

ZiLOG Worldwide Headquarters • 910 E. Hamilton Avenue • Campbell, CA 95008
Telephone: 408.558.8500 • Fax: 408.558.8300 • www.ZiLOG.com

User Manual

UM004300-COR0200

Z180ZDS0100ZCC

Z180 C-Compiler

Z180 C-Compiler
User Manual

UM004300-COR0200

ii

This publication is subject to replacement by a later edition. To determine whether a later edition

exists, or to request copies of publications, contact

ZiLOG Worldwide Headquarters

910 E. Hamilton Avenue

Campbell, CA 95008

Telephone: 408.558.8500

Fax: 408.558.8300

www.ZiLOG.com

Windows is a registered trademark of Microsoft Corporation.

Document Disclaimer

© 2000 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices,

applications, or technology described is intended to suggest possible uses and may be superseded. ZiLOG,

INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF

THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZiLOG

ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT

RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY

DESCRIBED HEREIN OR OTHERWISE. Except with the express written approval ZiLOG, use of

information, devices, or technology as critical components of life support systems is not authorized. No

licenses or other rights are conveyed, implicitly or otherwise, by this document under any intellectual property

rights.

http://www.zilog.com

Z180 C-Compiler
User Manual

UM004300-COR0200

iii

ABOUT THIS MANUAL

We recommend that you read and understand everything in this manual

before setting up and using the product. However, we recognize that users

have different styles of learning. Therefore, we have designed this manual

to be used either as a how-to procedural manual or a reference guide to

important data.

Manual Conventions

The following conventions have been adopted to provide clarity and ease

of use:

•

Arial Medium 10-point

ALL-CAPS

 highlights the following items:

– Commands , displayed messages

– Menu selections, pop-up lists, button, fields, or dialog boxes

– Modes

– Pins and ports

– Program or application name

– Instructions, registers, signals and subroutines

– Action(s) performed by the software

– Icons

•

Courier Regular 10-point

 highlights the following items

– Bit

– Software code

– File names and paths

– Hexadecimal value

Z180 C-Compiler
User Manual

UM004300-COR0200

v

Table Of Contents

Introduction

ZDS E

NVIRONMENT

. 2
R

UN

-

TIME

MODEL

 . 3

M

INIMUM

 R

EQUIREMENTS

 . 3

I

NSTALLING

THE

 Z180 C-

COMPILER

. 5
R

EGISTRY

 K

EYS

 . 5

I

NSTALLING

 ZDS . 7

S

AMPLE

 S

ESSION

. 8
C

REATE

A

PROJECT

AND

 S

ELECT

A

 P

ROCESSOR

 . 8
C

ONFIGURING

THE

 C

OMPILER

USING

THE

 W

IZARD

 . 9

A

DDING

INCLUDED

FILES

. 12

C

ONFIGURING

THE

 C

OMPILER

. 13
C

ONFIGURE

 S

ETTINGS

 . 13
C

OMPILING

AND

CONNECTING

TO

THE

EMULATOR

 . 20
C

ONNECT

TO

THE

EMULATOR

 . 20

C

ONTACTING

 Z

I

LOG C

USTOMER

SUPPORT

. 21

C-Compiler Overview

L

ANGUAGE

 E

XTENSIONS

 . 24
A

SSIGNING

 T

YPES

 . 24

D

EFAULT

 M

EMORY

 Q

UALIFIERS

 . 25

P

OINTERS

 . 25

I/O A

DDRESS

S

P

ACE

 . 25
A

CCESSING

 I/O A

DDRESS

 S

PACE

 . 26

I

NTERRUPT

 F

UNCTIONS

 . 27

Z180 C-Compiler
User Manual

UM004300-COR0200

vi

U

SING

THE

 DOS C

OMMAND

 L

INE

 . 28
C

OMMAND

LINE

FORMAT

 . 28
C

OMMAND

LINE

SWITCHES

 . 28
C

OMMAND

 L

INE

 E

XAMPLES

 . 30

O

PTIMIZATION

 L

EVELS

 . 30
D

EBUGGING

 C

ODE

AFTER

 O

PTIMIZATION

 . 32
L

EVEL

 2 O

PTIMIZATIONS

 . 32
L

EVEL

 3 O

PTIMIZATIONS

 . 34
L

EVEL

 4 O

PTIMIZATIONS

 . 34

UNDERSTANDING ERRORS. 34
ENABLING WARNING MESSAGES . 34

INCLUDED FILES . 34

PREDEFINED NAMES . 34

GENERATED ASSEMBLY FILE . 36

OBJECT SIZES . 36

SECTION NAMES . 36

INCORPORATING ASSEMBLY WITH C . 37

INCORPORATING C WITH ASSEMBLY. 38

Linking Files
INTRODUCTION . 41

WHAT THE LINKER DOES . 42

USING THE LINKER WITH THE C-COMPILER . 44
RUN TIME INITIALIZATION FILE . 45
INSTALLED FILES . 45

INVOKING THE LINKER. 46
USING THE LINKER IN ZDS . 46
USING THE LINKER WITH THE COMMAND LINE . 47

LINKER SYMBOLS . 48

Z180 C-Compiler
User Manual

UM004300-COR0200

vii

 LINKER COMMAND FILE. 48

LINKER COMMAND LINE . 54
COMMAND LINE SPECIFICATIONS . 55
LINKER COMMAND LINE OPTIONS . 57
SYMBOL FILE IN ZILOG SYMBOL FORMAT . 58

USING THE LIBRARIAN . 58
COMMAND LINE OPTIONS . 59

Run Time Environment
FUNCTION CALLS . 61

FUNCTION CALL STEPS . 61
SPECIAL CASES FOR A CALLED FUNCTION . 62

OVERLAY SUPPORT . 63
ENABLING OVERLAYS . 63

USING THE RUN-TIME LIBRARY . 65
INSTALLED FILES . 66

LIBRARY FUNCTIONS . 67
 abs FUNCTION . 67
acos FUNCTION . 68
asin FUNCTION . 68
atan, atan2 FUNCTION . 69
_asm FUNCTION . 69
 atof, atoi, atol FUNCTIONS . 70
ceil FUNCTION . 71
cos, cosh FUNCTION . 72
div FUNCTION . 72
exp FUNCTION . 73
 fabs FUNCTION . 73
floor FUNCTION . 74
fmod FUNCTION . 74
frexp FUNCTION . 76

Z180 C-Compiler
User Manual

UM004300-COR0200

viii

labs FUNCTION . 78
ldexp FUNCTION . 79
ldiv FUNCTION . 80
log, log10 FUNCTION . 81
memchr FUNCTION . 81
memcmp FUNCTION . 82
memcpy FUNCTION . 82
memmove FUNCTION . 83
memset FUNCTION . 84
modf FUNCTION . 84
POW FUNCTION . 85
rand FUNCTION . 85
sin, sinh FUNCTION . 86
sprintf FUNCTION . 86
SQRT FUNCTION . 91
 srand FUNCTION . 92
sscanf FUNCTION . 92
strcat FUNCTION . 98
strchr FUNCTION . 98
strcmp FUNCTION . 99
strcpy FUNCTION . 100
strcspn FUNCTION . 100
strlen FUNCTION . 101
strncat FUNCTION . 102
strncmp FUNCTION . 103
strncpy FUNCTION . 104
strrchr FUNCTION . 105
strspn FUNCTION . 106
strstr FUNCTION . 106
strtok FUNCTION . 107
strtod, strtol, strtoul FUNCTIONS . 108
tan, tanh FUNCTION . 110

Z180 C-Compiler
User Manual

UM004300-COR0200

ix

tolower, toupper FUNCTIONS . 111
 va_arg, va_end, va_start FUNCTIONS . 112
vsprintf FUNCTION . 114

Initialization and Link Files
INITIALIZATION FILE . 115

LINK FILE . 118

MMU FILE. 119

ASCII Character Set
Problem/Suggestion Report Form
Glossary
Index

Z180 C-Compiler
User Manual

UM004300-COR0200

XI

List of Figures

FIGURE 1 DEVELOPMENT FLOW. 2

FIGURE 2 NEW PROJECT DIALOG BOX . 8

FIGURE 3 ZDS NEW PROJECT DIALOG BOX . 10

FIGURE 4 C-COMPILER GENERAL PAGE . 14

FIGURE 5 C-COMPILER WARNINGS PAGE . 15

FIGURE 6 C-COMPILER OPTIMIZATIONS PAGE. 16

FIGURE 7 C-COMPILER PREPROCESSOR PAGE. 18

FIGURE 8 CODE GENERATION MEMORY PAGE . 19

FIGURE 9 LINKER FUNCTIONAL RELATIONSHIP . 41

FIGURE 10 LINKER COMPONENTS . 44

FIGURE 11 SAMPLE SYMBOL FILE . 58

FIGURE 12 FRAME LAYOUT . 62

Z180 C-Compiler
User Manual

UM004300-COR0200

xiii

List of Tables

TABLE 1 I/O MACHINE INSTRUCTIONS . 25

TABLE 2 COMMAND LINE SWITCHES . 28

TABLE 3 LINKER REFERENCED FILES . 45

TABLE 4 LINKER SYMBOLS . 48

TABLE 5 SUMMARY OF LINKER COMMANDS . 49

TABLE 6 SUMMARY OF LINKER OPTIONS . 57

TABLE 7 SUMMARY OF LIBRARY OPTIONS . 59

TABLE 8 INSTALLED LIBRARY FILES . 66

TABLE 9 ASCII CHARACTER SET . 123

Z180 C-Compiler
User Manual

UM004300-COR0200

1

Introduction

The Z180 C-Compiler conforms to the ANSI’s definition of a “freestanding imple-
mentation”, with the exception that doubles are 32 bits. In accordance with the defi-
nition of a freestanding implementation, the compiler accepts programs which
confine the use of the features of the ANSI standard library to the contents of the
standard headers <float.h>, <limits.h>, <stdarg.h> and <stddef.h>. This release sup-
ports more of the standard library than is required of a freestanding implementation,
as described in Run Time Environment on page 61. Figure 1 shows the development
flow.

There are several language extensions supported in this version, including interrupt
functions and memory space accesses.

Z180 C-Compiler
User Manual

UM004300-COR0200 ZDS Environment

2

FIGURE 1. DEVELOPMENT FLOW

ZDS ENVIRONMENT

ZiLOG Developer Studio is an integrated development environment with a standard
Windows 95/98/NT user interface that allows access to all of ZiLOG’s development
tools without having to alternate from one program to another. These development

Linker Command
Files

Z180 C-Compiler
User Manual

Minimum Requirements UM004300-COR0200

3

tools include a language sensitive editor, project manager, assembler, linker, and a
symbolic debugger. ZDS supports the Z180 line of ZiLOG processors.

ZDS allows the user to:

• Create project files and add or remove files to and from the project

• Create and edit a source file.

• Download, execute, debug, and analyze code

• Build and link a project file

• Compile, assemble and link files

• Prepare code for ROM release (one-time programming)

RUN-TIME MODEL

Inergers of type Ints and Pointers are 16 bits. A startup program named
z180boot.s is included on the installation diskette. This program clears the.bss
section, sets the processor mode, and calls the main function.

NOTE: The startup program does not copy initialized data.

