listing of all
symbolic names in the source program, giving both the
source line number of the definition and the source line
numbers of all other references to them.

Using These Manuals

These manuals are designed to be used as a set and
individually. Each manual is mostly self-contained and
refers to the other manuals only at junctures in the
software. The Overview given below describes generally the
flow of program development from creating a source file
through program execution. The processes described in this
overview are echoed and expanded in overviews in each of the
three manuals.

- 170 -

(

(

refer to
MS-LINK

refer to
MS-CREF

refer to
MS-LIB

MACRO-86
Manual

M
M

MS-LINK
Manual

MS-CREF
Manual

S-LIB
anual

Each of the three manuals is used independently. References
between manuals reflect junctures in the software.

MACRO-86 output +S-LINK I
T
0

0 0 u
u u t
t t P
P P u
u u t

l t

.!MS-!IBI \
IMS-CREF I

-171-

Syntax Notation

The following notation is used throughout this manual in
descriptions of command and statement syntax:

[] Square brackets indicate that the enclosed entry is
optional.

< > Angle brackets indicate user entered data. When
the angle brackets enclose lower case text, the
user must type in an entry defined by the text;
for example, <filename>. When the angle brackets
enclose upper case text, the user must press the
key named by the text; for example, <RETURN>.

{} Braces indicate that the user has a choice between
two or more entries. At least one of the entries
enclosed in braces must be chosen unless the
entries are also enclosed in square brackets.

Ellipses indicate that an entry may be repeated as
many times as needed or desired.

CAPS Capital letters indicate portions of statements or
commands that must be entered, exactly as shown.

All other punctuation, such as commas, colons, slash marks,
and equal signs, must be entered exactly as shown.

-172-

(

(

User enters a value
here to replace the
"dummy" entry and
the angle brackets

~
CALL «parameter>

1 1

User has an option;
user may stop here,
or may enter more

r
Enter as many more
parameters as you
want, up to end of line

[,<parameter> •.•]) <RETURN> +---upper case

1 1
inside angle

I
brackets, press
this key Enter CAPS

exactly as
shown

Enter punctuation as shown

-173-

Learning More About Assembly Language Programming

These manuals explain how to use Microsoft's utility
Software Package, but they do not teach users how to program
in assembly language.

We assume that the user of The Utility Software Package will
have had some experience programming in assembly language.
If you do not have any experience, we suggest two courses:

1. Gain some experience on a less
assembler.

sophisticated

2. Refer to any or all of the following books for
assistance:

Morse, Stephen P. The 8086 Primer. Rochelle Park,
NJ: Hayden Publishing Co., 1980.

Rector, Russell and George Alexy. The 8086 Book.
Berkeley, CA: Osbourne/McGraw-Hill, 1980.

The 8086 Family User's Manual.
Intel Corporation, 1979.

8086/8087/8088 Macro
Manual. Santa
1980.

Assembly
Clara, CA:

NOTE

Santa Clara, CA:

Language Reference
Intel Corporation,

Some of the information in
these books was based on
preliminary data and may not
reflect the final functional
state. Information in your
Microsoft manuals was based on
Microsoft's development of its
16-bit software for the 8086
and 8088.

-174-

(

~ Overview of Program Development

This overview describes generally
development. Each step is described
product manuals. The numbers in the
numbers in the facing diagram.

the steps of program
fully in the individual
descriptions match the

1. Use EDLIN (the editor in Microsoft's MS-DOS), or
other 8086 editor compatible with your operating
system, to create an 8086 assembly language source
file. Give the source file the filename extension
.ASM (ASMRO-86 recognizes .ASM as default).

2. Assemble the source file with MACRO-86, which
outputs an assembled object file with the default
filename extension .OBJ (2a). Assembled files, the
user's program files (2b), can be linked together
in step 3.

MACRO-86 (optionally) creates two types of listing
file:

(2c)a normal listing file which shows assembled
code with relative addresses, source
statements, and full symbol table;

(2d)a cross-reference file, a special file with
. special control characters that allow MS-CREF

(2e) to create a list showing the source line
number of every symbol's definition and all
references to it (2f). When a cross reference
file is created, the normal listing file (with
the .LST extension) has line number placed into
it as references for line numbers following
symbols in the cross reference listing.

3. Link one or more .OBJ modules together, using
MS-LINK, to produce an executable object file with
the default filename extension .EXE (3a).

While developing your program, you may want to
create a library file for MS-LINK to search to
resolve external references. Use MS-LIB (3b) to
create user library file(s) (3c) from existing
library files (3c) and/or user program object files
(2b) •

4. Run your assembled and linked program ,the .EXE
file (3a), under MS-DOS, or your operating system.

-175-

(
1. EDLIN

(2c)

2. MACRO-86

____ (_2_d ..) S~----l
c:§J ..

(2b) (2a)
(2e) IMS-tFI

(2f)

3. MS-LINK
(3b)

MS-LIB

(3a)

(3c)

4. l

-176-

(

(
Microsoft, Inc.

Microsoft Building
10700 Northup Way
Bellevue, WA 98004

MS-LINK
linker
utility

Information in this document is subject to change without notice and does not represent a
commitment on the part of Microsoft, Inc. The software described in this document is furnished
under a license agreement or non-disclosure agreement. The software may be used or copied only in
accordance with the terms of the agreement. It is against the law to copy The MS-LINK Linker
Utility on cassette tape, disk, or any other medium for any purpose other than personal convenience.

© Microsoft, Inc., 1981

LIMITED WARRANTY

MICROSOFT, Inc. shall have no liability or responsibility to purchaser or to any other person or entity with
respect to any liability, loss or damage caused or alleged to be caused directly or indirectly by this product.
including but not limited to any interruption of service. loss of business or anticipatory profits or
consequential damages resulting from the use or operation of this product. This product will be exchanged
within twelve months from date of purchase if defective in manufacture. labeling. or packaging. but except
for such replacement the sale or subsequent use of this program is without warranty or liability.

THE ABOVE IS A LIMITED WARRANTY AND THE ONLY WARRANTY MADE BY
MICROSOFT. ANY AND ALL WARRANTIES FOR MERCHANTABILITY AND/OR FIT­
NESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

To report software bugs or errors in the documentation, please complete and return the Problem
Report at the back of this manual.

MS-LINK, MACRO-86, MS-LIB, MS-CREF, and MS-DOS (and its constituent program names
EDLIN and DEBUG) are trademarks of Microsoft, Inc.

8407B-IOO-Ol

-178-

(

~ System Requirements

The MS-LINK Linker Utility requires:

49K bytes of memory minimum:
40K bytes for code and data
10K bytes for run space

1 disk drive
1 disk drive if and only if output is sent to the
same physical diskette from which the input was
taken. MS-LINK does not allow time to swap
diskettes during operation on a one-drive
configuration. Therefore, two disk drives is a
more practical configuration.

-179-

(

c

c

Contents

Introduction

Features and Benefits of MS-LINK
Overview of MS-LINK Ope·ration 4

Chapter 1

1.1
1.1.1

1.1.2
1.1. 3
1.2
1.3

Chapter 2

Index

Definitions 5
Segment 5
Class 5
Group 5

How MS-LINK Combines and Arranges Segments 6
Files That MS-LINK Uses 9

Input Files 9
Output Files 9
VM.TMP File 10

RUNNING MS-LINK

Invoking MS-LINK 1-1
Method 1: LINK 1-2
Summary of Prompts 1-2
Summary of Switches 1-3
Special Command Characters

+ - continuation 1-3
1-3

: - default remaining prompts
Contro1-C - program termination

1-4

Method 2: LINK <fi1enames></switches>
Method 3: LINK @<fi1espec> 1-6

Command Prompts 1-8
Switches 1-11

ERROR MESSAGES6

-181-

1-4
1-5

(

c

(

(

INTRODUCTION

Features and Benefits of MS-LINK

MS-LINK is a relocatable linker designed to link together
separately produced modules of 8086 object code. The object
modules must be 8086 files only.

MS-LINK is user-friendly. For all the necessary and
optional commands, MS-LINK p~ompts the user. The user's
answers to the prompts are the commands for MS-LINK.

The output file from MS-LINK (Run file) is not bound to
specific . memory addresses and, therefore, can be loaded and
executed at any convenient address by the user's operating
system.

MS-LINK uses a dictionary-indexed library search method,
which substantially reduces link time for sessions involving
library searches.

MS-LINK is capable of linking files totaling 384K bytes.

-183-

Page 4

Overview of MS-LINK Operation

MS-LINK combines several object modules into one relocatable
load module, or Run file.

As it combines modules, MS-LINK resolves external references
between object modules and can search multiple library files
for definitions for any external references left unresolved.

MS-LINK also produces a list file that shows external
references resolved and any error messages.

MS-LINK uses available memory as much as possible. When
available memory is exhausted, MS-LINK then creates a disk
file and becomes a virtual linker.

Compiler Assembler

MS-LINK

+--------+- ~--------~~------------.

up to 8 libraries
may be searched

used only if run
file is larqer

than memory

-184-

PUBLIC symbols
cross referenced

(

Page 5

~ Definitions

Three terms will a~pear in some of the error messages listed
in Chapter 2. These terms describe the underlying
functioning of MS-LINK. An understanding of the concepts
that define these terms provides a basic understanding of
the way MS-LINK works.

1. Segment
A Segment is a contiguous area of memory up to
64K bytes in length. A Segment may be located
anywhere in 8086 memory on a "paragraph" (16
byte) boundary. The contents of a Segment are
addressed by a Segment-register/offset pair.

2. Group
A Group is a collection of Segments which fit
within 64K bytes of memory. The Segments are
named to the Group by the assembler, by the
compiler, or by you. The Group name is given
by you in the assembly language program. For
the high-level languages (BASIC, FORTRAN,
COBOL, Pascal), the naming is carried out by
the compiler.