MINIMUM REQUIREMENTS

For the C-Compiler to run properly with ZDS, the host system must meet the follow-
ing minimum requirements:

• The Z180 C-Compiler requires Windows 95 or Windows/NT. The compiler
generates assembler language source, which can be assembled and linked
using the UNIX, DOS or Windows versions of the ZiLOG assembler, archiver
and linker.

• IBM PC (or 100-percent compatible) Pentium-based machine

• 75MHz,16 MB Memory

• VGA Video Adapter

• Hard Disk Drive (12 MB free space)

Z180 C-Compiler
User Manual

UM004300-COR0200 Minimum Requirements

4

• CD-ROM drive

• Mouse or Pointing Device

• Microsoft Windows 95/98/NT

• To use the ZDS debugger, an emulator is needed that corresponds to the
processor required for configuration

Z180 C-Compiler
User Manual

Installing the Z180 C-compiler UM004300-COR0200

5

INSTALLING THE Z180 C-COMPILER

To install the Z180 C-Compiler, insert the Z180 C-Compiler CD ROM and follow
the onscreen prompts

After installing the Z180 C-Compiler the compiler’s installation path is set in the
Window’s registry. When installing ZDS 3.00 or later, ZDS automatically looks for
the C-Compilers installation path and loads the corresponding DLL from that path.

This is effective for the following compiler versions:

• Z180 1.00 or later

• Z3xx B0.00 or later

• Z8 C1.00 or later

NOTE: Older compiler versions require the user to copy the compiler’s DLLs to the ZDS
installation directory.

REGISTRY KEYS

The following keys are written to the window’s registry during the C-compiler instal-
lation:

• For Z380 Installation
– + HKEY_LOCAL_MACHINE\Software\ZiLOG\C Compiler\Z380

– + Z380 Key has Path value which tells where the Z380 is located

• For Z3xx Installation

– + HKEY_LOCAL_MACHINE\Software\ZiLOG\C Compiler\Z3xx

– + Z3xx Key has Path value which tells where the Z3xx is
located

• For Z8/Z8Plus Installation

– + HKEY_LOCAL_MACHINE\Software\ZiLOG\C Compiler\Z8

– + Z8 Key has Path value which tells where the Z8 is located

• For Z180 installation

Z180 C-Compiler
User Manual

UM004300-COR0200 Installing the Z180 C-compiler

6

– + HKEY_LOCAL_MACHINE\Software\Zilog\C Compiler\z180

– + z180 Key has Path value which tells where the z180 is located

Z180 C-Compiler
User Manual

Installing ZDS UM004300-COR0200

7

INSTALLING ZDS

Perform the following steps to install ZDS:

1. Insert the ZiLOG Developer Studio CD-ROM into the host CD ROM drive. The
Emulator Software Setup window appears.

2. In the Select Components dialog box check ZiLOG Developer Studio.

3. Click Next. The ZiLOG Developer Studio window appears.

4. Click Next to accept the licensing agreement. Immediately after the agreement is
accepted, the Choose Destination Location dialog box appears.

5. Click Next to install ZDS in the default directory. Click Browse to change the
ZDS install directory.

6. After selecting the appropriate install directory, click next. The Select Program
Folder dialog box appears.

7. Click Next to add the ZDS program icon to the ZiLOG Developer Studio program
folder. To create a personalized folder, type the folders name in the Program
Folders field.

8. Click Next. The Installing ZDS Program Files progress bar appears.

9. After installation the Setup Complete dialog box appears. Check View
README File to view the read me file containing the ZDS release notes. Check
Launch ZiLOG Developer Studio to start ZDS at the end of the installation.

10. Click Finish to complete the ZDS installation.

Z180 C-Compiler
User Manual

UM004300-COR0200 Sample Session

8

SAMPLE SESSION

The Z180 C-Compiler is a modular component that is part of the ZDS development
environment. Users should become familiar with ZDS and configure the settings
before programming or downloading files. This chapter orients the user on using
ZDS and configuring the compiler for theZ180 family of processors. For more infor-
mation on installing ZDS, consult the ZDS Quick Start Guide or the ZDS on-line
help.

CREATE A PROJECT AND SELECT A PROCESSOR

The user must create a project and select a processor before creating or opening a C-
file. Perform the following steps to create a new project and select a processor:

1. Open ZDS by selecting Start>Programs>Zilog Developer Studio> ZDS.

2. Choose New Project from the File menu. The New Project dialog box appears,
as shown in Figure 2.

FIGURE 2. NEW PROJECT DIALOG BOX

3. Select Family in the Selection by field.

Z180 C-Compiler
User Manual

Sample Session UM004300-COR0200

9

4. Select Z180 from the Master pop-up list.

5. Select the processor from the Project Target pop-up list.

6. Select an emulator from the Emulator pop-up list.

7. Click on the browse button (...) in the Project Name field. The New Project
Browse dialog box appears.

8. Enter the file name and select a path in the New Project Browse dialog box.

9. Click Save. The file name appears in the Project Name field in the New
Project dialog box.

10.Select Application from the Project type field. This selection enables the
linker.

11.Check Include default startup files for C Compiler. This option must be
checked to enable the Wizard. To manually add the necessary files for the C-
Compiler, see Adding included files on page 12.

12.Click on Chip Data to view specifications for the selected Project Target.

NOTE: Fields in the Chip Data page are read-only and can not be modified.

13.Click OK. The new project is saved with the file name specified in the New
Project Browse dialog box.

CONFIGURING THE COMPILER USING THE WIZARD

The Wizard is enabled when the Include default startup files for C Compiler
option is checked in the New Project dialog box.

NOTE: The Wizard is only available for ZDS version 3.5 and later.

Perform the following steps after clicking OK in the New Project Browse dialog
box:

1. The ZDS New Project Dialog box appears, as shown in Figure 3.

Z180 C-Compiler
User Manual

UM004300-COR0200 Sample Session

10

FIGURE 3. ZDS NEW PROJECT DIALOG BOX

2. Select all the files in the Check the files you wish to include window.

3. Select Set default include path to compiler settings in the Settings window.
Selecting this option sets the path of the include files in the Additional include
directories field in the C-Compiler preprocessor page.

4. Select Set default linker settings for compiler.

5. Click OK. The initialization file for the selected model appears in the project
viewer window.

6. Select Optimizations from the Category pop-up list in the C-Compiler Settings
Options dialog box. The Optimizations page appears.

7. Select Level 4 optimization.

8. Click Apply.

Create a File

Perform the following steps to create a new C file:

Z180 C-Compiler
User Manual

Sample Session UM004300-COR0200

11

1. Select Add to Project>New from the Project menu. The Insert New Files
Into Project dialog box appears.

2. Select C Files from the Files of type pop-up menu.

3. Type a file name in the File Name field.

4. Click Open. The new file name appears in the Project Viewer window with a.c
suffix, and a blank Edit window also appears.

5. Type the following code in the edit window:
#include <stdlib.h>

int randnum;

int main()

{

 srand(10);

 randnum=rand();

 randnum=rand();

}

6. Close and save the file.

NOTE: Skip the Adding included files section if you configured the compiler using the wiz-
ard.

Z180 C-Compiler
User Manual

UM004300-COR0200 Adding included files

12

ADDING INCLUDED FILES

The user can manually add files and configure the settings for the C-Compiler.

After creating a project the user must add or create new files. A previously created
project has the following attributes saved with it:

• Target settings

• Assembler and Linker settings for the specified target

• Source files (including header files)

The user must first add the necessary files for the compiler to function properly. The
following examples are based on using a small model.

Perform the following steps to add files:

1. Select Open Project from the File menu. The Open Project dialog box appears.

2. In the Open Project dialog box, select the project that was created in the previous
exercise. The project appears in the Project Viewer window.

3. Select Add to Project>Files from the Project menu. The Insert Files into
Project dialog box appears.

4. Browse to the directory where the C-compiler was installed.

5. Select the Lib directory.

6. Select all files from the Files of type pop-up menu.

7. Hold the Control key and select all the files in the lib directory.

8. Click Open. The files appear in the Project Viewer window.

Z180 C-Compiler
User Manual

Configuring the Compiler UM004300-COR0200

13

CONFIGURING THE COMPILER

The following section explains how to configure the compiler using ZDS.

CONFIGURE SETTINGS

The Z180 C-Compiler can be configured through the Settings Option dialog box in
ZDS. The Settings Option dialog box allows the user to configure:

• General options

• Warnings

• Optimization levels

• Preprocessor symbol definitions

• Code generation configuration

Perform the following steps to open the C-Compiler Settings Option dialog box:

1. Open the project.

2. Select Settings from the Project menu. The Settings Options dialog box appears.

3. Click the C-Compiler tab. The C-Compiler Settings Option dialog box appears,
see Figure 4.

General Configuration

The C-Compiler General page allows the user to enable or disable settings for the C-
Compiler.

Perform the following steps to configure the General Page .

1. Select General from the Category pop-up list in the C-Compiler Settings dialog
box. The C-Compiler General page appears.

2. Click the Set Default button.

3. Click Apply.

Z180 C-Compiler
User Manual

UM004300-COR0200 Configuring the Compiler

14

FIGURE 4. C-COMPILER GENERAL PAGE

The following options are available in the C-Compiler General page.

• The Generate debug information option generates symbolic debug
information in the output object module. If a relocatable object file is being
generated, symbols and other debugging information are embedded in the
output relocatable object file. If this option is not checked, no symbolic debug
information is generated. If this option is checked, optimizations are not
performed.

• The Display compiler version number option causes a two-line
message to display in the Output window that shows the C-Compiler copyright
notice and version number.

• The Enable ZiLOG extensions causes the C-Compiler to automatically
recognize language extensions for the target device. These language
extensions allow the microcontroller to communicate with external devices.

• The Set Default button automatically configures the linker for use by the C-
Compiler.

Z180 C-Compiler
User Manual

Configuring the Compiler UM004300-COR0200

15

Configuring Warnings

The C-Compiler Optimizations page allows the user to control the informational and
warning messages that are generated in the ZDS output window.

Perform the following steps to configure the Warnings page, see Figure 5.

1. Select Warnings from the Category pop-up list in the C-Compiler Settings
Options dialog box. The Optimizations page appears.

2. Select the warnings to apply.

3. Click Apply.

FIGURE 5. C-COMPILER WARNINGS PAGE

Z180 C-Compiler
User Manual

UM004300-COR0200 Configuring the Compiler

16

Configuring Optimization Levels

The C-Compiler Optimizations page allows the user to select an optimization level
for the C-compiler. See Optimization Levels on page 30 for a detailed description of
the different optimization levels.

Perform the following steps to configure the Optimizations page .

1. Select Optimizations from the Category pop-up list in the C-Compiler Settings
Options dialog box. The Optimizations page appears as shown in Figure 6.

2. Select Level 4 optimization.

3. Click Apply.

FIGURE 6. C-COMPILER OPTIMIZATIONS PAGE

The following optimization levels are available in the C-Compiler Optimizations
page.

• The No optimization option disables all optimizations.

• The Level 1 optimization option performs:

Z180 C-Compiler
User Manual

Configuring the Compiler UM004300-COR0200

17

– constant folding

– dead object removal

– simple jump optimization

• The Level 2 optimization option performs:

– constant propagation

– copy propagation

– dead code elimination

– common sub expression elimination

– jump to jump optimization

– loop invariant code motion

– constant condition evaluation and other condition evaluation
optimizations

– constant evaluation and expression simplification

– all the optimizations in level 1

• The Level 3 optimization option performs Level 2 optimizations twice, and
replaces any redirection of read-only nonvolatile global or static data with a
copy of the initial expression.