The Group is used for addressing Segments in
memory. Each Group is addressed by a single
Segment register. The Segments within the
Group are addressed by the Segment register
plus an offset. MS-LINK checks to see that the
object modules of a Group meet the 64K byte
constraint.

3. Class
A Class is a collection of Segments. The
naming of Segments to a Class controls the
order and relative placement of Segments in
memory. The Class name is given by you in the
assembly language program. For the high-level
languages (BASIC, FORTRAN, COBOL, Pascal), the
naming is carried out by the compiler. The
Segments are named to a Class at compile time
or assembly time. The Segments of a Class are
loaded into memory contiguously. The Segments
are ordered within a Class in the order MS-LINK
encounters the Segments in the object files.
One Class precedes another in memory only if a
Segment for the first Class precedes all
Segments for the second Class in the input to
ME-LINK. Classes may be loaded across 64K byte
boundaries. The Classes will be divided into
Groups for addressing.

-185-

Page 6

How MS-LINK Combines and Arranges Segments

MS-LINK works with four combine types, which are declared in
the source module for the assembler or compiler: privQte,
public, stack, and common. (The memory combine typ~
available in Microsoft's MACRO-86 is treated the same as
public. MS-LINK does not automatically place memory combine
type as the highest segments.)

MS-LINK combines segments for these combine types as
follows:

Private

Public

EJ

Common

[9 0

Private segments are IQaded separately
and remain separate. They may be
physically contiguous but not logically,
even if the segments have the same name.
Each private segment has its own base
address.

Public segments of the same name and
class name are loaded contiguously.
Offset is from beginning of first segment
loaded through last segment loaded.
There i~ only one base address for all
public segments of the same name and
class name. (Combine types stack and
memory are treated the same as public.
However, the Stack Pointer is set to the
first address of the first stack segment.)

Common segments of the same name and
class name are loaded overla~ping on~
another. There is only one base address
for all common seqments of the same name.
The length of the common area is the
length of the longest segment.

-186-

(

(

Page 7

Placing segments in a Group in the assembler provides offset
addressinq of items from a single base address for all
segments in that Group.

DS:DGROUP---+XXXXOH~ ______ ~O -- relative offset
A

Any number of l-----
other segments B
may intervene ---~'--.. ___ FOO An operand of

DGROUP:FOO between segments C
of a group. Thus,
the offset of FOO
may. be greater than
the size of segments
in group combined, but
no larger than 64K.

Segments are grouped by declared
all the segments belonging
encountered, then loads all the
name encountered, and so on
loaded.

If your proqram contains:

A SEGMENT 'FOO'
B SEGMENT 'BAZ'
C SEGMENT 'BAZ'
D SEGMENT' ZOO'
E SEGMENT 'FOO'

returns the offset of
FOO from the beginning
of the first segment of

DGROUP (segment A here)

class names. MS-LINK loads
to the first class name

segments of the next class
until all classes have been

They will be loaded as:

'FOO'
A
E

'BAZ'
B
C

'ZOO'
D

-187-

Page 8

If you are writinq assembly language programs, you can C-
exercise control over the ordering of classes in memory by
writing a dummy module and listing it first after the
MS-LINK Object Modules prompt. The dummy module declares
segments into classes in the order you want the classes
loaded.

WARNING

Do not use this method with
BASIC, COBOL, FORTRAN, or
Pascal programs. Allow the
compiler and the linker to
perform their tasks in the
normal way.

For example:

A SEGMENT 'CODE'
A ENDS
B SEGMENT 'CONST'
B ENDS
C SEGMENT 'DATA'
C ENDS
D SEGMENT STACK 'STACK'
D ENDS
E SEGMENT 'MEMORY'
E ENDS

You should be careful to declare all classes to be used in
your program in this module. If you do not, you lose
absolute control over the ordering of classes.

Also, if you want Memory combine type to be loaded as the
last segments of your program, you can use this method.
Sim?ly add MEMORY between SEGMENT and 'MEMORY' in the E
segment line above. Note, however, that these segments are
loaded last only because you imposed this control on them,
not because of any inherent capability in the linker or
assembler operations.

-188-

Page 9

~ Files That MS-LINK Uses

MS-LINK works with one or more input files, produces two
output files, may create ' a virtual memory file, and may be
directed to search one to eight library files. For each
type of file, the user may give a three part file
specification. The format for MS-LINK file specifications
is:

where:

drv:filename.ext

drv: is the drive designation. Permissible drive
designations for MS-LINK are A: through 0:. The
colon is always required as part of the drive
designation.

filename is any legal filename of one to eight
characters •

• ext is an one to three character extension to the
filename. The period is always required as part of
the extension.

Input Files

If no extensions are given in the input (Object) file
specifications, MS··LINK recognizes by default:

File

Object
Library

Output Files

Default Extension

.OBJ

.LIB

MS-LINK appends to the output (Run and List) files the
following default extensions:

File

Run
List

Default Extension

.EXE

.MAP
(may not be overridden)
(may be overridden)

-189-

Page 10

VM.TMP File

MS-LINK uses available memory for
files to be linked create an
available memory, MS-LINK creates
it VM.TMP. If MS-LINK needs to
the message:

the link session. If the
output file that exceeds

a temporary file and names
create VM.TMP, it displays

VM.TMP has been created.
Do not change diskette in drive, <drv:>

Once this message is displayed, the user must not remove the
diskette from the default drive until the link session ends.
If the diskette is removed, the operation of MS-LINK is
unpredictable, and MS-LINK might return th,e error message:

MS-LINK
VM.TMP
the Run
deleted

Unexpected end of file on VM.TMP

uses VM.TMP as a virtual memory. The contents of
are subsequently written to the file named following
File: prompt. VM.TMP is a working file only and is
at the end of the linking session.

WARNING

Do not use VM.TMP as a file
name for any file. If the
user has a file named VM.TMP
on the default drive and
MS-LINK requires the VM.TMP
file, MS-LINK will delete the
VM.TMP on disk and create a
new VM.TMP. Thus, the
contents of the previous
VM.TMP file will be lost.

-190-

(

c

CHAPTER 1

RUNNING MS-LINK

Running MS-LINK requires two types of commands: a command
to invoke MS-LINK and answers to command prompts. In
addition, six switches control alternate MS-LINK features.
Usually, the user will enter all the commands to MS-LINK on
the terminal keyboard. ' As an option, answers to the command
prompts and any switches may be contained in a Response
File. Some special command characters are provided to
assist the user while entering linker commands.

1.1 INVOKING MS-LINK

MS-LINK may be invoked three ways. By the first method, the
user enters the commands as answers to individual prompts.
By the second method, the user enters all commands on the
line used to invoke MS-LINK. By the third method, the user
creates a Response File that contains all the necessary
commands.

Summary of Methods to invoke MS-LINK

Method 1 LINK

Method 2 LINK <filenames> [/switches]

Method 3 LINK @<filespec>

-191-

RUNNING MS-LINK Page 1-2

1.1.1 Method 1: LINK

Enter:

LINK

MS-LINK will be loaded into memory. Then, MS-LINK returns a
series of four text prompts that appear one at a time. The
user answers the prompts as commands to MS-LINK to perform
specific tasks.

At the end of each line, you may enter one or more switches,
each of which must be preceded by a slash mark. If a switch
is not included, MS-LINK defaults to not performing the
function described for the switches in the chart below.

The command prompts are summarized here and described in
more detail in Section 2.2, COMMAND PROMPTS. Following the
summary of prompts is a summary of switches, which are
described in more detail in Section 2.3, Switches.

PROMPT RESPONSES

Object Modules [.OBJ] : List .OBJ files to be
linked, separated by a
b13nk spaces or plus signs
(+) • If plus sign is last
character entered, prompt
will reappear. (no
default: response
required)

Run File [Object-file.EXE] : List filename for
executable object code.
(default:
first-Object-filename.EXE)

List File [Run-file.MAP] : List filename for listing
(default: RUN filename)

Libraries [] : List filenames to be
searched, separated by
blank spaces or plus signs
(+) • If plus sign is last
character entered, prompt
will reappear.
(default: no search)

-192-

(

RUNNING MS-LINK Page 1-3

SWITCH ACTION

/DSALLOCATE Load data at high end of Data Segment.
Required for Pascal and FORTRAN
programs.

/HIGH Place Run file as high as possible in
memory. 'Do not use with Pascal or
FORTRAN programs.

/LINENUMBERS Include line numbers in List file.

/MAP List all global symbols with
definitions.

/PAUSE Halt linker session and wait for
carriage return key.

/STACK:<number> Set fixed stack size in Run file.

Command Characters

MS-LINK provides three command characters.

+ Use the plus sign (+) to separate entries and to
extend the current physical line following the
Object Modules and Libraries prompts. (A blank
space may be used to separate object modules.) To
enter a large number of responses (each which may
also be very long), enter an plus sign/carriage
return at the end of the physical line (to extend
the logical line). If the plus sign/carriage
return is the last entry following these two
prompts, MS-LINK will prompt the user for more
modules names. When the Object Modules or
Libraries prompt appears again, continue to enter
responses. When all the modules to be linked have
been listed, be sure the response line ends with a
module name and a carriage return and not a plus
sign/carriage return.

Example:

Object Modules [.OBJ]: FUN TEXT TABLE
CARE+<CR>
Object Modules [.OBJ]:
FOO+FLIPFLOP+JUNQUE+<CR>
Object Modules [.OBJ]: CORSAIR<CR>

-193-

RUNNING MS-LINK Page 1-4

Use a single semicolon (;) followed immediately by
a carriage return at any time after the first
prompt (from Run File on) to select default
responses to the remaining prompts. This feature
saves time and overrides the need to enter a series
of carriage returns.