• The Level 4 optimization option performs Level 2 optimizations three
times, and eliminates common sub-expressions by transforming expression
trees.

Defining Preprocessor Symbols

The C-Compiler Preprocessor page enables you to define preprocessor definitions,
and specify additional search paths for included files.

Perform the following steps to configure the Optimizations page .

1. Select Preprocessor from the Category pop-up list in the C-Compiler Settings
dialog box. The Preprocessor page appears as shown in Figure 7.

2. In the Additional Include Directories field enter the C-Compiler’s installation
path and \INCLUDE .

Z180 C-Compiler
User Manual

UM004300-COR0200 Configuring the Compiler

18

For example: If the compiler’s installation path is C:\PROGRAMS\Z180 enter
c:PROGRAMS\Z180\INCLUDE.

3. Click Apply.

FIGURE 7. C-COMPILER PREPROCESSOR PAGE

The Preprocessor page defines the following:

• The Preprocessor definitions field is used to define the names of the
symbols that are used by the preprocessor. Symbols may be defined with or
without a value and successive symbols should be separated by a comma.

EXAMPLE: DEBUG,VERSION=3 defines the symbol DEBUG, but
does not assign it a value. The statement also defines the symbol
VERSION and assigns it a value of 3.

Z180 C-Compiler
User Manual

Configuring the Compiler UM004300-COR0200

19

• The Additional Include Directories field is used to enter additional search
paths that the C-Compiler should use to locate included files. The search path
can consist of directory names separated by semicolons.

EXAMPLE: C:\PROGRAMS\ZDS\INCLUDE:LIB

Code Generation Configuration

The Code Generation page (Figure 8) allows the user to define the name of memory
sections.

Perform the following steps to configure the Memory page.

1. Select Code Generation from the Category pop-up list in the C-Compiler
Settings dialog box. The Memory page appears.

2. Enter the names that you have selected to rename the memory sections to.

3. Click Apply.

FIGURE 8. CODE GENERATION MEMORY PAGE

Z180 C-Compiler
User Manual

UM004300-COR0200 Configuring the Compiler

20

COMPILING AND CONNECTING TO THE EMULATOR

Before performing a debug session the user must compile the code and connect to
the emulator. For more information on performing a debug session, see the ZDS
Quick Start Guide or the ZDS on-line help.

Compile a Project

Perform the following steps to compile a project.

1. Open the previously project created.

2. In the Project Viewer window, double click on the C file that was created earlier
in the session. The C file appears in the Edit window.

3. Select Build from the Build menu (the shortcut is F7) to compile, and link the files
in the project. If an error occurs, double click on the error in the Output window.

NOTE: When building a project, ZDS only processes the files in the project that have changed
since the last build. During a build, ZDS updates a dependency list for the project by adding
each included filename to the project list.

CONNECT TO THE EMULATOR

Perform the following steps to connect to the emulator.

1. Select !Connect from the Project menu. The ZDS status bar shows that it’s
connecting to the Emulator.

2. The message Emulator connected appears in the Output window Debug page.

NOTE: If an error message is received, ensure that both the target and emulator for the project
are selected.

Z180 C-Compiler
User Manual

Contacting ZiLOG Customer support UM004300-COR0200

21

CONTACTING ZILOG CUSTOMER SUPPORT

ZILOG has a worldwide customer support center located in Austin, Texas. The cus-
tomer support center is open from 7 a.m. to 7 p.m. Central Time.

The customer support toll-free number for the United States and Canada is 1-877-
ZiLOGCS (1-877-945-6427). For calls outside of the United States and Canada dial
512-306-4169. The FAX number to the customer support center is 512-306-4072.
Customers can also access customer support via the website at:

• For customer service:

– http://register.zilog.com/login.asp?login=servicelogin

• For technical support:

– http://register.zilog.com/login.asp?login=supportlogin

For valuable information about hardware and software development tools go to
ZiLOG home page at http://www.zilog.com. The latest released version of the ZDS
can be downloaded from this site.

http://register.zilog.com/login.asp?login=servicelogin
http://register.zilog.com/login.asp?login=supportlogin

Z180 C-Compiler
User Manual

UM004300-COR0200

23

C-Compiler Overview

The Z180 C Compiler is an optimizing compiler that translates standard ANSI C
programs into ZiLOG assembly language source code. Key characteristics of the
compiler are:

• Supports ANSI C language - ZiLOG’s C-Compiler conforms to the ANSI
C standard as defined by ANSI specifications a for free standing
implementation.

• Assembly output - The compiler generates assembly language source files
that can be viewed and modified.

• Provides ANSI-standard run-time libraries - A run-time library for each
device is included with the compiler’s tools. All library functions conform to
the ANSI C library standard. These libraries include functions for string
manipulation, buffer manipulation, data conversion, math, variable length
argument lists.

• COFF object files - Common object file format (COFF) is used. This format
allows the user to define the system’s memory map at link time. This
maximizes performance by linking C code and data objects into specific
memory areas. Source-level debugging is also supported by the COFF file
format.

• Friendly assembly interface - The compilers calling conventions are easy to
use and flexible. These calling conventions allow the user to easily call
assembly and C functions.

• Preprocessor integration - The compiler front end has a built in
preprocessor for faster compilation.

• Optimization levels - The compiler allows the user to select optimization
levels that employ advanced techniques for compacting and streamlining C
code.

Z180 C-Compiler
User Manual

UM004300-COR0200 Language Extensions

24

• Language extensions - Language extensions are provided to support
processor specific features.

– Memory and I/O address spaces are supported through memory
qualifiers

– Support for interrupt functions

– Intrinsic functions are provided for in-line assembly

– Programs containing up to 1 megabyte of code are supported using the
Z180 memory management unit.

LANGUAGE EXTENSIONS

The Z180 family of processors supports various address spaces that correspond to
the different types of addressed locations and the method logical addresses are
formed. The C-language, without extensions, is only capable of accessing data in
one memory address space. The Z180 C-Compiler memory extensions allow the user
to access data in the Z180 memory address space, the external I/O address space, or
the on-chip I/O address space.

ASSIGNING TYPES

Types are extended by adding memory qualifiers to the front of a statement. These
memory qualifiers are defined with the following keywords:

• __MEMORY assigns the type to the standard Z180 main memory address
space.

• __EXTIO assigns the type to the external I/O port address space, through which
peripheral devices are accessed. There may be no allocations in this space, but
pointers to it may be defined and used.

• __INTIO assigns the type to the internal (on-chip) I/O port address space,
through which peripheral devices and system control registers are accessed.
There may be no allocations in this space, but pointers to it may be defined and
used.

Z180 C-Compiler
User Manual

Default Memory Qualifiers UM004300-COR0200

25

A derived type is not qualified by memory qualifiers (if any) of the type from where
it was derived. Derived types can be structures, unions and function return types.

EXAMPLE: __INTIO char * ptr ;

In the above example ptr is a pointer to char in internal I/O address space. The
ptr is not memory qualified but is a pointer to a qualified memory type.)

DEFAULT MEMORY QUALIFIERS

Default memory qualifiers are applied if no memory qualifiers are specified. In all
cases the default memory qualifier is __MEMORY.

POINTERS

A pointer to a qualified memory type can not be converted to a different qualified
memory type.

SIZE OF POINTERS

Pointers are always 16-bits in size for the Z180 C-Compiler.

I/O ADDRESS SPACE

The compiler automatically generates the appropriate I/O instructions for accessing
data in the __INTIO and __EXTIO memory spaces. The machine instructions are
described in Table 1.

TABLE 1. I/O MACHINE INSTRUCTIONS

Action __EXTIO __INTIO

Load IN IN0

Store OUT OUT0

Z180 C-Compiler
User Manual

UM004300-COR0200 I/O Address sPace

26

ACCESSING I/O ADDRESS SPACE

The Z180 instruction set does not allow indirect access of the internal I/O address
space through a register.

To access the I/O address space, use the on-chip peripheral-addresses as operands to
the IN0/OUT0 machine instructions. Variable pointers can not be used to access the
internal I/O address space and address constants must be used.

The recommended method to access the I/O address space is shown in the below
example.

typedef volatile unsigned char __INTIO *PBINTIO;

#defineIO_ADDR((PBINTIO)0x0002)

// …

unsigned char ch;

// …

IO_ADDR[0] = ch;// store to I/O address 2

// …

ch = IO_ADDR[0];// load from I/O address 2

// …

Z180 C-Compiler
User Manual

Interrupt Functions UM004300-COR0200

27

INTERRUPT FUNCTIONS

Interrupt functions are declared by preceding their definition with #pragma inter-
rupt. Such functions should not take parameters or return a value. For example:

#include <zilog.h>

#include <z180.h>

volatile int gprtCount;

#pragma interrupt

void timer(void)

{

char cDummy;

cDummy = tcr;

cDummy = tmdr0l;

cDummy = tmdr0h;

gprtCount++;

}

NOTE: The compiler generates the following prologue and epilogue code for interrupt func-
tions:

push af

.

.

.

pop af

ei

reti

Z180 C-Compiler
User Manual

UM004300-COR0200 Interrupt Functions

28

USING THE DOS COMMAND LINE

The z180 C-Compiler can be invoked from the DOS command line.

COMMAND LINE FORMAT

The syntax for the Z180 C-Compiler command line is as follows:

z180 [switches] … source …

COMMAND LINE SWITCHES

The following command-line switches are recognized.
TABLE 2. COMMAND LINE SWITCHES

Switch Function

-D <macro> Define a preprocessor macro

-g Generate symbolic debug information

-gw Generate symbolic debug information and facilitate ZDS
watch window functionality.

-I <path> Specify include path. This option may be repeated to specify
multiple include paths

-Nbss<name> Names the uninitialized data section. Default is .bss

-Ndata<name> Names the initialized data section. Default is .data

-Ntext<name> Names the text section. Default is .text

-o<name> Specifies the output assembly file name

-O0 No optimization

-O1 Level 1 optimization—Basic optimizations: Constant folding,
dead object removal and simple jump optimization

Z180 C-Compiler
User Manual

Interrupt Functions UM004300-COR0200

29

-O2 Level 2 optimization—Constant propagation, copy
propagation, dead code elimination, common sub
expression elimination, jump to jump optimization, tail
recursion elimination, loop invariant code motion, constant
condition evaluation and other condition evaluation
optimizations, constant evaluation and expression
simplification and all the optimizations in level 1

-O3 Level 3 optimization—All the optimizations in level 2 are
performed twice. Also any redirection on a read only non-
volatile global or static data is replaced by a copy of its initial
expression.

-O4 Level 4 optimization—All the optimizations in level 2 are
performed three times. Also common sub expression
elimination is attempted through transformation of
expression trees (This is the default optimization level)

-P <path> Specify the path where the pre-processor’s output should be
written

-V Display compiler version number

-W Enable warning messages

-Wa Enable portability warnings about accuracy loss in
conversions

-Wall Equivalent to specifying all of the warning options

-Wansi Enable warnings about non-ANSI usage

-Wb Enable warnings about unreachable break statements

-Wd Enable warnings about variable usage, such as unused
variable, defined but not used, etc.

-Wf Enable warnings about function return values

-Wh Enable some heuristic warnings

-Wp Enable portability warnings, and warnings about handling
enumeration types

TABLE 2. COMMAND LINE SWITCHES

Switch Function

Z180 C-Compiler
User Manual

UM004300-COR0200 Optimization Levels

30

NOTE: Other switches are for ZiLOG use only in this version.

COMMAND LINE EXAMPLES

Compiling

The command for Z180:

 Z180 test.c generates test.s . By default the -04 options is used.

Assembling

The command for Z180:

 zma -pz180 -j -otest.o test.s generates test.o

Linking

The command for Z180:

zld -mtest -otest (compiler installation path)\z180inits.o
test.o generates test.ld and test.map .

OPTIMIZATION LEVELS

The Z180 C-Compiler allows the user to manually specify the level of optimization
to be performed on their code. The optimization levels are controlled through the C-

-Wstrict Enable strict warnings

-Wv Enable warnings about unused parameters (not included in
–Wd)

-Wx Enable warnings about unused global objects

-ZiLOG Allow // style comments

TABLE 2. COMMAND LINE SWITCHES

Switch Function

Z180 C-Compiler
User Manual

Optimization Levels UM004300-COR0200

31

compiler options dialog box. See Configuring Optimization Levels on page 16 for
more information on the C-Compiler Settings Option dialog box.

The Z180 C-Compiler allows you to specify four levels of optimizations. The opti-
mizations are:

• Level 1 optimization

– constant folding

– dead object removal

– simple jump optimization

• Level 2 optimization

– constant propagation

– copy propagation

– dead-code elimination

– common sub-expression elimination

– jump-to-jump optimization

– loop invariant code motion

– constant condition evaluation and other condition evaluation
optimizations

– constant evaluation and expression simplification

– all the optimizations in level 1

• Check Level 3 optimization to perform Level 2 optimizations twice, and
replace any redirection of read-only nonvolatile global or static data with a
copy of its initial expression.

• Check Level 4 optimization to perform Level 2 optimizations three times,
and eliminate common sub-expressions by transforming of expression trees.

Z180 C-Compiler
User Manual

UM004300-COR0200 Optimization Levels

32

DEBUGGING CODE AFTER OPTIMIZATION

Debugging of code should be complete before performing any level of optimization
on the code. If the generate debug information is on, no optimizations are performed,
even if an optimization level is chosen.

NOTE: To enable or disable debug information in ZDS, select Settings from the Options
menu. Click the Linker tab and select Output from the Category pop-up list.

Level 1 Optimizations

The following is a description of the optimizations that are performed during a level
1 optimization.

Constant Folding

The compiler simplifies expressions by folding them into equivalent forms that
require fewer instructions.

EXAMPLE: Before optimization: a=(b+2) +(c+3); After
optimization: a=b+c+5

Dead Object Removal

Local and static variables that are declared but never used are removed

Simple Jump Optimization

Jump to next instruction is removed. Unreachable code is also removed.

LEVEL 2 OPTIMIZATIONS

Level 2 optimization performs all the optimizations in Level 1 plus the following
new optimizations.

Constant Propagation

Unaliased local variables are replaced by their assigned constant.

Z180 C-Compiler
User Manual

Optimization Levels UM004300-COR0200

33

Copy Propagation

The compiler replaces references to the variable with its value. The value could be
another variable, a constant, or a common sub-expression. This replacement
increases the chances for constant folding, common sub-expression elimination, or
total elimination of the variable.

Dead Code Elimination

Useless code is removed or changed. For example: assignments to local variables
that are not used afterwards are removed.

Common Sub Expression Elimination

When the same value is produced by two or more expressions, the compiler com-
putes the value once, saves it, and reuses it.

Jump to Jump Optimization

Targets in the control statement are replaced by the ultimate target.

Loop Invariant Code Motion

Expression within loops that compute the same value are identified and are replaced
by a reference to a precomputed value.

Constant Condition Evaluation

The conditional expressions that are constant are computed at compile time.

Constant Evaluation and Expression Simplification

Replaces an expression by a simpler expression with the same semantics using con-
stant folding, algebraic identities and tree transformations.

Z180 C-Compiler
User Manual

UM004300-COR0200 Understanding errors

34

LEVEL 3 OPTIMIZATIONS

 Level 3 optimization perform all the Level 2 optimizations twice, and replaces any
redirection of read-only nonvolatile global or static data with a copy of its initial
expression.

LEVEL 4 OPTIMIZATIONS

Level 4 optimization performs Level 2 optimizations three times, and eliminates
common sub-expressions by transforming of expression trees.

UNDERSTANDING ERRORS

The Z180 C-Compiler detects and reports errors in the source program. When an
error is encountered, an error message is displayed in the ZDS Output window.

For example:

“ file.c”, line n: error message

ENABLING WARNING MESSAGES

Warning messages can be disabled or enabled through the command line. See
Table 2 for more information on the various warnings that can be enabled.

INCLUDED FILES

A path to included files must be defined before the C-Compiler can recognize
included files. An included files path is set in the Preprocessor page in the C-Com-
piler setting options dialog box. For more information on the Preprocessor page, see
Defining Preprocessor Symbols on page 17. For command line version the -I com-
mand line option can be used to specify the include path.

PREDEFINED NAMES

The Z180 C-Compiler comes with four predefined macro names. These names are:

• _LINE_ Expands to the current line number

Z180 C-Compiler
User Manual

Predefined Names UM004300-COR0200

35

• _FILE_ Expands to the current source filename

• _DATE_ Expands to the compilation date in the form of mm dd yy

• _TIME_ Expands to the compilation time in the form of hh:mm:ss

NOTE: For more information on using the command line see page -28.

Z180 C-Compiler
User Manual

UM004300-COR0200 Generated Assembly File

36

GENERATED ASSEMBLY FILE

After compiling a c-file, an assembly file is generated and placed in the project direc-
tory. The assembly files are downloaded and linked and a COFF file is produced that
is downloaded to the emulator. The user can modify the assembly in the ZDS Editor
window.

To open and edit the assembly file:

1. Select Open File from the ZDS Edit menu. The Open file dialog box appears.

2. Select Assembler Files from the files of type pull down menu.

3. Browse to the project directory and double click on the file to be opened. The
selected file appears in the ZDS edit window.

OBJECT SIZES

The following table lists basic objects and their size.

SECTION NAMES

The compiler places code and data into separate sections in the object file. Every sec-
tion has a name that is used by the linker to determine which sections to combine and
how sections are ultimately grouped in the executable file.

• Code Section (.text)

Type Size

char 8 bits

short 16 bits

int 16 bits

long 32 bits

float 32 bits

double 32 bits

long double 32 bits

Z180 C-Compiler
User Manual

Incorporating Assembly with C UM004300-COR0200

37

• Initialized Data Section (.data)

• Uninitialized Data Section (.bss)

• Constant Data Section (.const)

NOTE: All sections are allocated in the __MEMORY address space. The default sec-
tions.text , .data , and .bss can be renamed using the –Ntext, –Ndata, and –Nbss
command line options.

INCORPORATING ASSEMBLY WITH C

The Z180- C-Compiler allows the user to incorporate assembly code into their C
code.

In the body of a function, use the asm statement. The syntax for the ASM statement
is _asm(“<assembly line>”);.

• The contents of <assembly line> must be legal assembly syntax

• The only processing done on the <assembly line> is escape sequences

• Normal C escape sequences are translated

Example

#include <zilog.h>

int main()

{

_asm(“\tnop\n”);

return (0);

}

Z180 C-Compiler
User Manual

UM004300-COR0200 Incorporating C with assembly

38

INCORPORATING C WITH ASSEMBLY

The C libraries that are provided with the compiler can also be used to add function-
ality to an assembly program. The user can create their own function or they can ref-
erence the library using the ref statement.

NOTE: The C-Compiler precedes the use of globals with an underscore in the generated
assembly.

Example

The following example shows the C function imul() being called from assembly
language. The assembly routine pushes two words onto the stack (parameters x and y
for the function imul), calls the function imul , then cleans the arguments off the
stack.

Assembly file.

.ref _imul; Compiler prepends ‘_’ to names

.text

_main:

push hl; parameter <y>

push de; parameter <x>

call _imul

pop af; clean the stack

pop af; *

ret ; result in hl:de

Referenced C file.

typedef unsigned long uint32;

typedef unsigned short uint16;

typedef char int8;

uint32

imul(uint16 x, uint16 y)

{

uint32 res;

int8 i;

res = 0;

for (i=0; i < 16; i++)

{

if (y & 1)

{

res += x;

}

x = x << 1;

y = y >> 1;

}

return res;

}

Z180 C-Compiler
User Manual

UM004300-COR0200 Introduction

41

Linking Files

INTRODUCTION

The purpose of the Zilog cross linker is to read relocatable object files and libraries
and link them together to generate an executable load file. The file may then be
loaded or written to a target system and debugged using ZDS. This chapter briefly
describes the linker’s inputs and outputs, and how the inputs to the linker are trans-
formed into those outputs. See Figure 9.

FIGURE 9. LINKER FUNCTIONAL RELATIONSHIP

Librarian

Executable
Load File

Relocatable
Object File

Library File

Relocatable
Object File

 Linker

Debugger

Z180 C-Compiler
User Manual

UM004300-COR0200 Introduction

42

WHAT THE LINKER DOES

The linker performs the following fundamental actions:

• Reads in Relocatable object modules and library files in Common Object File
Format (COFF) or ZiLOG Object Module Format (ZOMF)

• Resolves external references

• Assigns absolute addresses to Relocatable sections

• Supports Source-Level Debugging (SLD)

• Generates a single executable module to download into the target system or
burn into OTP or EPROM programmable devices

• Generates a map file

• Generates COFF files (for Libraries)

Linkage Editing

The linker creates a single executable load module from multiple relocatable objects.

Resolving External References

After reading multiple object modules, the linker searches through each of them to
resolve external references to public symbols. The linker looks for the definition of
public symbols corresponding to each external symbol in the object module.

Relocating Addresses

The linker allows the user to specify where the code and data are stored in the target
processor system’s memory at run-time. Changing relocation addresses within each
section to an absolute address is handled in this phase.

Debugging Support

When the debug option is specified, the linker creates an executable file that can be
loaded into the debugger at run-time. A warning message is generated if any of the
object modules do not contain a special section that has debug symbols for the corre-

Z180 C-Compiler
User Manual

Introduction UM004300-COR0200

43

sponding source module. Such a warning indicates that a source file was compiled or
assembled without turning on a special switch that tells the compiler or assembler to
include debug symbols information while creating a relocatable object module.

Creating Map Files

The linker can be directed to create a map file that details the location of the Relocat-
able sections and Public Symbols.

Outputting OMF Files

Depending upon the options specified by the user, the linker can produce two types
of OMF files:

• Intel Hex Format Executable File

• COFF Format Executable File

Z180 C-Compiler
User Manual

UM004300-COR0200 Using the Linker with the C-compiler

44

USING THE LINKER WITH THE C-COMPILER

The linker is used to link compiled and assembled object files, C-Compiler libraries,
user created libraries and C runtime initialization files. These files are linked accord-
ing to the commands that are given in the linker command file. Once the files are
linked an executable file in COFF (.ld) format is produced. The linker can also pro-
duce Intel hex (.hex , .dat) files, map files (.map) and symbol files (.sym) in
ZiLOG symbol format.

 The primary components of the linker are shown in Figure 10.