NOTE

Once the semicolon has been entered, the
user can no longer respond to any of the
prompts for that link session. Therefore,
do not use the semicolon to skip over some
prompts. For this, use carriage return.

Example:

Object Modules [.OBJ]: FUN TEXT TABLE CARE<CR>
Run Module [FUN.EXE]: ;<CR>

The remaining prompts will not appear, and
MS-LINK will use the default values (including
FUN.MAP for the List File) •

Control-C Use Control-C at any time to abort the link
session. If you enter an erroneous response, such
as the wrong filename or an incorrectly spelled
filename, you must press Control-C to exit MS-LINK
then reinvoke MS-LINK and start over. If the error
has been typed but not entered, vou may delete the
erroneous characters, but for that line only.

-194-

(

(

RUNNING MS-LINK Page 1-5

1.1.2 Method 2: LINK <filenames> [/switches]

Enter:

LINK <object-list>,<runfile>,<listfile>,<lib-list>
[/swi tch •••]

The entries following LINK are responses to the
command prompts. The entry fields for the
different prompts must be separated by commas.

where: object list is a list of object modules, separated
by plus signs

runfile is the name of the file to receive the
executable output

listfile is the name of the file to receive the
listing

lib list is a list of library modules to be -- ---searched

Iswitch are optional switches, which may be placed
following any of the response entries (just before
any of the commas or after the <lib list>, as
shown) •

To select the default for a field, simply enter a
second comma without spaces in between (see the
example below).

Example

LINK FUN+~EXT+TABLE+CARE/P/M"FUNLIST,COBLIB.LIB

This example causes MS-LINK to be loaded, then
causes the object modules FUN.OBJ, TEXT.OBJ,
TABLE.OBJ, and CARE.OBJ to be loaded. MS-LINK then
oauses (caused by the IP switch). When the user
presses any key, MS-LINK links the object modules,
produces a global symbol map (the 1M switch),
defaults to FUN.EXE run file, creates a list file
named FUNLIST.MAP, and searches the library file
COBLIB.LIB.

-195-

RUNNING MS-LINK Page 1-6

1.1.3 Method 3: LINK @<filespec>

Enter:

LINK @<filespec>

where: filespec is the name of a Response File. A
Response File contains answers to the MS-LINK
prompts (shown under method 1 for invoking), and
may also contain any of the switches. Method 3
permits the user to conduct the MS-LINK session
without interactive (direct) user responses to the
MS-LINK prompts.

Before using
the user must
File.

IMPORTANT

method
first

3 to invoke MS-LINK,
create the Response

A Response File has text lines, one for each
prompt. Responses must appear in the same order as
the command prompts appear.

Use switches and Special Command Characters in the
Response File the same way as they are used for
responses entered on the terminal keyboard.

When the MS-LINK session begins, each prompt will
be displayed in turn with the responses from the
response file. If the response file does not
contain answers for all the prompts, either in the
form of filenames or the semicolon special
character or carriage returns, MS-LINK will, after
displaying the prompt which does not have a
response, wait for the user to enter a legal
response. When a legal response has been entered,
MS-LINK continues the link session.

-196-

(

(

RUNNING MS-LINK

Example:

FUN TEXT TABLE CARE
/PAUSE/MAP
FUNLIST
COBLIB.LIB

Page 1-7

This Response File will cause MS-LINK to load the
four Object modules •. MS-LINK will pause before
creating and producing a public symbol map to
permit the user to swap diskettes (see discussion
under /PAUSE in Section 2.3, Switches, before using
this feature). When the user presses any key, the
output files will be named FUN.EXE and FUNLIST.MAP,
MS-LINK will search the library file COBLIB.LIB,
and will use the default settings for the flags.

-197-

RUNNING MS-LINK Page 1-8

1.2 COMMAND PROMPTS

MS-LINK is commanded by entering responses to four text
prompts. When you have entered a response to the current
prompt, the next appears. When the last prompt has been
answered, MS-LINK begins linking automatically without
further command. When the link session is finished, MS-LINK
exits to the operating system. When the operating system
prompt is displayed, MS-LINK has finished successfully. If
the link session is unsuccessful, MS-LINK returns the
appropriate error message.

MS-LINK prompts the user for the names of object,· run, list
files, and for libraries. The prompts are listed in their
order of appearance. For prompts which can default to
preset responses, the default response is shown in square
brackets ([]) following the prompt~ The Object
Modules: prompt is followed by only a filename extension
default response because it has no preset filename response
and requires a filename from the user.

Object Modules [.OBJ]:
Enter a list of the object modules to be linked.
MS-LINK assumes by default that the filename
extension is .OBJ. If an object module has any

(

other filename extension, the extension must be C
given here. Otherwise, the extension may be
omitted.

Modules must be separated by plus signs (+).

Remember that MS-LINK loads Segments into Classes
in the order encountered (see Section 1.2,
DEFINITIONS). Use this information for setting the
order in which the object modules are entered.

- 198 -

(

RUNNING MS-LINK Page 1-9

Run File [First-Object-filename.EXE]:
The filename entered will be created to store the
Run (executable) file that results from the link
session. All Run files receive the filename
extension .EXE, even if the user specifies an
extension (the user specified extension is
ignored) •

If no response is entered to the Run File: prompt,
MS-LINK uses the first filename entered in response
to the Object Modules: prompt as the RUN filename.

Example:

Run File [FUN.EXE]: B:PAYROLL/P

This response directs MS-LINK to create the Run
file PAYROLL.EXE on drive B:. Also, MS-LINK will
pause, which allows the user to insert a new
diskette to receive the Run file.

List File [Run-Filename.MAP]:
----The List file contains an entry for each segment in

the input (object) modules. Each entry also shows
the offset (addressing) in the Run file.

The default response is the Run filename with the
default filename extension .MAP.

- 199 -

RUNNING MS-LINK

Librar ies []:
The valid responses are one to eight
filenames or simply a carriage return. (A
return only means no library search.)
files must have been created by a library
MS-LINK assumes by default that the
extension is .LIB for library files.

Page 1-10

library
carriage
Library

utility.
filename

Library filenames must be separat~d by blank spaces
or plus signs (+).

MS-LINK searches the library files in the order
listed to resolve external references. When it
finds the module that defines the external symbol,
MS-LINK processes the module as another object
module.

If MS-LINK
diskettes
message:

cannot
in the

find
disk

a library
drives, it

Cannot find library <library-name>
Enter new drive letter:

file on
returns

the
the

Simply press the letter for the drive designation
(for example B) •

MS-LINK does not search within each library file
sequentially. MS-LINK uses a method called
dictionary indexed library search. This means that
MS-LINK finds definitions for external references
by index access rather than searching from the
beginning of the file to the end for each
reference. This indexed search reduces
substantially the link time for any sessions
involving library searches.

-200-

(

RUNNING ro1S-LINK Page 1-11

1.3 SWITCHES

The six switches control alternate linker functions.
Switches must be entered at the end of a prompt response,
regardless of which method is used to invoke MS-LINK.
Switches may be grouped at the end of anyone of the
responses, or may be scattered at the end of several. If
more than one switch is entered at the end of one response,
each switch must be preceded by the slash mark (I).

All switches may be abbreviated, from a single letter
through the whole switch name. The only restriction is that
an abbreviation must be a sequential sub-string from the
first letter through the last entered; no gaps or
transpositions are allowed. For example:

Legal Illegal

ID IDSL
IDS IDAL
IDSA
IDSALLOCA

IDLC
/DSALLOCT

IDSALLOCATE
Use of the IDSALLOCATE switch directs MS-LINK to
load all data (DGroup) at the high end of the Data
Segment. Otherwise, MS-LINK loads all data at the
low end of the Data Segm~nt. At runtime, the DS
pointer is set to the lowest possible address and
allows the entire DS segment to be used. Use of
the IDSALLOCATE switch in combination with the
default load low (that is, the IHIGH switch is not
used), permits the user application to allocate
dynamically any available memory below the area
specifically allocated within DGroup, yet to remain
addressable by the same DS pointer. This dynamic
allocation is needed for Pascal and FORTRAN
programs.

NOTE

The user's application program may
dynamically allocate up to 64K bytes (or
the actual amount available) less the
amount allocated within DGroup.

-201-

RUNNING MS-LINK Page 1-12

/HIGH
Use of the /HIGH switch causes MS-LINK
Run image as high as possible
Otherwise, MS-LINK places the Run file
possible.

IMPORTANT

to place the
in memory.
as low as

Do not use the /HIGH switch with Pascal or
FORTRAN programs.

/LINENUMBERS

/MAP

Use of the /LINENUMBERS switch directs MS-LINK to
include in the List file the line numbers and
addresses of the source statements in the input
modules. Otherwise, line numbers are not included
in the List file.

NOTE

Not all compilers produce
that contain line number
these cases, of course,
include line numbers.

object modules
information. In
MS-LINK cannot

/MAP directs MS-LINK to list all public (global)
symbols defined in the input modules. If /MAP is
not given, MS-LINK will list only errors (which
includes undefined globals).

The symbols are listed alphabetically. For
symbol, MS-LINK lists its value and
segment:offset location in the Run file.
symbols are listed at the end of t he List file.

-202-

each
its
The

(

c

(

(

RUNNING MS-LINK Page 1-13

/PAUSE
The /PAUSE switch causes MS-LINK to pause in the
link session when the switch is encountered.
Normally, MS-LINK performs the linking session
without stop from beginning to end. This allows
the user to swap the diskettes before MS-LINK
outputs the Run (.EXE) file.

When MS-LINK encounters the /PAUSE switch, it
displays the message:

About to generate .EXE file
Change disks <hit any key>

MS-LINK resumes processing when the user presses
any key.

CAUTION

Do not swap the diskette which will receive
the List file, or the diskette used for the
VM.TMP file, if created.