FIGURE 10. LINKER COMPONENTS

Linker
Link and Relocate

Link Command
Line or File

(text file)

Relocatable Object
Modules

and
ZOMF or COFF

Library Files
(binary files)

Executable Intel Hex
(.hex & .dat) or

COFF (.ld) Format
File

Linker Messages

Map File

Symbol File in Zilog
Symbol Format

(text file)

C-compiler libraries

C run-time Initialization files.

Z180 C-Compiler
User Manual

Using the Linker with the C-compiler UM004300-COR0200

45

RUN TIME INITIALIZATION FILE

The C run-time initialization file is an assembly program that initializes memory
before linking. This assembly program clears the .bss section, sets the pointer, and
initializes the processor mode resister. Once these initializations are complete the
program calls main , which is the C entry point.

INSTALLED FILES

The following linker associated files are installed in the C-Compiler installation
directory.

NOTE: Source files for the run-time initialization files are provided in , Initialization and
Link Files.

TABLE 3. LINKER REFERENCED FILES

File Description

z180boot.s Assembly language source of example C startup module

z180.lnk Example linker command file for z180

libc.lib Standard C library without floating point support

libf.lib Standard C library with floating point support

lhf.lib Library of runtime helper functions

Z180mmu.s MMU static overlay manager

Z180 C-Compiler
User Manual

UM004300-COR0200 Invoking the Linker

46

INVOKING THE LINKER

The linker can be invoked either through ZDS or the DOS command line.

USING THE LINKER IN ZDS

The linker is automatically invoked when performing a build in ZDS. The following
steps are performed when using the linker with ZDS.

1. ZDS calls the linker after compiling and assembling all the files.

2. All the object files and libraries that are include in the project are linked.

3. Error or warning messages that are generated by the linker are displayed in the
ZDS output window.

4. If no errors are encountered the linker produces an executable file in either a COFF
or HEX format. This executable file is placed in the project directory.

NOTE: The user needs to include the C-run time initialization file that is appropriate for the
compilation model chosen in the project. See Table 3 for a list of initialization files that are
included with the C-Compiler. For more information on adding included files see Adding
included files on page12.

Configuring the Linker with ZDS

Perform the following steps to set the linker command file options in ZDS :

1. Open the project

2. Select Settings from the Project menu. The Settings Options dialog box appears.

3. Click the C-Compiler tab.

4. Select General from the Category pop-up list in the C-Compiler Settings dialog
box. The C-compiler General page appears.

5. Click the Set Default button.

6. Click Apply.

NOTE: The linker’s settings can also be modified through the Linker Settings dialog box.
Consult ZDS’s on-line help for more information on configuring the linker.

Z180 C-Compiler
User Manual

Invoking the Linker UM004300-COR0200

47

USING THE LINKER WITH THE COMMAND LINE

Use the syntax below to invoke the linker on the command line :

zld -o output name -a init-object-files { object files} c-comp-lib-file lib-

files map-file linker-command-file

• output-name is the .ld filename. For example if test.ld is the desired
output file, then the output name should be test .

• init.-object-file is the C run time initialization file. The user can specify their
own initialization files to use. If the file is not in the current directory the path
needs to be included in the file name.

• {object files} is the list of object files that are to be linked.

• c-comp-lib-file is the C-Compiler library files that need to be linked. See
Table 3 for a list of library files that are include with the C-Compiler.

• lib-files is the library files created by the user using the ZDS archiver (ZAR).

• map-file is the map file’s name that is to be generated by the linker.

• linker-command-file is the command file to be linked by the linker.
Sample command files are provided in the lib directory. See Table 3 for a list
of command files that are include with the C-Compiler.

Linker Command Line example

The following example shows how to invoke the linker using the DOS command
line.

zld -otest -A lib-path\z180boot.o test.o lib-
path\libc.lib lib-path\z180180.link -mtest.map

This example generates a test.ld , test.hex , test.dat , test.sym and
test.map as output. The lib-path is the (C-Compiler installation path)\lib, and
test.o is the object file corresponding to the C file created after compiling and
assembling.

Z180 C-Compiler
User Manual

UM004300-COR0200 Linker symbols

48

For more information on the linker command line see Linker Command Line on
page54.

LINKER SYMBOLS

The linker command file defines the symbols that are used by the C run-time initial-
ization file to initialize the stack pointer, register pointer and clear the BSS section.
Table 4 shows the symbols that are used by the linker.

 LINKER COMMAND FILE

The linker command file is text file that contains the linker command and options.
The linker commands that can be used in the command file are summarized in
Table 5. For linker options see Table 6.

TABLE 4. LINKER SYMBOLS

Symbol Description

BSS_BASE Base of .BSS section

BSS_LENGTH Length of .BSS section

TOS Top of stack

Z180 C-Compiler
User Manual

Linker Command File UM004300-COR0200

49

NOTE: The linker commands are listed alphabetically in the table, for convenience it is not
required that commands be specified alphabetically in the command file. Command words
and parameters onot shown in the table are not legal. If any other word or parameter is used,
an error message is written to the messages file, and the linker terminates without linking
anything.

TABLE 5. SUMMARY OF LINKER COMMANDS

Command Description

Assign Assigns a control section to an address space

Bankarea Reserve space for overlay banks

Bank Assign a section to an overlay bank

Bankvector Specify an overlay manager vector

Copy Makes a copy of a control section

Define Creates a public symbol at link-time; helps resolve an external
symbol referenced at assembly time

Group Creates a group of control sections that can be defined using the
range command

Locate Set the base address for the control section

Noload Set the control section attribute as no load

Order Specifies the ordering of specified control sections

Range Sets a lower bound and an upper bound for an address space or a
control section

Z180 C-Compiler
User Manual

UM004300-COR0200 Linker Command File

50

Linker Command ASSIGN

The ASSIGN command assigns a control section to an address space. This command
is designed to be used in conjunction with the assembler’s .SECT instruction.

Syntax: ASSIGN <section> <address-space>

The <section> must be a control section name, and the <address-space> must be an
address space name.

Example: ASSIGN DSEG DATA

Linker Command BANKAREA

The BANKAREA linker command reserves an area of an address space for use as an
overlay bank. This command is used in conjunction with the BANK linker com-
mand. The BANK AREA names the overlay bank, and is referenced by the BANK
linker command.

Syntax:

BANKAREA < bankarea> <address-space> <start-address>: <end-address>

BANKAREA <bankarea> <address-space> <start-address>, <length>

 The location and size of the overlay bank is specified in one of two ways:

• A colon-separated area start-address and end-address

• A comma-separated area start-address and length

Example

The following example creates an overlay area named OVERLAY in the ROM
address space. The overlay area occupies the address range 08000h to 0BFFFh.

BANKAREA OVERLAY, ROM, 08000h: 0BFFFh

Linker Command BANK

The BANK linker command assigns a control section to an address space overlay
bank. This command is used in conjunction with the BANKAREA linker command.
The BANKAREA names the overlay bank, which is defined by the BANKAREA

Z180 C-Compiler
User Manual

Linker Command File UM004300-COR0200

51

linker command. The load-address specifies the physical address of the section. If
the load-address is omitted, the linker determines the load address.

Syntax: BANK <section> <bankarea> [[,] <load-address>]

Example

The following example assigns a section named BOOTSECTION to an overlay area
named OVERLAY. The load address of the section is 010000h.

BANK BOOTSECTION OVERLAY 010000h

Linker Command BANKVECTOR

The BANKVECTOR linker command specifies the vector address used for passing
control to overlays. This command is used in conjunction with the BANKAREA
and BANK linker commands. Valid values for the vector address depend upon the
target processor. For the Z180 family, the valid values are 0, 8, 16, 24, 32, 40, 48,
and 56.

Syntax: BANKVECTOR <address>

Example

The following example specifies that vector address 56 should be used as the overlay
manager vector address.

BANKVECTOR 56

Z180 C-Compiler
User Manual

UM004300-COR0200 Linker Command File

52

Linker Command COPY

This command makes a copy of a control section. The control section is loaded at the
specified location, rather than at its linker-determined location. This command is
designed to make a copy of an initialized RAM data section in a ROM address space,
so that the RAM may be initialized from the ROM at run time.

Syntax: COPY <section> <address-space> [AT <expression>]

The <section> must be a control section name, and the <address-space> must be an
address space name. The optional AT <expression> is used to copy the control sec-
tion to a specific address in the target address space.

Example: COPY bank1_data ROM or COPY bank1_data ROM at %1000

Linker Command GROUP

This command allows the user to group control sections together and define the size
of the grouped sections using the RANGE command.

Syntax: GROUP <group name> = <section1> [,<section2>...]

The group name is the name of the grouped sections. The group name can not be the
same name as an existing address space. Section1 and section2 are the sections
assigned to the group. Sections within a group are allocated in the specified order.

NOTE: The new group’s lower address location and size must be defined uisng the linker’s
RANGE command.

Example:

GROUP RAM =.data,.bss

RANGE RAM = 1000h:1FFFh

This example defines RAM as a block of memory in the range of 1000h to 1FFFh.
The .data and .bss control sections are allocated to this block. The .data sec-
tion is allocated at address 1000h and the .bss section is allocated at the end of the
.data section.

Z180 C-Compiler
User Manual

Linker Command File UM004300-COR0200

53

Linker Command DEFINE

This command is used for a link-time creation of a user defined public symbol. It
helps in resolving any external references (EXTERN) used in assembly time.

Syntax: DEFINE <symbol name> = <expression>

<symbol name> is the name of the public symbol. <expression> is the value of the
public symbol.

Example: DEFINE copy_size = copy top of usr_seg - copy base of usr_seg

 The “Expression Formats” section, which follows, explains different types of
expressions that can be used.

Linker command LOCATE

This command sets the base address for a control section.

Syntax: LOCATE <name> <address>

Example:LOCATE .text 1000h

The name must be a control section name. The address be within the address range
of the address space to which the control section belongs.

Linker command NOLOAD

This command sets the attribute of the control section as no load.

Syntax: NOLOAD <name1> <name2>

Example:NOLOAD csec, dsec

The <namen> must be a control section name or a group name.

Z180 C-Compiler
User Manual

UM004300-COR0200 Linker Command Line

54

Linker Command ORDER

This command determines a sequence of linking.

Syntax: ORDER <name1> [,<name2> ...]

<namen> must be a control section name.

Example: ORDER CODE1, CODE2

Linker Command RANGE

This command sets the lower and upper limits of a control section or an address
space. The linker issues a warning message if an address falls beyond the range
declared with this command.

The linker provides multiple ways for the user to apply this command for a link ses-
sion. Each separate case of the possible syntax is described below.
CASE 1

Syntax : RANGE <name> <expression> , <length> [, ...]

<name> may be a control section, or an address space. The first <expression> indi-
cates the lower bound for the given address RANGE. The <length> is the length, in
words, of the object.

Example: RANGE ROM %700 , %100
CASE 2

Syntax :RANGE <name> <expression> : <expression> [, ...]

<name> may be a control section or an address space. The first <expression> indi-
cates the lower bound for the given address RANGE. The second <expression> is the
upper bound for it.

Example: RANGE ROM %17ff : %2000

NOTE: Refer to the Expression Formats for the format of writing an expression.

LINKER COMMAND LINE

The syntax for the linker command line is:

Z180 C-Compiler
User Manual

Linker Command Line UM004300-COR0200

55

ZLD [<options>]<filename1> ...<filenamen> .

• The “[]” enclosing the string “options” denotes that the options are not
mandatory. In this document this convention is continued for further
discussion on linker’s syntax and operations.