/STACK:<number>
number represents anv positive numeric value (in
hexadecimal radix) up to 65536 byte~. If the
/STACK switch is not used for a link session,
MS-LINK calculates the necessary stack size
automatically.

If a value from 1 to 511 is entered, MS-LINK uses
512.

All compilers and assemblers should provide
information in the object modules that allow the
linker to compute the required stack size.

At least one object (input) module must contain a
stack allocation statement. If not, MS-LINK will
return a WARNING: NO STACK STATEMENT error message.

-203-

(

c

(

(

CHAPTER 2

ERROR MESSAGES

All errors cause the link session to abort. Therefore,
after the cause is found and corrected, MS-LINK must be
rerun.

ATTEMPT TO ACCESS DATA OUTSIDE OF SEGMENT BOUNDS, POSSIBLY
BAD OBJECT MODULE

Cause: probably a bad object file

BAD NUMERIC PARAMETER
Cause: numeric value not in digits

CANNOT OPEN TEMPORARY FILE
Cause: MS-LINK is unable to create the file VM.TMP

because the disk directory is full.
Cure: insert a new diskette. Do not change the

diskette that will receive the list.MAP file.

ERROR: DUP RECORD TOO COMPLEX
Cause: DUP record in assembly

complex.
Cure: simplify DUP record

program.

language module

in assembly

ERROR: FIXUP OFFSET EXCEEDS FIELD WIDTH

is too

language

Cause: an assembly language instruction refers to an
address with a short instruction instead of a
long instruction.

Cure: edit assembly language source and reassemble

INPUT FILE READ ERROR
Cause: probably a bad object file

-205-

ERROR MESSAGES Page 2-2

INVALID OBJECT MODULE
Cause: object module(s) incorrectlv formed or C-

incomplete (as when assembly was stopped in the
middle) •

SYMBOL DEFINED MORE THAN ONCE
Cause: MS-LINK found two or more modules that define a

single symbol name.

PROGRAM SIZE OR NUMBER OF SEGMENTS EXCEEDS CAPACITY OF
LINKER

Cause: the total size may not exceed 384K bytes and
the number of segments may not exceed 255

REQUESTED STACK SIZE EXCEEDS 64K
Cure: specify a size < 64K bytes with the /STACK

switch

SEGMENT SIZE EXCEEDS 64K
64K bytes is the addressing system limit.

SYMBOL TABLE CAPACITY EXCEEDED
Cause: very many, very long names entered:

approximately 25K bytes.

TOO MANY EXTERNAL SYMBOLS IN ONE MODULE

exceeding

The limit is 256 external symbols per module

TOO MANY GROUPS
The limit is 10 Groups

TOO MANY LIBRARIES SPECIFIED
The limit is 8.

TOO MANY PUBLIC SYMBOLS
The limit is 1024.

TOO MANY SEGMENTS OR CLASSES
The limit is 256 (Segments and Classes taken
together)

-206-

(

ERROR MESSAGES

UNRESOLVED EXTERNALS: <list>
The external symbols listed
module among the modules
specified.

VM READ ERROR

Page 2-3

have no defining
or libraries files

Cause: a disk problem; not MS-LINK caused.

WARNING: NO STACK SEGMENT
Cause: none of the obje~t modules specified contains a

statement allocating stack space, but the user
entered the /STACK switch.

WARNING: SEGMENT OF ABSOLUTE OR UNKNOWN TYPE
Cause: a bad object module or an attempt to link

modules MS-LINK cannot handle (e.g., an
absolute object module) .

WRITE ERROR IN TMP FILE
Cause: no more disk space remaining to expand VM.TMP

file

WRITE ERROR ON RUN FILE
Cause: usually, not enough disk space for Run file

-207-

(

c

c

INDEX

.EXE • • . • • • . 9, 1-9

. LIB . • 9

.MAP. • • . • ••.• 9,1-9

.OBJ • • . • • • • . . • • • • 9, 1-8

Class • . • . • • •• 5, 1-8
Command Characters • • • . . • 1-3

Contro1-C • • • . • • • • • 1-4
. 1-4

+ • • • • •• .•••• 1-3
Command Prompts

Libraries ••..• 1-2, 1-10
List File • .• •• 1-2, 1-9
Object Modules. . .•• 1-2, 1-8
Run File •.•••••••• 1-2, 1-9
Summary of • • . . • • • • • 1-2

Contro1-C (command character) 1-4

Drive designations . . • • . . 9

Filename extensions - default 9
.OBJ 9
• EXE • • . • . • • • . . • • 9
• MAP • • • • • • • •• • 9

Files that MS-LINK uses • 9

Group • 5

How MS-LINK combines and arranges segments 6

Invoking
Summary of Methods • • . . . 1-1

Overview of MS-LINK operation 4

Response File • 1-6

Segment • .• . ••..• 5, 1-8
Summary of methods to invoke . 1-1
Switches

MS-LINK
• 1-3

. . • • . • . 1-11
Summary of •
/DSALLOCATE
/HIGH • . .
/LINENUMBERS .
/MAP • • • •
/PAUSE •
/STACK .

· 1-12
. •• . 1-12

• • • . . 1-12
• . • . . 1-13
• • • • • 1-13

VM. TMP • . • · 10

-209-

; (command character)
+ (command character)

1-4
. 1-3

-210-

(

(

Microsoft, Inc.
Microsoft Building
10700 Northup Way
Bellevue, WA 98004

MS-LIB
library
manager

Information in this document is subject to change without notice and does not represent a
commitment on the part of Microsoft, Inc. The software described in this document is furnished
under a license agreement or non-disclosure agreement. The software may be used or copied only in
accordance with the terms of the agreement. It is against the law to copy the MS-LIB Library
Manager on cassette tape, disk, or any other medium for any purpose other than the purchaser'S
personal use.

Copyright © Microsoft, Inc., 1981

LIMITED WARRANTY

MICROSOFT, Inc. shall have no liability or responsibility to purchaser or to any other person or entity with
respect to any liability, loss or damage caused or alleged to be caused directly or indirectly by this product.
including but not limited to any interruption of service. loss of business or anticipatory profits or
consequential damages resulting from the use or operation of this product. This product will be exchanged
within twelve months from date of purchase if defective in manufacture. labeling. or packaging. but except
for such replacement the sale or subsequent use of this program is without warranty or liability.

THE ABOVE IS A LIMITED WARRANTY AND THE ONLY WARRANTY MADE BY
MICROSOFT, INC. ANY AND ALL WARRANTIES FOR MERCHANTABILITY AND/OR
FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

To report software bugs or errors in the documentation, please complete and return the Problem
Report at the back of this manual.

MS-LIB, MS-LINK, MACRO-S6, MS-CREF, and MS-DOS (and its constituent program names
EDLIN and DEBUG) are trademarks of Microsoft, Inc.

8407C-100-00

-212-

(

~ System Requirements

The MS-LIB Library Manager requires:

38K bytes of memory minimum:
28K bytes for code
10K bytes for run space

1 disk drive
1 disk drive if and only if output is sent to the
same physical diskette from which the input was
taken. None of the utility programs in this
package allow time to swap diskettes during
operation on a one-drive configuration. Therefore,
two disk drives is a more practical configuration.

-213-

(

(

(

(Contents

Introduction

Features and Benefits of MS-LIB
Overview of MS-LIB Operation 4

Chapter 1

1.1
1.1.1

1.1.2

1.1.3
1.2
1.3

Chapter 2

Index

RUNNING MS-LIB

Invoking MS-LIB 1-1
Method 1: LIB 1-2
Summary of Command Prompts 1-2
Summary of Command Characters 1-2
Method 2: LIB <library><operations>,

<listing>
Method 3: LIB @<fi1espec> 1-5

Command Prompts 1-7
Command Charac~ers 1-9

+ - append 1-9
delete 1-9

* - extract 1-10
; - default rema1n1ng prompts
& - continuation 1-11
Contro1-C - program abort 1-11

ERROR MESSAGES

-215-

1-10

1-3

(

(

(

INTRODUCTION

Features and Benefits

MS-LIB creates and modifies library files that are used with
Microsoft's MS-LINK Linker Utility. MS-LIB can add object
files to a library, delete modules from a library, or
extract modules from a library and place the extracted
modules into separate object files.

MS-LIB provides a means of creatinq either general or
special libraries for a variety of programs or for specific
programs only. with MS-LIB you can create a library for a
language compiler, or vou can create a library for one
program only, which would permit very fast linking and
possibly more efficient execution.

You can modify individual modules within a library by
extracting the modules, making changes, then adding the
modules to the library again. You can also replace an
existing module with a different module or with a new
version of an existing module.

The command scanner in MS-LIB is the same as the one used in
Microsoft's MS-LINK, MS-Pascal, MS-FORTRAN, and other l6-bit
Microsoft products. If you have used any of these products,
using MS-LIB is familiar to you. Command syntax is
straiqhtforwarrt, and MS-LIB prompts you for any of the
commands it needs that you have not supplied. There are no
surprises in the user interface.

-217-

Page 4

Overview of MS-LIB Operation

MS-LIB performs two basic actions: it deletes modules from
a library file, and it changes object files into modules and
appends them to a library file. These two actions underlie
five library manager functions:

delete a module

extract a module and place it in a separate object
file

append an object file as a module of a library

replace a module in the library file with a new
module

create a library file

During each library session, MS-LIB first deletes or
extracts modules, then appends new ones. In a single
operation, MS-LIB reads each module into memory, checks it
for consistency, and writes it back to the file. If you
delete a module, MS-LIB reads in that module but does not
write it back to the file. When MS-LIB writes back the next
module to be retained, it places the module at the end of
the last module written. This procedure effectively "closes
up" the disk space to keep the library file from growing
larger than necessary. When MS-LIB has read through the
whole library file, it apends any new modules to the end of
the file. Finally, MS-LIB creates the index, which MS-LINK
uses to find modules and symbols in the library file, and
outputs a cross reference listing of the PUBLIC symbols in
the library, if you request such a listing. (Building the
library index may take some extra time, up to 20 second in
some cases.)

For example:

LIB PASCAL+HEAP-HEAP;

first deletes the library module HEAP from the library file,
then adds the file HEAP.OBJ as the last module in the
library. This order of execution prevents confusion in
MS-LIB when a new version of a module replaces a version in
the library file. Note that the replace function is simply
the delete-append functions in succession. Also note that
you can specify delete, append, or extract functions in any
order; the order is insignificant to the MS-LIB command
scanner.

-218-

(

c

Consistency
Check only

Delete
Module Ci
Module D
written to
space of
Module C

Append
object file
E.OBJ as new
Module E at
end of
library file

Page 5

MS-LIB [8-g-8-D

'T---
I

1..--1-·r----=-(-=1-1-
s]J MS-LIB [EI-g-c/D

1-
I

MS-LIB [EIa-D

j--
I

+)

-219-

Extract
Module E:
place in a
separate
object file:
return to lib

~~*
~

Consistency
Check, then
output a
cross
reference
listing of
PUBLIC
symbols

rarv

Page 6

(

~----------~*~--------------~

MS-LIB [aa-g-E

r---
I

I I
MS-LIB [~=a=E}I]

l

(

-220 -

(

CHAPTER 1

RUNNING MS-LIB

Running MS-LIB requires two types of commands: a command to
invoke MS-LIB and answers to command prompts. Usually you
will enter all the commands to MS-LIB on the terminal
keyboard. As an option, answers to the command prompts may
be contained in a Response File. Some special command
characters exist. Some are used as a required part of
MS-LIB commands. Others assist you while entering MS-LIB
commands.

1.1 INVOKING MS-LIB

MS-LIB may be invoked three ways. By the first method, you
enter the commands as answers to individual prompts. By the
second method, you enter all commands on the line used to
invoke MS-LIB. By the third method, you create a Response
File that contains all the necessary commands.

Summary of Methods to invoke MS-LIB

Method I LIB

Method 2 LIB <library><operations>,<listing>

Method 3 LIB @<filespec>

-221-

RUNNING MS-LIB Page 1-2

1.1.1 Method 1: LIB

Enter:

LIB

MS-LIB will be loaded into memory. Then, MS-LIB returns a
ser ies of three text prompts tha't appear one at a time. You
answer the prompts as commands to MS-LIB to perform specific
tasks.

The Command Prompts and Command Characters
here. The Command Prompts and Command
described fully in Sections 1.2 and 1.3.

are summarized
Characters are

Summary of Command Prompts

PROMPT RESPONSES

Library file: List filename of library to be
manipulated (default: filename
extension .LIB)

Operation: List command character(s) followed by
module name(s) or object filename(s)
(default action: no changes. default
object filename extension: .OBJ)

List file: List filename for a cross reference
listing file (default: NUL: no file)

Summary of Command Characters

Character Action

+ Append an object file as the last module

- Delete a module from the library

* Extract a module and place in an object file

. Use default responses to remaining prompts ,

& Extend current physical line; repeat command
prompt

Control-C Abort library session.

-222-

(

RUNNING r1S-LIB Page 1-3

1.1.2 Method 2: LIB <library><operations>,<listing>

Enter:

LIB <library><operations>,<listing>

The entries following LIB are responses to the
command prompts. The library and ooerations fields
and all operations entries must be separated by one
of the command characters plus, minus, and asterisk
(+, -, *). If a cross reference listing is wanted,
the name of the file must be separated from the
last operations entry by a comma.

where: library is the name of a library file. MS-LIB
assumes that the filename extension is .OBJ, which
you may override by specifying a different
extension. If the filename given for the library
field does not exist, MS-LIB will prompt you:

Library file does not exist. Create?

Enter Yes (or any response
create a new library file.
response not beginning with
session.

beginning with Y) to
Enter No (or any other

Y) to abort the library

ooerations is deleting a module, appending an
object file as a module, or extracting a module as
an object file from the library file. Use the
three command characters plus (+), minus (-), and
asterisk (*) to direct MS-LIB what to do with each
module or object file.

listing is the name of the file you want to receive
the cross reference listing of PUBLIC symbols in
the modules in the library. The list is compiled
after all module manipulation has taken place.

To select the default for remaining field(s), you
may enter the semicolon command character.

If you enter a Librarv filename followed
immediately by a semicolon, MS-LIB will read
through the library file and perform a consistency
check. No changes will be made to the modules in
the library file.

If you enter a Library filename followed
immediately by a comma and a List filename, MS-LIB
will perform its consistency check of the library
file, then produce the cross reference listing
file.

-223-

RUNNING MS-LIB Page 1-4

Exam?le

LIB PASCAL-HEAP+HEAP:

This example causes MS-LIB to delete the module
HEAP from the library file PASCAL. LIB, then append
the object file HEAP.OBJ as the last module of
PASCAL. LIB (the module will De named HEAP) •

If you have many operations to perform during a
library session, use the a~; rsand (&) command
character to extend the line so that you can enter
additional object filenames and module names. Be
sure to always include one of the command
characters for operations (+, -, *) before the name
of each module or object filename.

Example

LIB PASCAL<CR>

causes MS-LIB to perform a consistency check of the
library file PASCAL. LIB. No other action is
performed.

Example

LIB PASCAL,PASCROSS.PUB

causes MS-LIB to ?erform a consistency check of the
library file PASCAL. LIB, then cutput a cross
reference listing file named PASCROSS.PUB.

-224-

c

(

RUNNING MS-LIB Page 1-5

1.1.3 Method 3: LIB @<filespec>

Enter:

LIB @<filespec>

where: filespec is the name of a Response File. A
Response File contains answers to the MS-LIB
prompts (summarized under method 1 for invoking and
described fully in Section 1.2). Method 3 permits
you to conduct the MS-LIB session without
interactive (direct) user responses to the MS-LIB
?rompts.

IMPORTANT

Before using method 3 to invoke MS-LIB, you
must first create the Response File.

A Response File has text lines, one for each
prompt. Responses must appear in the same order as
the command prompts appear.

Use Command Characters in the Response File the
same way as they are used for responses entered on
the terminal keyboard.

When the library session begins, each prompt will
be displayed in turn with the responses from the
response file. If the response file does not
contain answers for all the prompts, MS-LIB will
use the default responses (no changes to the
modules currently in the library file for
Operation, and no cross reference listing file
created) .

If yOU enter a Library filename followed
immediately by a semicolon, MS-LIB will read
through the library file and perform a consistency
check. No changes will be made to the modules in
the library file.

If you enter a Library filename then only a
carriage return of Operations then a comma and a
List filename, MS-LIB will ?erform its consistency
check of the library file, then produce the cross
reference listing file.

-225-

RUNNING MS-LIB

Example:

PASCAL<CR>
+CURSOR+HEAP-HEAP*FOIBLES<CR>
CROSSLST<CR>

Page 1-6

This Response File will cause MS-LIB to delete the
module HEAP from the PASCAL. LIB library file,
extract the module FOIBLES and place in an object
file named FOIBLES. OBJ , then·· append the obj ect
files CURSOR.OBJ and HEAP.OBJ as the last two
modules in the library. Then, MS-LIB will create a
cross reference file named CROSSLST.

-226-

(

(

RUNNING MS-LIB Page 1-7

1.2 COMMAND PROMPTS

MS-LIB is commanded by entering responses to three text
prompts. When you have entered your response to the current
prompt, the next appears. When the last prompt has been
answered, MS-LIB performs its library management functions
without further command. When the library session is
finished, MS-LIB exits to the operating system. When the
operating system prompt is displayed, MS-LIB has finished
the library session successfully. If the library session is
unsuccessful, MS-LIB returns the appropriate error message.

MS-LIB prompts you for the name of the library file, the
operation(s) you want to perform, and the name you want to
give to a cross reference listing file, if any.

Library file:
Enter the name of the library file that you want to
manipulate. MS-LIB assumes that the filename
extension is .LIB. You can override this
assumption by glvlng a filename extension when you
enter the library filename. Because MS-LIB can
manage only one library file at a time, only one
filename is allowed in response to this prompt.
Additional responses, except the semicolon command
character, are ignored.

If you enter a library filename and follow it
immediately with a semicolon command character,
MS-LIB will perform a consistency check only, then
return to the operating system. Any errors in the
file will be reported.

If the filename you enter does not exist, MS-LIB
returns the prompt:

Library file does not exist. Create?

You must enter either Yes or No, in either upper or
lower (or mixed) case. Actually, MS-LIB checks the
response for the letter Y as the first charcter.
If any other character is entered first, MS-LIB
terminates and returns to the operating system.

-227-

RUNNING MS-LIB Page 1-8

Ooeration:

List

Enter one of the three command characters for
manipulati~g modules (+, , *) , followed
immediately (no space) by the module name or the
object filename. Plus sign appends an object file
as the last module in the library file (see further
discussion under the description of plus sign
below). Minus sign deletes a module from the
library file. Asterisk extracts a module from the
library and places it in a separate object file
with the filename taken from the module name and a
filename extension .OBJ.

When you have a large number of modules to
manipulate (more than can be typed on one line),
enter an ampersand (&) as the last character on the
line. MS-LIB will repeat the Operation prompt,
which permits you to enter additional module names
and object filenames.

MS-LIB allows you to enter operations on modules
and object files in any order you want.

More information about order of execution and what
MS-LIB does with each module is given in the
descriptions of each Command Character.

file:
If yOU want a cross reference list of the PUBLIC
symbols in the modules in the library file after
your manipulations, enter a filename in which you
want MS-LIB to place the cross reference listing.
If you do not enter a filename, no cross reference
listing is generated (a NUL file).