• The items enclosed in “< >” indicate the non-literal items.

• The “. . .” (ellipses) indicate that multiple tokens can be specified. These tokens
are of the type of the non-literal specified in the syntax just prior to the ellipses.

• The syntax uses “%” prefix to a number to specify a hexadecimal numeric
representation.

• The linker links the files listed in <filename> list. Each <filename> is the name
of a COFF object file or library file, or the name of a text file containing linker
commands and options.

COMMAND LINE SPECIFICATIONS

The following rules govern the command line specification:

• ZLD examines the named files’ content to determine the file type (object,
library, or command).

• The file names of the input files specified on the command line must be
separated by spaces or tabs.

• The commands are not case sensitive; however, command line options and
symbol names are case sensitive.

• The order of specifying options does not matter.

• The options must appear before the filenames.

• Specifying that input files use both command line and list creates a union of
the two sets of inputs that is treated as input object and library files. The linker
links the file twice, if the file names appear twice.

Z180 C-Compiler
User Manual

UM004300-COR0200 Linker Command Line

56

• During linking, the linker combines all object files in the order specified and
resolves the external references. linker searches through the library files when
it is unable to resolve references.

• A command file is a text file containing linker commands and options.
Comments can be specified by use of the “;” character.

• If the linker is unable to open a named object file, library file, or a link
command file, an error message is written to the standard error device, and the
linker terminates without linking anything.

• If an unsupported OMF type of object file is included in the <filename> list,
the linker displays an error message and terminates without linking anything.

Z180 C-Compiler
User Manual

Linker Command Line UM004300-COR0200

57

LINKER COMMAND LINE OPTIONS

Linker options are specified by prefixing an option word with a minus (-). The linker
options are summarized in Table 6 .

1. It is not required that options be specified alphabetically on the command line.
2. If any other option word is used, an error message is written to the messages file, and the

linker terminates without linking anything.
3. All options must be preceded by a dash (-).

For more information on the linker options refer to the ZDS On-line help.

TABLE 6. SUMMARY OF LINKER OPTIONS

Options Description

-? Displays product logo, version number, and brief description of
command line format and options.

-a Generates an absolute object file in Intel Hex Format or Zilog
Symbol Format.

-e <entry> Specifies the program entry point. <entry> is any Public symbol.

-g Generates symbolic debug information.

-m <mapfile> Generates the map file.

-o
<objectfile>

Generates the output file.

-q Disables display of linker’s copyright notice.

-r Disables address range checking on relocatable expression. This
option should be used when linking compiler generated code.

-W Treats warnings as errors.

-w Disables the generation of warning messages.

Z180 C-Compiler
User Manual

UM004300-COR0200 Using the Librarian

58

Symbol File In Zilog Symbol Format
A symbol file in the Zilog symbol format is generated when the user specifies the
absolute link mode (-a linker option). It is in the standard Zilog symbol format,
shown in Figure 11, which follows. In each row, the first column lists the symbol
name, second column lists the attribute of the symbol (“I” stands for internal symbol,
“N” stands for local symbol, and “X” stands for public symbol), and the third col-
umn provides the value of the symbol expressed as four hexadecimal bytes.

FIGURE 11. SAMPLE SYMBOL FILE

USING THE LIBRARIAN

The librarian allows the user to modify libraries and view the contents of individual
library files.

The syntax for the librarian command line is as follows:

Zar [options] library [member1 … membern]

_dgt_outbfr I 0000800d

_digit_cntr I 00008011

_dgt_inbfr I 00008012

_led_refresh I 000000b5

hex_reg N 00008009

_bcd_hex_conv
I fffff7f5

_7conv_reg_4 N 00008009

_8conv_reg_3 N 0000800a

Z180 C-Compiler
User Manual

Using the Librarian UM004300-COR0200

59

The librarian performs the operation specified in the options on the named library
using the named member files. Libraries conventionally have an extension of .lib
and library members have an extension of .o .

COMMAND LINE OPTIONS

Command line options are specified by prefixing an option letter with a minus (-).
The command line options are summarized in Table 7.

.

TABLE 7. SUMMARY OF LIBRARY OPTIONS

Options Description

-? Requests a usage display.

-a Appends the specified members to the library. This command does not
replace an existing member that has the same name as an added
member; it simply appends new members to the end of the library.

-d Deletes the specified members from the library.

-q Quiet mode: suppress display of the librarian copyright notice.

-r Replaces the specified members in the library. If a specified member is
not found in the library, the librarian adds it instead of replacing it.

-t Prints a table of contents of the library. If you don’t specify any
member names, the librarian lists the names of all members of the
library. If you specify any member names, only those members are
listed.

-x Extracts the specified members from the library. The librarian does not
remove from the library those members that it extracts.

Z180 C-Compiler
User Manual

UM004300-COR0200 Function Calls

61

Run Time Environment

FUNCTION CALLS

The C-compiler imposes a strict set of rules on function calls. Except for special
runtime-support functions, any function that calls or is called by a C-function must
follow these rules. Failure to adhere to these rules can disrupt the C-environment and
cause a program to fail.

FUNCTION CALL STEPS

A function must perform the following tasks when it is called. Refer to Figure 12.

1. Push the frame pointer (IX) onto the stack.

2. Allocate the local frame.

3. If the function modifies BC, DE or IY , push them on the stack. Any other registers
may be modified without preserving them.

4. Execute the code for the function.

5. If the function returns a scalar value, place it in the accumulator (HL for scalars
greater than eight bits; A for eight-bit scalars), or in the HL:DE register pair for
thirty-two bit scalars.

6. Deallocate the local frame.

7. Restore the caller’s frame pointer.

8. Return

Z180 C-Compiler
User Manual

UM004300-COR0200 Function Calls

62

FIGURE 12. FRAME LAYOUT

SPECIAL CASES FOR A CALLED FUNCTION

The following exceptions apply to special cases for called functions.

Returning a structure

If the function returns a structure, the caller allocates the space for the structure on
top of the stack. The size of the space allocated is the size of structure plus two addi-
tional bytes. To return a structure, the called function then copies the structure to the
space allocated by the caller.

Not allocating a local frame

If there are no local variables or arguments an d no use of temporary locations, the
code is not being compiled to run under the debugger and the function does not
return a structure, there is no need to allocate a stack frame.

ParameterN

.

.

.
Parameter 1

Parameter 0

Return address

Caller’s frame pointer (IX)

Locals

Temporaries

Low Address

Stack Pointer

Frame Pointer

Run Time Stack
High Address

Z180 C-Compiler
User Manual

Overlay Support UM004300-COR0200

63

OVERLAY SUPPORT

The compiler supports program overlays using the Z180 memory management unit
(MMU). Overlays allow the user to increase their maximum executable-file-size
from 64 KB (without overlays) to 1 MB (with overlays).

The compiler creates overlays by dividing the application into a resident portion that
is loaded upon the application execution. Overlays are then mapped into the MMU
bank area as needed.

One load file is created by this method and makes it possible to run large programs.
However, the disadvantages are:

• an increase in program execution time. This increase is due to the amount of
overhead involved in manipulating the MMU.

• more space is needed because the application contains the code for the overlay
manager.

ENABLING OVERLAYS

Enable overlays by using the –ZiLOG command-line option. After overlays are
enabled all function calls to external modules make use of a far call instruction.
This function uses four-bytes instead of the usual three-bytes required for a normal
(or near) call.

The format of the far call is as follows.

 Rst IntNo IntNo is the restart interrupt

.byte OverlayNumber The overlay number

.word OverlayEntry Offset of the entry point

The restart instruction passes control to the static overlay manager which determines
which overlay is being called, and maps it into the MMU bank area. The restart vec-
tor to use is specified using the linker’s BANKVECTOR command.

Z180 C-Compiler
User Manual

UM004300-COR0200 Overlay Support

64

 Configuring Source Files

To enable overlay support the user must configure two assembly-language source
files that are included in the compiler distribution. Theses files are:

• z180boot.s C run-time startup module

• z180mmu.s Static overlay manager

To configure the z180boot.s file define the symbol .OVERLAY. When this sym-
bol is defined the startup routine calls the overlay manager initialization routine. The
overlay manager initialization routine is required for proper operation of the static
overlay manager.

NOTE: Overlay support is enabled by default.

To configure the z180mmu.s file perform the following steps.

1. Define the symbol .FCDEPTH. This symbol is used to define the function call
depth that the overlay manager should support (default is eight). Three bytes are
required for each function call level.

2. Define the symbol .CBAR. This symbol defines the value to be loaded into the
MMU’s CBAR register. This can be defined in the z180mmu.s file itself, or
defined in the linker command file or another source file. By default, this is
declared as an external symbol and requires that it be defined in a linker command
file or another source module. The CBAR register is an eight-bit register, the upper
nibble defines the start address of common area 1 and the end address of the bank
area. The lower nibble of CBAR defines the start address of the bank area. The
static overlay manager assumes that all overlays are mapped into the bank area.

NOTE: Ensure that the function __z180Overla y (defined in z180mmu.s) services the
restart interrupt specified using the linker’s BANKVECTOR command. Do this by loading
the appropriate restart vector with the address of __z180Overlay .

Z180 C-Compiler
User Manual

Using the Run-Time Library UM004300-COR0200

65

USING THE RUN-TIME LIBRARY

The C-Compiler provides a collection of run-time libraries that can be easily refer-
enced and incorporated into your code. The following sections describe the use and
format of run-time libraries. Each library function is declared in a supplied header
file. These header files can be included in C programs using the #include prepro-
cessor directive. See Defining Preprocessor Symbols on page -17 for more informa-
tion on including header files.

Each header file contains declarations for a set of related functions plus any neces-
sary types and additional macros. See Table 8 for a description of each header file
that is include with the C-Compiler.

The header files are installed in the include directory of the compiler installation
path. The library files are installed in the lib directory of the compiler installation
path.

The standard C runtime libraries are separated into two files. These two files consist
of integer support (libc.lib) and floating-point support libraries (libf.lib).
Both libraries are required to support floating point calculations. Both libraries con-
tain versions of printf() and scanf() , and their variants to minimize the run-
time library size for applications that do not require floating-point support. If float-
ing-point versions of these library functions are required, then the library
libf.lib should be specified before libc.lib in the project file.

Z180 C-Compiler
User Manual

UM004300-COR0200 Using the Run-Time Library

66

INSTALLED FILES

The header files in Table 8 are installed in the C-Compiler installation directory.

TABLE 8. INSTALLED LIBRARY FILES

File Description

asset.h Asserts

ctype.h Character handling functions

errno.h Errors

float.h Floating point limits

limits.h Interger limits

math.h Math functions

stdarg.h Variable argument macros

stddef.h Standard defines

stdio.h Standard types and defines

stdlib.h General utility functions

string.h String handling functions

zilog.h ZiLOG specific functions and defines

Z180 C-Compiler
User Manual

Library Functions UM004300-COR0200

67

LIBRARY FUNCTIONS

Run-time library routines are provided for the following:

• Buffer Manipulation

• Character Classification and Conversion

• Data Conversion

• Math

• Searching and Sorting

• String Manipulation

• Variable-Length Argument Lists

• Intrinsic functions

 abs FUNCTION

Header file statement: #include<stdlib.h>

Syntax: int abs (int n);

The abs function returns the absolute value of its integer parameter n.

Return Value

The abs function returns the absolute value of its parameter. There is no error return.