The response to the List file prompt is a file
specification. Therefore, you can specify, along
with the filename, a drive (or device) designation
and a filename extension. The List file is not
given a default filename extension. If you want
the file to have a filename extension, you must
specify it when entering the filename.

The cross reference listing file contains two
lists. The first list is an alphabetical listing
of all PUBLIC symbols. Each symbol name is
followed by the name of its module. The second
list is an alphabetical list of the modules in the
library. Under each module name is an alphabetical
listing of the PUBLIC symbols in that module.

-228-

(

(

RUNNING MS-LIB Page 1-9

1.3 COMMAND CHARACTERS

MS-LIB provides six command characters: three of the
command characters are required in responses to the
Operation prompt~ the other three command characters
provide you additional helpful commands to MS-LIB.

+ The plus sign followed by an object filename
appends the object file as the last module in the
library named in reponse to the Library file
prompt. When MS-LIB sees the plus sign, it assumes
that the filename extension is .OBJ. You may
override this assumption by specifying a different
filename extension.

MS-LIB strips the drive designation and the
extension from the object file specification,
leaving only the filename. For example, if the
object file to be appended as a module to a library
is:

B:CURSOR.OBJ

a response to the Operation prompt of:

+B:CURSOR.OBJ

causes MS-LIB to strip off the B: and the .OBJ,
leaving only CURSOR, which becomes a module named
CURSOR in the library.

NOTE

The distinction between an object file and
a module (or object module) is that the
file possesses a drive designation (even if
it is default drive) and a filename
extension. Object modules possess neither
of these.

The minus sign followed by a module name deletes
that module from the library file. MS-LIB then
"closes up" the file space left empty by the
deletion. This cleanup action keeps the library
file from growing larger than necessary with empty
space. Remember that new modules, even replacement
modules are added to the end of the file, not
stuffed into space vacated by deleting modules.

-229-

RUNNING MS-LIB Page 1-10

*

. ,

~he asterisk followed by a module name extracts
that module from the library file and places it
into a separate object file. The module will still
exist in the library (extract means, essentially,
copy the module to a separate object file). The
module name is used as the filename. MS-LIB adds
the default drive designation and the filename
extension .OBJ. For example, if the module to be
extracted is:

CURSOR

and the current default disk drive is A:, a reponse
to the Operation prompt of:

*CURSOR

causes MS-tIB to extract the module named CURSOR
from the library file and to set it up as an object
file with the file specification of:

default drive:CURSOR.OBJ

(The drive designation and filename extension
cannot be overridden. You can, however, rename the
file, giving a new filename extension, and/or copy
the file to a new disk drive, giving a new filename
and/or filename extension.)

Use a single semicolon (i) followed immediately by
a carriage return at any time after responding to
the first prompt (from Library file on) to select
default responses to the remaining prompts. This
feature saves time and overrides the need to answer
additional prompts.

NOTE

Once the semicolon has been entered, you
can no longer res?ond to anv of the prompts
for that library session. Therefore, do
not use the semicolon to skip over some
prompts. For this, use carriage return.

Example:

Library file: FUN <CR>
Operation: +CURSORi<CR>

The remaininq prompt
MS-LIB will use the
reference file).

-230-

will not appear, and
default value (no cross

(

(

RUNNING MS-LIB Page 1-11

& Use the ampersand to extend the current physical
line. This command character will only be needed
for the Operation prompt. MS-LIB can perform many
functions during a single library session. The
number of modules you can append it limited only be
disk space. The number of module you can replace
or extract is also limited only by disk space. The
number of modules you can delete is limited only by
the number of modules in the library file.
However, the line length for a response to any
prompt is limited to the line length of your
system. For a large number of responses to the
Operation prompt, place an ampersand at the end of
a line. MS-LIB will display the Operation ?rompt
again, then enter more responses. You may use the
ampersand character as many times as you need. For
example:

Library file: FUN<CR>
Operation: +CURSOR-HEAP+HEAP*FOIBLES&
Operation: *INIT+ASSUME+RIDE~<CR>

MS-LIB will delete the module HEAP, extract the
modules FOIBLES and INIT (creating two files,
FOIBLES.OBJ and INIT.OBJ), then append the object
files CURSOR, HEAP, ASSUME, and RIDE. Note,
however, that MS-LIB allows you to enter your
Operation reponses in any order.

Control-C Use Control-C at any time to abort the library
session. If you enter an erroneous response, such
as the wrong filename or module name, or an
incorrectly spelled filename or module name, you
must press CTRL-C to exit MS-LIB then reinvoke
MS-LIB and start over. If the error has been typed
but not entered, you may delete the erroneous
characters, but for that line only.

-231 -

c

c

(

CHAPTER 2

ERROR MESSAGES

<symbol> is a multiply defined PUBLIC. Proceed?
Cause: two modules define the same public symbol.

The user is asked to confirm the removal of the
definition of the old symbol. A No response
leaves the library in an undetermined state.

Cure: Remove the PUBLIC declaration from one of
the object modules and recompile or reassemble.

Allocate error on VM.TMP
Cause: out of space

Cannot create extract file
Cause: no room in directory for extract file

Cannot create list file
Cause: No room in directory for library file

Cannot nest response file
Cause: '@filespec' in response (or indirect) file

Cannot open VM.TMP
Cause: no room for VM.TMP in disk directory

Cannot write library file
Cause: Out of space

Close error on extract file
Cause: out of space

Error: An internal error has occurred.
Contact Microsoft, Inc.

Fatal Error: Cannot open input file
Cause: Mistyped object file name

Fatal Error: Module is not in the library
Cause: trying to delete a module that is not in

the library

-233-

ERROR MESSAGES

Input file read error
Cause: bad object module or faulty disk

Invalid object module/library
Cause: bad object and/or library

Library Disk is full
Cause: no more room on diskette

Listing file write error
Cause: out of space

No library file specified
Cause: no response to Library File prompt

Read error on VM.TMP
Cause: disk not ready for read

Symbol table capacity exceeded

Page 2-2

Cause: too many public symbols (about 30K chars in
symbols)

Too many object modules
Cause: more than 500 object modules

Too many public symbols
Cause: 1024 public symbols maximum

Write error on library/extract file
Cause: Out of space

Write error on VM.TMP
Cause: out of s~ace

-234-

(

(INDEX

Command Characters · · · · 1-9
Contro1-C · · · · · · · 1-2,
Summary of · · · · · 1-2
& · · · · · · · · · · · · · 1-11 . · · · · · · · · · · · · · 1-10 ,
* · · · · · · · · · · · 1-10

· · · · · · · · · 1-9
+ · · · · · · · · · 1-9
& · · · · · · · · · 1-2 . · · · · · · · 1-2 ,
* · · · · · · · 1-2

· · · · · · · 1-2
+ · · · · · · · · · · · 1-2

Command Prompts · · · · · · · 1-7
Library file · · · · 1-2,
List file · · · · · · · · · 1-2,
Operation · · · · · · · 1-2,
Summary of · · · · · · · 1-2

Consistency check · · · · 1-3,
Contro1-C (command character) 1-2,
Creating a new library · · · · 1-3,

Error messages · · · · · · · · 2-1

Invoking
Method 1 • • . • • •• . 1-2
Method 2 • • . • . • 1-3
Method 3 . • • • • • 1-5
Summary of Methods • •• 1-1

Invoking MS-LIB . . • . • • • 1-1

1-11

1-7
1-8
1-8

1-5
1-11
1-7

Library file (command prompt) 1-2, 1-7
List file (command prompt) .• 1-2, 1-8

Method 1 .
Method 2 . . . • •
Method 3

· . . . 1-2
• • . • 1-3
• • • • 1-5

Operation (command prompt) .. 1-2, 1-8

Response File
Running MS-LIB •

· • 1-5
· . . . 1-1

Summary of methods to invoke . 1-1

& (command character)
; (command character)
* (command character)
- (command character)
+ (command character)

1-11
1-10
1-10
1-9

· 1-9

-235-

& (command character) · · · · 1-2 . (command character) · · · · 1-2 ,
* (command character) · · · · 1-2
- (command character) · · · · 1-2 (I + (command character) · · · · 1-2

-236-

(

Microsoft, Inc.
Microsoft Building

10700 Northup Way
Bellevue, WA 98004

microsoft
MS-CREF
cross reference facility
manual

Information in this document is subject to change without notice and does not represent a
commitment on the part of Microsoft, Inc. The software described in this document is furnished
under a license agreement or non-disclosure agreement. The software may be used or copied only in
accordance with the terms of the agreement. It is against the law to copy the MS-CREF Cross
Reference Facility on cassette tape, disk, or any other medium for any purpose other than the
purchaser's personal use.

Copyright © Microsoft, Inc., 1981

LIMITED WARRANTY

MICROSOFT, Inc. shall have no liability or responsibility to purchaser or to any other person or entity with
respect to any liability, loss or damage caused or alleged to be caused directly or indirectly by this product.
including but not limited to any interruption of service, loss of business or anticipatory profits or
consequential damages resulting from the use or operation of this product. This product will be exchanged
within twelve months from date of purchase if defective in manufacture. labeling. or packaging. but except
for such replacement the sale or subsequent use of this program is without warranty or liability.

THE ABOVE IS A LIMITED WARRANTY AND THE ONLY WARRANTY MADE BY
MICROSOFT, INC. ANY AND ALL WARRANTIES FOR MERCHANTABILITY AND/OR
FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

To report software bugs or errors in the documentation, please complete and return the Problem
Report at the back of this manual.

MS-CREF, MACRO-86, MS-LINK, MS-LIB, and MS-DOS (and its constituent program names
EDLIN and DEBUG) are trademarks of Microsoft, Inc.

8407D-IOO-OO

-238 -

(

(System Requirements

The MS-CREF Cross Reference Facility requires:

24K bytes of memory minimum:
14K bytes for code
10K bytes for run space

1 disk drive
1 disk drive if and only if output is sent to the
same physical diskette from which the input was
taken. None of the utility programs in this
packaqe allow time to swap diskettes during
operation on a one-drive configuration. Therefore,
two disk drives is a more practical configuration.

-239-

(

c

c

(Contents

Introduction

Chapter

Chapter

Chapter

Ii1dex

Features and Benefits of MS-CREF
Overview of MS-CREF Operation 4

1

1.1
1.2
1.2.1

1. 2.2

2

3

3.1

3.2

RUNNING MS-CREF

Creating a Cross Reference File 1-1
Invoking MS-CREF 1-2

Method 1: CREF 1-2
Command Prompts 1-3
Special Command Characters 1-4

Method 2: CREF <crffi1e>,<listing> 1-5

ERROR MESSAGES

FORMAT OF MS-CREF COMPATIBLE FILES

General Description of MS-CREF File Processing
3-1

Format of Source File 3-2

-241 -

(

(

(

c

(

INTRODUCTION

Features and Benefits

The MS-CREF Cross Reference Facility can aid you in
debugging your assembly language programs. MS-CREF produces
an alphabetical listing of all the symbols in a special file
produced by your assembler. with this listing, you can
quickly locate all occurrences of any symbol in your source
program by line number.

The MS-CREF produced listing is meant to be used with the
symbol table produced by your assembler.

The symbol table listing shows the value of each symbol, and
its type and length, and its value. This information is
needed to correct erroneous symbol definitions or uses.

The cross reference listing produced by MS-CREF provides you
the locations, speeding your search and allowing faster
debugginq.

-243-

Page 4

Overview of MS-CREF Operation

MS-CREF produces a file with cross references for symbolic
names in your ?roqram.

First, you must create a cross reference file with the
assembler. Then, MS-CREF takes this cross reference file,
which has the filename extension .CRF, and turns it into an
alphabetical listing of the symbols in the file. The cross
reference listing file is given the default filename
extension .REF.

Beside each symbol in the listing, MS-CREF
numbers in the source program where the
ascending sequence. The line number where
defined is indicated by a pound sign (i).

-244-

lists the line
symbol occurs in

the symbol is

(

(
.:::::: ::::
source

.ASM -
Ir

Assembler

MS-CREF

FOO 20 64 123# 145 •••
GAD 21 45# 49 120 •••

-245-

Page 5

(

(

(I

(

CHAPTER 1

RUNNING MS-CREF

Running MS-CREF requires two types of commands: a
to invoke MS-CREF and answers to command prompts.
enter all the commands to MS-CREF on the terminal
Some special command characters exist to assist
entering MS-CREF commands.

command
You will

keyboard.
you while

Before you can use MS-CREF to create the cross reference
listing, you must first have created a cross reference file
usinq your assembler. This step is reviewed in Section 1.1.

1.1 CREATING A CROSS REFERENCE FILE

A cross reference file is created during an assembly
session.

To create a cross reference file, answer the fourth
assembler command prompt with the name of the file you want
to receive the cross reference file.

The fourth assembler prompt is:

Cross reference [NUL.CRF]:

If you do not enter a filename in response to this prompt,
or if you in any other way use the default response to this
prompt, the assembler will not create a cross reference
file. Therefore, you must enter a filename. You may also
specify which drive or device you want to receive the file
and what filename extension you want the file to have, if
different from .CRF. If you change the filename extension
from .CRF to anything else, you must remember to specify the
filename extension when naming the file in response to the
first MS-CREF prompt (see Section 1.2.1).

-247 -

RUNNING MS-CREF Page 1-2

When you have given a filename in response to the fourth
assembler prompt, the cross reference file will be generated ~
during the assembly session.

You are now ready
produced by the
using MS-CREF.

to convert the cross reference file
assembler into a cross reference listing

1.2 INVOKING MS-CREF

MS-CREF may be invoked two ways. By the first method, you
enter the commands as answers to individual prompts. By the
second method, you enter all commands on the line used to
invoke MS-CREF.

Summary of Methods to invoke MS-CREF

Method 1 CREF

Method 2 CREF <crffile>,<listing>

-248-

(

RUNNING MS-CREF Page 1-3

1.2.1 Method 1: CREF

Enter:

CREF

MS-CREF will be loaaed into memory. "Then, MS-CREF returns a
series of two text prompts that appear one at a time. You
answer the prompts to command MS-CREF to convert a cross
reference file into a cross reference listing.

Command Prompts

Cross reference [.CRF]:
Enter the name of the cross reference file you want
MS-CREF to convert into a cross reference listing.
The name of the file is the name you gave your
assembler when you directed it to produce the cross
reference file.

MS-CREF assumes that the filename extension is
.CRF. If you do not s~ecify a filename extension
when you enter the cross reference filename,
MS-CREF will look for a file with the name you
specify and the filename extension .CRF. If your
cross reference file has a different extension,
specify the extension when entering the filename.

See Chapter 3, Format of MS-CREF Compatible Files,
for a description of what MS-CREF expects to see in
the cross reference file. You will need this
information only if your cross reference file was
not produced by a Microsoft assembler.

Listing [crffile.REF]:
Enter the name you want the cross reference listing
file to have. ~S-CREF will automatically give the
cross reference listing the filename extension
.REF.

If you want you cross reference listing to have the
same filename as the cross reference file but with
the filename extension .REF, simply press the
carriage return key when the Listing prompt
appears. If you want your cross reference listing
file to be named anything else and/or to have any
other filename extension, you must enter a response
following the Listing prompt.

If vou want the listing file placed on a drive or
device other than the default drive, specify the
drive or device when entering your response to the
Listing prom1?t.

-249-

RUNNING MS-CREF Page 1-4

Special Command Characters

.
I Use a single semicolon (i) followed immediately by

a carriage return at any time after responding to
the Cross reference ~rompt to select the default
response to the Listing prompt. This feature saves
time and overrides the need to answer the Listing
prompt.

If you use the semicolon, MS-CREF gives the listing
file the filename of the cross reference file and
the default filename extension .REF.

Example:

Cross reference [.CRF]: FUNi

MS-CREF will process the cross reference file named
FUN.CRF and output a listing file named FUN.REF.

Control-C Use Control-C at any time to abort the MS-CREF
session. If you enter an erroneous response, (the
wrong filename), or an incorrectly spelled
filename, you must press Control-C to exit MS-CREF

(

then reinvoke MS-CREF and start over. If the error C
has been typed but not entered, you may delete the
erroneous characters, but for that line only.

-250-

(

RUNNING MS-CREF Page 1-5

1.2.2 Method 2: CREF <crffile>,<listinq>

Enter:

CREF <crffile>,<listing>

MS-CREF will be loaded into memory. Then, MS-CREF
immediately procedes to convert your cross reference file
into a cross reference listing.

~he entries following CREF are res?onses to the command
prompts. The crffile and listing fields must be separate by
a comma.

where: crffile is the name of a cross reference file
produced by your assembler. MS-CREF assumes that
the filename extension is .CRF, which you may
override by specifying a different extension. If
the file named for the crffile does not exist,
MS-CREF will display the message:

Fatal I/O Error 110
in File: <crffile>.CRF

Control then returns to your o?erating system.

listing is the name of the file you want to receive
the cross reference listing of symbols in your
program.

To select the default filename and extension for
the listing file, enter a semicolon after you enter
the crffile name.

Example:

CREF FUN; <CR>

This example causes MS-CREF to
reference file FUN.CRF and
file named FUN. REF.

process the cross
to produce a listing

To give the listing file a different name,
extension, or destination, simply specify these
differences when entering the command line.

CREF FUN,B:WORK.ARG

This example causes MS-CREF to process
reference file named RUN.CRF and to
listinq file named WORK.ARG, which will
on the diskette in drive B:.

-251 -

the cross
produce a

be ?laced

RUNNING MS-CREF Page 1-6

1.3 FOR~AT OF CROSS REFERENCE LISTINGS

The cross reference ~isting is an alphabetical list of all
the symbols in your program.

Each page is headed with the title of the program or program
module.

Then comes the list of symbols. Following each symbol name
is a list of the line numbers where the symbol occurs in
your program. The line number for the definition has a
pound sign (t) appended to it.

On the next page is a cross reference listing as an example:

-252-

(

RUNNING MS-CREF Page 1-7

MS-CREF (vers no.) (date)
(

ENTX PASCAL entry for initializing from programs comes
TITLE directive

Symbol Cross Reference (:If: is definition) Cref-1

AAAXQQ · · · · · · · 37# 38

BEGHQQ · · · · · · · 83 84# 154 176
BEGOQQ · · · · · · · 33 162
BEGXQQ · · · · · · · 113 126# 164 223

CESXQQ · · · · · · · 97 99# 129
CLNEQQ · · · · · · · 67 68#
CODE · · · · · · · · 37 182
CONST. · · · · · 104 104 105 110
CRCXQQ · · · · · · · 93 94# 210 215
CRDXQQ · · · · · · · 95 96# 216
CSXEQQ · · · · · · · 65 66# 149
CURHQQ · · · · · · · 85 86# 155

DATA · · · · 64# 64 100 110
DGROUP · · · · · · · 110# III III III 127 153 171 172
DOSOFF · · · · · · · 98# 198 199
DOSXQQ · · · · · · · 184 204# 219

ENDHQQ · · · · · · · 87 88# 158
ENDOQQ · · · · · · · 33# 195
ENDUQQ · · · · · · · 31# 197
ENDXQQ · · · · · 184 194#
ENDYQQ · · · · · · · 32# 196
ENTGQO · · · · · · · 30# 187
ENTXCM · · · · · · · 182# 183 221

FREXQQ · · · · · · · 169 170# 178

HDRFQQ · · · · · · · 71 72# 151
HDRVQQ · · · · · · · 73 74# 152
HEAP · · · · 42 44 110
HEAPBEG. · · · · · · 54# 153 172
HEAPLOW. · · · · · · 43 171

INIUQQ · · · · · · · 31 161

MAIN STARTUP · · · · 109# III 180
MEMORY · · · · · · · 42 48# 48 49 109 110

PNUXQQ · · · · · · · 69 70 150

RECEQQ · · · · · 81 82#
REFEQQ · · · · · · · 77 78#
REPEQQ · · · · · · · 79 80#
RESEQQ · · · · · · · 75 76# 148

-253-

RUNNING ~1S-CREF

SKTOP. • • • • • • •
SMLSTK • • •
STACK. • • • • • • •
STARTMAIN ••••••
STKBOO • • • • • • •
STKHOO • • • • • • •

59#
135

531
163

89
91

137#
53

186t
90t
92*

60
200
146
160

-254-

Page 1-8

110
(

(

(

(

CHAPTER 2

ERROR MESSAGES

All errors cause MS-CREF to abort. Control is returned to
your operating system.