•

Parameter Description

n Integer Value

Z180 C-Compiler
User Manual

UM004300-COR0200 Library Functions

68

acos FUNCTION

Header file statement: #include<math.h>

Syntax: double acos (double x);

The acos functions return the arccosine of x in the range 0 to Pi radians. The value of
x must be between -1 and 1.

Return Value

The acos functions return the arccosine result.

asin FUNCTION

Header file statement: #include<math.h>

Syntax: double asin (double x);

The asin functions calculate the arcsine of x in the range -Pi/2 to Pi/2 radians. The
value of x must be between -1 and 1.

Return Value

The asin functions return the arcsine result.

Parameter Description

x Value whose arccosine is
to be calculated

Parameter Description

x Value whose arcsine is to
be calculated

Z180 C-Compiler
User Manual

Library Functions UM004300-COR0200

69

atan, atan2 FUNCTION

Header file statement: #include<math.h>

Syntax: double atan (double x);

double atan2(double y, double x);

The atan family of functions calculates the arctangent of x, and the atan2 family of
functions calculates the arctangent of y/x. The atan group returns a value in the range
-pi/2 to pi/2 radians, and the atan2 group returns a value in the range -pi to pi radians.

The atan2 functions use the signs of both parameters to determine the quadrant of the
return value. The atan2 functions are well defined for every point other than the ori-
gin, even if x equals 0 and y does not equal 0.

Return Value

The atan family of functions returns the arctangent result

_asm FUNCTION

Header file statement: #include <zilog.h>

Syntax: _asm ("assembly language instruction")

The _asm pseudo-function emits the specified assembly language instruction to the
compiler-generated assembly file. The _asm pseudo-function accepts a single
parameter, which must be a string literal. The assembly instruction is placed as is in
the assembly file, and the user has to follow all the assembler conventions when
emitting the assembly instructions through the _asm instruction.

Return Value

There is no return value.

Parameter Description

x,y Any number

Z180 C-Compiler
User Manual

UM004300-COR0200 Library Functions

70

 atof, atoi, atol FUNCTIONS

Header file statement: #include <stdlib.h>

Syntax: double atof (const char *string);

int atoi (const char *string);

long atol (const char *string);

These functions convert a character string to a double-precision floating-point value
(atof), an integer value (atoi), or a long integer value (atol). The input string is a
sequence of characters that can be interpreted as a numerical value of the specified
type.

The function stops reading the input string at the first character that it cannot recog-
nize as part of a number. This character may be the null character (‘\0’) terminating
the string.

The atof function expects string to have the following form:

[whitespace] [sign] [digits] [.digits] [{d | D | e | E }[sign]digits]

A whitespace consists of space and/or tab characters, which are ignored; sign is
either plus (+) or minus (-); and digits are one or more decimal digits. If no digits
appear before the decimal point, at least one must appear after the decimal point. The
decimal digits may be followed by an exponent, which consists of an introductory
letter (d, D, e, or E) and an optionally signed decimal integer.

The atoi and atol functions do not recognize decimal points or exponents. The string
argument for these functions has the form

[whitespace] [sign]digits

where whitespace, sign, and digits are exactly as described above for atof.

Parameter Description

string String to be converted

Z180 C-Compiler
User Manual

Library Functions UM004300-COR0200

71

Return Value

Each function returns the double, int, or long value produced by interpreting the
input characters as a number. The return value is 0 (for atoi), 0L (for atol), and 0.0
(for atof) if the input cannot be converted to a value of that type.

• The return value is undefined in case of overflow.

ceil FUNCTION

Header file statement: #include<math.h>

Syntax: double ceil (double x);

The ceil function returns a double value representing the smallest integer that is
greater than or equal to x.

Return Value

This function returns the double result. There is no error return.

Parameter Description

x Floating-point value

Z180 C-Compiler
User Manual

UM004300-COR0200 Library Functions

72

cos, cosh FUNCTION

Header file statement: #include<math.h>

Syntax: double cos (double x);

double cosh (double x);

The cos and cosh functions return the cosine and hyperbolic cosine, respectively, of
x.

Return Value

The cos function returns the cosine result. The cosh function returns the hyperbolic
cosine result.

div FUNCTION

Header file statement: #include <stdlib.h>

Syntax: div_t div (int num, int denom);

The div function divides numer by denom, computing the quotient and the remain-
der. The div_t structure contains the following elements:

Parameter Description

x Angle in radians

Parameter Description

numer Numerator
denom Denominator

Element Description

int quot Quotient

Z180 C-Compiler
User Manual

Library Functions UM004300-COR0200

73

The sign of the quotient is the same as that of the mathematical quotient. Its absolute
value is the largest integer that is less than the absolute value of the mathematical
quotient. If the denominator is 0, the behavior is undefined.

Return Value

The div function returns a structure of type div_t, comprising both the quotient and
the remainder. The structure is defined in the stdlib.h header file.

exp FUNCTION

Header file statement: #include<math.h>

Syntax: double exp (double x);

The exp function returns the exponential function of their floating-point parameter
(x).

Return Value

This function returns the exponential value of x.

 fabs FUNCTION

Header file statement: #include<math.h>

Syntax: double fabs (double x);

int rem Remainder

Parameter Description

x Floating-point value

Element Description

Z180 C-Compiler
User Manual

UM004300-COR0200 Library Functions

74

The fabs function calculates the absolute value of its floating-point parameter (x).

Return Value

This function returns the absolute value of its argument. There is no error return.

floor FUNCTION

Header file statement: #include <math.h>

Syntax: double floor (double x);

The floor function returns a floating-point value representing the largest integer that
is less than or equal to x.

Return Value

This function returns the floating-point result. There is no error return.

fmod FUNCTION

Header file statement: #include <math.h>

Syntax: double fmod (double x, double y);

Parameter Description

x Floating-point value

Parameter Description

x Floating-point value

Parameter Description

x,y Floating-point values

Z180 C-Compiler
User Manual

Library Functions UM004300-COR0200

75

The fmod function calculates the floating-point remainder f of x / y such that x = i *
y + f, where i is an integer, f has the same sign as x, and the absolute value of f is less
than the absolute value of y.

Return Value

This function returns the floating-point remainder. If y is 0, the function returns 0.

Z180 C-Compiler
User Manual

UM004300-COR0200 Library Functions

76

frexp FUNCTION

Header file statement: #include <math.h>

Syntax: double frexp (double x, int * expptr);

The frexp function breaks down the floating-point value (x) into a mantissa (m) and
an exponent (n), such that the absolute value of m is greater than or equal to 0.5 and
less than 1.0, and x equals m times (2 raised to the power of n). The integer exponent
n is stored at the location pointed to by expptr.

Return Value

This function returns the mantissa. If x is 0, the function returns 0 for both the man-
tissa and the exponent. There is no error return.

Parameter Description

x,y Floating-point value

expptr Pointer to stored integer
exponent

Z180 C-Compiler
User Manual

Library Functions UM004300-COR0200

77

is FUNCTIONS

Header file statement: #include <ctype.h>

Syntax: int isalnum (int c);

int isalpha (int c);

int iscntrl (int c);

int isdigit (int c);

int isgraph (int c);

int islower (int c);

int isprint (int c);

int ispunct (int c);

int isspace (int c);

int isupper (int c);

int isxdigit (int c);

Each function in the is family tests a given integer value, returning a nonzero value
if the integer satisfies the test condition and 0 if it does not. The ASCII character set
is assumed.

The is functions and their test conditions are listed below:

Function Test Condition

isalnum Alphanumeric (‘A’-‘Z’, ‘a’-‘z’, or ‘0’-‘9’)

isalpha Letter (‘A’-‘Z’ or ‘a’-‘z’)

iscntrl Control character (0x00 - 0x1F or 0x7F)

Parameter Description

c Interger to be tested

Z180 C-Compiler
User Manual

UM004300-COR0200 Library Functions

78

isdigit Digit (‘0’-‘9’)

isgraph Printable character except space (‘ ‘)

islower Lowercase letter (‘a’-‘z’)

isprint Printable character (0x20 - 0x7E)

ispunct Punctuation character

isspace White-space character (0x09 - 0x0D or 0x20)

isupper Uppercase letter (‘A’-‘Z’)

isxdigit Hexadecimal digit (‘A’-‘F’,’a’-‘f’, or ‘0’-‘9’)

Return Value

These routines return a nonzero value if the integer satisfies the test condition and 0
if the interger does not satisfy the test condition.

labs FUNCTION

Header file statement: #include <stdlib.h>

Syntax: long labs (long n);

The labs function produces the absolute value of its long-integer argument n.

Return Value

The labs function returns the absolute value of its argument. There is no error
returned.

Parameter Description

n Long-integer value

Z180 C-Compiler
User Manual

Library Functions UM004300-COR0200

79

ldexp FUNCTION

Header file statement: #include <math.h>

Syntax: double ldexp (double x, int exp);

The ldexp function calculates the value of x * (2 raised to the power of exp).

Return Value

This function returns an exponential value.

Parameter Description

x Floating-point value

exp Integer exponent

Z180 C-Compiler
User Manual

UM004300-COR0200 Library Functions

80

ldiv FUNCTION

Header file statement: #include <stdlib.h>

Syntax: ldiv_t ldiv (long int numer, long int denom);

The ldiv function divides numer by denom, computing the quotient and the remain-
der. The sign of the quotient is the same as that of the mathematical quotient. Its
absolute value is the largest integer that is less than the absolute value of the mathe-
matical quotient. If the denominator is 0, the program will terminate with an error
message.

The ldiv function is similar to the div function, with the difference being that the
arguments and the members of the returned structure are all of type long int.

The ldiv_t structure, defined in STDLIB.H, contains the following elements.

Return Value

The ldiv function returns a structure of type ldiv_t, comprising both the quotient and
the remainder.

Parameter Description

numer Numerator

denom Denominator

Element Description

long int quot Quotient

long int rem Remainder

Z180 C-Compiler
User Manual

Library Functions UM004300-COR0200

81

log, log10 FUNCTION

Header file statement: #include <math.h>

Syntax: double log (double x);

double log10(double x);

The log and log10 functions calculate the natural logarithm and the base-10 loga-
rithm, respectively, of x.

Return Value

The log functions return the logarithm of x.

memchr FUNCTION

Header file statement: #include <string.h>

Syntax: void *memchr (const void *buf, int c, size_t count)

The memchr function looks for the first occurrence of c in the first count bytes of
buf . It stops when it finds c or when it has checked the first count bytes.

Return Value

If successful, memchr returns a pointer to the first location of c in buf. Otherwise, it
returns NULL.

Element Description

x Value whose logarithm is to be found

Parameter Description

buf Pointer to buffer
c Character to look for

count Number of characters

Z180 C-Compiler
User Manual

UM004300-COR0200 Library Functions

82

memcmp FUNCTION

Header file statement: #include <string.h>

Syntax: int memcmp (const void *buf1, const void *buf2, size_t count)

The memcmp function compares the first count bytes of buf1 and buf2 and returns a
value indicating their relationship, as follows:

Value Meaning

< 0 buf1 less than buf2

= 0 buf1 identical to buf2

> 0 buf1 greater than buf2

Return Value

The memcmp function returns an integer value, as described above.

memcpy FUNCTION

Header file statement: #include <string.h>

Syntax: void *memcpy (void *dest, const void *src, size_t count)

Parameter Description

buf1 First buffer
buf2 Second buffer

count Number of characters

Parameter Description

dest New buffer
src Buffer to copy from

count Number of characters to copy

Z180 C-Compiler
User Manual

Library Functions UM004300-COR0200

83

The memcpy function copies count bytes of src to dest. If the source and destination
overlap, these functions do not ensure that the original source bytes in the overlap-
ping region are copied before being overwritten. Use memmove to handle overlap-
ping regions.