All error messages are displayed in the format:

Fatal I/O Error <error number>
in File: <filename>

where: filename is the name of the file where the error
occurs

error number is one of the numbers in the following
list of errors.

-255-

ERROR MESSAGES

Number Error

101 Hard data error

101

Unrecoverable disk I/O error

Device name error
Illegal device specification (for
X:FOO.CRF)

103 Internal error
Report to Microsoft, Inc.

104 Internal error
Report to Microsoft, Inc.

105 Device offline

Page 2-2

example,

disk drive door open, no printer attached, and
so on.

106

108

110

111

112

113

114

115

Internal error
Report to Microsoft,

Disk full

File not found

Disk is write protected

Internal error
Report to Microsoft,

Internal error
Report to Microsoft,

Internal error
Report to Microsoft,

Internal error
Report to Microsoft,

- 256-

Inc.

Inc.

Inc.

Inc.

Inc.

c

(

CHAPTER 3

FORMAT OF MS-CREF COMPATIBLE FILES

MS-CREF will process files other than those generated by
Microsoft's assembler as long as the file conforms to the
format that MS-CREF expects.

3.1 GENERAL DESCRIPTION OF MS-CREF FILE PROCESSING

In essence, MS-CREF reads a stream of bytes from the cross
reference file (or source file), sorts them, then emits them
as a printable listing file (the .REF file). The symbols
are held in memory as a sorted tree. References to the
symbols are held in a linked list.

MS-CREF kee?s ~rack of line numbers in the source file by
the number of end-of-line characters it encounters.
Therefore, every line in the source file must contain at
least an end-of-line character (see chart below).

MS-CREF attempts to place a heading at the top of every page
of the listing. The name it uses as a title is the text
passed by your assembler from a TITLE (or similar) directive
in your source program. The title must be followed by a
title svmbol (see chart below). If MS-CREF encounters more
than one title symbol in the source file, it uses the last
title read for all oage headings. If MS-CREF does not
encounter a title symbol in the file, the title line on the
listing is left blank.

-257-

FORMAT OF MS-CREF COMPATIBLE FILES

3.2 FORMAT OF SOURCE FILES

MS-CREF uses the first three bytes of the source
format specification data. The rest of the
processed as a series of records that either begin
with a byte that identifies the type of record.

First Three Bytes

Page 3-2

file as
file is
or end

(The PAGE directive in your assembler, which takes arguments
for page length and line length, will pass this information
to the cross reference file.)

First Byte
The number of lines to be printed per page (page
length range is from 1 to 255 lines).

Second Byte
The number of characters per line (line length
range is from 1 to 132 characters).

Third Byte
The Page Symbol (07) that tells MS-CREF that the
two preceding bytes define listing page size.

If MS-CREF does not see these first three bytes in the file,
it uses default values for page size (page length: 58
lines; line length: 80 character~).

Control Symbols

The two charts show the
recognizes and the byte
recognize record types.

types of records that MS-CREF
values and placement it uses to

Record have a Control Symbol (which identifies the record
type) either as the first byte of the record or as the last
byte.

-258-

(

(

(

FORMAT OF MS-CREF COMPATIBLE FILES Page 3-3

Records That Begin with a Control Symbol

Byte value Control Symbol Subsequent Bytes

01 Reference svrnbol Record is a reference
to a symbol name
(1 to 80 characters)

02 Define symbol Record is a definition
of a symbol name
(1 to 80 characters)

04 End of line (none)

05 End of file 1AH

Records That End with a Control Symbol

Byte value Control Symbol Preceding Bytes

06 Title defined Record is title text
(1 to 80 characters)

07 Page length/ One byte for page length
line length followed by one byte

for line length

For all record types, the byte value represents a control
character, as follows:

01 Contro1-A
02 Contro1-B
04 Contro1-D
05 Control-E
06 Contro1-F
07 Contro1-G

-259-

FORMAT OF MS-CREF COMPATIBLE FILES Page 3-4

The Control Symbols are defined as follows:

Reference symbol
Record contains the name of a symbol that is
referenced. The name may be from 1 to 80 ASCII
characters long. Additional characters are
truncated.

Define symbol
Record contains the
defined. The name
characters long.
truncated.

End of line

name of a symbol that is
may be from 1 to 80 ASCII
Additional characters are

Record is an end of line symbol character only (04H
or Control-D)

End of file
Record is the end of file character (lAH)

Title defined
ASCII characters of the title to be printed at the
top of each listing page. The title may be from 1
to 80 characters long. Additional characters are
truncated. The last title definition record
encountered is used for the title placed at the top
of all pages of the listing. If a title definition
record is not encountered, the title line on the
listing is left blank.

Page length/line length
The first byte of the record contains the number of
lines to be printed per page (range is from 1 to
255 lines). The second byte contains the number of
characters to be printed per page (range is from 1
to 132 characters). The default page length is 58
lines. The default line length is 80 characters.

Summary of CRF File Record Contents

~ contents

1011 symbol name I

1021symbo1 name I

mI
10511AI

Itit1e textl061

IPLILLl071

length of record

2-81 bytes

2-81 bytes

1 byte

2 bytes

2-81 bytes

3 bytes

-260-

(

(

Command Characters .
Contro1-C . • . .
;

Command Prompts

INDEX

• 1-4
· 1-4

1-4

Cross reference [.CRF] • 1-3
Listing [crffi1e.REF] • 1-3

Control symbols 3-2, 3-4
Contro1-C (command character) 1-4
Creating a cross reference file 1-1
Cross reference [.CRF] (command prompt)

Default extensions
• CRF • . •. .• 4
• REF • . • • • • • . . • . . 4

Error messages • · 2-1

Format of cross reference 1istinqs 1-6
Format of MS-CREF compatible files 3-1

Invoking
Method 1 • • • • • • • • • • 1-3
Methoc 2 . . . • • . 1-5
Summary of Methods . .. 1-2

Invoking MS-CREF • . . 1-2

1-3

Listing [crffi1e. REF] (command prompt) 1-3

Method 1 . • • • . • •• . 1-3
Method 2 • . . . • • . . . • . 1-5

Overview • · 4

Running MS-CREF • 1-1

Summary of CRF file record contents 3-4
Summarv of methods to invoke . 1-2

,.CRF (default extension)
.REF (default extension)

• • • 4

· 4
: (command character) ..• · 1-4

-261-

~ 0 1 2 :~ -1 5 I) 7 8 9 1\ Il (' D I,; F

~ D @ P
,

P E .f 0 (null) (spdCe) r ,...

1 JL ± f I A Q a q ® L § A Jt L

2 1- > .,
2 B R b r e J A • x J .a

3 ! < I 3 C S c s , ., 6 If ,
.\ 1 =::::; $ L1 D T d t + I 0 ~ L I
;) • v % 5 E U e u ~ a l t --
6 0 Y2 s< 6 F V f v + 1 0 I J .~ +
7 P 2 • 7 G 1,..1 9 I,} • L 0

..
~ ~ 1J

~
3 (8 H X h x C J B 0 .;. ~ -

~) ~
4) 9 I Y i Y 0 a i I.l T "T"

J+.l
.., · J Z j z ~ 1 • 0 .l \

1 ·
Ii .. + · K [k). 0 r:, '1 4' ~ 2 • '.

I A < L "- \. I ¥ ~
,

IY. e -3 • I

IJ I<- M] In } .
~ U 13 1 - - = ~

• ~ N '" .- .1 1+ e r E · > rr -
F L D / ';', (j , - 0 I I I e f. I

-262 -

	Microsoft MS-DOS Disk Operating System

	Contents

	MS-DOS User's Guide

	Contents

	Chapter 1 - Introduction

	Chapter 2 - System Structure

	Chapter 3 - Commands

	Chapter 4 - EDLIN

	Chapter 5 - DEBUG

	Chapter 6 - FILCOM

	Appendix A - Instructions for Single Disk Drive Users

	Appendix B - MS-DOS File Control Block Definition

	Appendix C - MS-DOS Interrupts and Function Calls

	Appendix D - Disk Errors

	Index

	Utility Software Package Reference Manual

	Contents

	General Introduction

	MS-LINK Linker Utility

	Contents

	Introduction

	Chapter 1 - Running MS-LINK

	Chapter 2 - Error Messages

	Index for MS-LINK

	MS-LIB Library Manager

	Contents

	Introduction

	Chapter 1 - Running MS-LIB
	Chapter 2 - Error Messages

	Index for MS-LIB

	MS-CREF Cross Reference Facility

	Contents

	Introduction

	Chapter 1 - Running MS-CREF

	Chapter 2 - Error Messages

	Chapter 3 - Format of MS-CREF Compatible Files

	Index for MS-CREF