Return Value

The memcpy function returns the value of dest .

memmove FUNCTION

Header file statement: #include <string.h>

Syntax: void *memmove (void *dest, const void *src, size_t count)

The memmove function copies count characters from the source (src) to the destina-
tion (dest). If some regions of the source area and the destination overlap, the mem-
move function ensures that the original source bytes in the overlapping region are
copied before being overwritten.

Return Value

The memmove function returns the value of dest .

Parameter Description

dest Destination object
src Source object

count Number of characters to copy

Z180 C-Compiler
User Manual

UM004300-COR0200 Library Functions

84

memset FUNCTION

Header file statement: #include <string.h>

Syntax: void *memset (void *dest, int c, size_t count)

The memset function sets the first count bytes of dest to the character c .

Return Value

The memset function returns the value of dest .

modf FUNCTION

Header file statement: #include <math.h>

Syntax: double modf (double x, double *intptr);

The modf functions breaks down the floating-point value x into fractional and inte-
ger parts, each of which has the same sign as x. The signed fractional portion of x is
returned. The integer portion is stored as a floating-point value at the location
pointed to by the intptr parameter.

Return Value

The modf function returns the signed fractional portion of x. There is no error return.

Parameter Description

dest Pointer to destination
c Character to set

count Number of characters

Parameter Description

x Floating-point value

intptr Pointer to stored integer
portion

Z180 C-Compiler
User Manual

Library Functions UM004300-COR0200

85

POW FUNCTION

Header file statement: #include <math.h>

Syntax: double pow (double x, double y);

The pow function computes x raised to the power of y .

Return Value

The pow function returns the value of x y.

rand FUNCTION

Header file statement: #include <stdlib.h>

Syntax: int rand (void);

The rand function returns a pseudorandom integer in the range 0 to RAND_MAX.
The srand routine can be used to seed the pseudorandom-number generator before
calling rand.

Return Value

The rand function returns a pseudorandom number, as described above. There is
no error returned.

Parameter Description

x Number to be raised

y Power of x

Z180 C-Compiler
User Manual

UM004300-COR0200 Library Functions

86

sin, sinh FUNCTION

Header file statement: #include<math.h>

Syntax: double sin (double x);

double sinh (double x);

The sin and sinh functions find the sine and hyperbolic sine of x, respectively.

Return Value

The sin function returns the sine result. The sinh function returns the hyperbolic
sine result.

sprintf FUNCTION

Header file statement: #include <stdio.h>

Syntax: int sprintf (char *buffer, const char *format [, argument] ...);

The sprintf function formats and stores a series of characters and values in
buffer. Each argument (if any) is converted and output according to the correspond-

Parameter Description

x Angle in radians

Parameter Description

buffer Storage location for output

format Format-control string

argument Optional arguments

count Maximum number of bytes to
store

Z180 C-Compiler
User Manual

Library Functions UM004300-COR0200

87

ing format specification in the format. A null character is appended to the end of the
characters written but is not counted in the return value.

Return Value

The sprintf function returns the number of characters stored in buffer, not counting
the terminating null character.

Format Specifiers

Format specifications always begin with a percent sign (%) and are read left to right.
When the first format specification is encountered, the value of the first argument
after format is converted and is output accordingly. The second format specification
causes the second argument to be converted and output, and so on. If there are more
arguments than there are format specifications, the extra arguments are ignored. The
results are undefined if there are not enough arguments for all the format specifica-
tions.

Each field of the format specification is a single character or a number signifying a
particular format option. The simplest format specification contains only the percent
sign and a type character (for example, %s). The optional fields, which appear before
the type character, control other aspects of the formatting.

After the % sign, the following format specifiers can be used in the following
sequence:

• Zero or more flags that modify the meaning of the conversion specification.

• An optional decimal integer specifying a minimum field width (%). If the
converted value has fewer characters than the field width, it will be padded
with spaces on the left (or right, if the left adjustment flag, described later, has
been given) to the field width.

Z180 C-Compiler
User Manual

UM004300-COR0200 Library Functions

88

• An optional precision that gives the minimum number of digits to appear for
the d, i, o, u, x and X conversions, the number of digits to appear after the
decimal point character for e, E and f conversions, the maximum number of
significant digits for the g and G conversions, or the maximum number of
characters to be written from a string in s conversion. The precision takes the
form of a period (.) followed by an optional decimal integer; if the integer is
omitted, it is treated as zero.

• An optional h specifying that a following d, i, o, u, x or X conversion specifier
applies to a short int or unsigned short int argument (the argument will have
been promoted according to the integral promotions, and its value shall be
converted to short int or unsigned short int before printing); an optional h
specifying that the following n conversion specifier applies to a pointer to a
short int argument; an optional l (ell) specifying that a following d, i, o, u, x or
X conversion specifier applies to a long int or unsigned long int argument; an
optional l specifying that a following n conversion specifier applies to a pointer
to a long int argument; or an optional L specifying that a following e, E, f, g or
G conversion specifier applies to a long double argument. If an h, l or L appears
with any other conversion specifier, the behavior is undefined.

• A character that specifies the type of conversion to be applied.

• A field width or precision, or both, may be indicated by an asterisk * instead of
a digit string. In this case, an int argument supplies the field width or precision.
The arguments specifying field width or precision, or both, shall appear (in that
order) before the argument (if any) to be converted. A negative field width
argument is taken as a - flag followed by a positive field width. A negative
precision argument is taken as if it were missing.

The flag characters and their meanings are:

– A minus sign (-) means the result of the conversion will be left-justified
within the field.

– A plus sign (+) means the result of a signed conversion will always begin
with a plus or minus sign.

Z180 C-Compiler
User Manual

Library Functions UM004300-COR0200

89

– A space will be prepended to the result if the first character of a signed
conversion is not a sign, or if a signed conversion results in no characters.
If the space and + flags both appear, the space flag will be ignored.

– A pound sign means (#) the result will be converted to an “alternate
form”. For o conversion, it increases the precision to force the first digit
of the result to be a zero. For x (or X) conversion, a nonzero result will
have 0x (or 0X) prepended to it. For e, E, f, g and G conversions, the
result will always contain a decimal point character, even if no digits
follow it (normally, a decimal point character appears in the result of
these conversions only if a digit follows it). For g and G conversions,
trailing zeros will not be removed from the result.For other conversions,
the behavior is undefined.

– Leading zeroes (0), following any indication of sign or base, are used to
pad to the field width for d, i, o, u, x, X, e, E, f, g and G; no space padding
is performed. If the O and – flags both appear, the 0 flag will be ignored.
For d, i, o, u, x and X conversions, if a precision is specified, the 0 flag
will be ignored. For other conversions, the behavior is undefined.

The conversion specifiers and their meanings are:

– The d, i, o, u, x, X specifiers convert the int argument into a
signed decimal (d or i), unsigned octal (o), unsigned decimal (u) or
unsigned hexadecimal notation (x or X); the letters abcdef are used for
x conversion and the letters ABCDEF for X conversion. The precision
specifies the minimum number of digits to appear; if the value being
converted can be represented in fewer digits, it will be expanded with
leading zeros. The default precision is 1. The result of converting a zero
value with an explicit precision of zero is no characters.

– The f specifier converts the double argument into decimal notation
using the style [-]ddd.ddd, where the number of digits after the decimal-
point character is equal to the precision specification. If the precision is
missing, it is taken as 6; if the precision is explicitly zero, no decimal-
point character appears. If a decimal-point character appears, at least
one digit appears before it. The value is rounded to the appropriate
number of digits.

Z180 C-Compiler
User Manual

UM004300-COR0200 Library Functions

90

– The e, E specifiers convert the double argument into the style [-
]d.ddde+/-dd, where there is one digit before the decimal-point character
(which is nonzero if the argument is nonzero) and the number of digits
after it is equal to the precision; if the precision is missing, it is taken as
6; if the precision is zero, no decimal-point character appears. The value
is rounded to the appropriate number of digits. The E conversion
specifier will produce a number with E instead of e introducing the
exponent. The exponent always contains at least two digits. If the value
is zero, the exponent is zero.

– The g, G specifiers converts the double argument into the style f or e
(or in style E in the case of a G conversion specifier), with the precision
specifying the number of significant digits. If an explicit precision is
zero, it is taken as 1. The style used depends on the value converted; style
e will be used only if the exponent resulting from such a conversion is
less than -4 or greater than or equal to the precision. Trailing zeros are
removed from the fractional portion of the result; a decimal-point
character appears only if it is followed by a digit.

– The c specifier converts the int argument into an unsigned char, and the
resulting character is written.

– The s specifier indicates that the argument is a pointer to an array of
character type(%%). Characters from the array are written up to (but not
including) a terminating null character; if the precision is specified, no
more than that many characters are written. If the precision is not
specified or is greater than the size of the array, the array shall contain a
null character.

– The p specifier indicates that the argument is a pointer to void. The value
of the pointer is converted to a sequence of printable characters, in an
implementation-defined manner.

– The n specifier indicates that the argument is a pointer to an integer that
will contain the number of characters written to the output by the call to
sprintf . No argument is converted.

– The percent (%) specifier indicates that no argument is converted. The
complete conversion specification shall be %%.

Z180 C-Compiler
User Manual

Library Functions UM004300-COR0200

91

NOTES: The following are rules for the above specifiers:

1. If a conversion specification is invalid, the behavior is undefined.

2. If any argument is, or points to, a union or an aggregate (except for an
array of character type using %s conversion, or a pointer cast to be a
pointer to void using %p conversion) the behavior is undefined.

3. In no case does a nonexistent or small field width cause truncation of a
field; if the result of a conversion is wider than the field width, the field
is expanded to contain the conversion result.

SQRT FUNCTION

Header file statement: #include<math.h>

Syntax double sqrt(double x);

The sqrt functions calculate the square root of x.

Return Value

The sqrt functions return the square-root result.

Parameter Description

x Nonnegative floating-point value

Z180 C-Compiler
User Manual

UM004300-COR0200 Library Functions

92

 srand FUNCTION

Header file statement: #include <stdlib.h>

Syntax: void srand (unsigned int seed);

The srand function sets the starting point for generating a series of pseudorandom
integers. To reinitialize the generator, use 1 as the seed argument. Any other value for
seed sets the generator to a random starting point.

The rand function is used to retrieve the pseudorandom numbers that are generated.
Calling rand before any call to srand generates the same sequence as calling srand
with seed passed as 1.

Return Value

There is no return value.

sscanf FUNCTION

Header file statement: #include <stdio.h>

Syntax: int sscanf (const char *buffer, const char *format [, argument]
...);

Parameter Description

seed Seed for random-number generation

Parameter Description

buffer Stored data

format Format-control string

argument Optional arguments

Z180 C-Compiler
User Manual

Library Functions UM004300-COR0200

93

The sscanf function reads data from buffer into the locations given by each argu-
ment. Every argument must be a pointer to a variable with a type that corresponds to
a type specifier in format. The format controls the interpretation of the input fields.

Return Value

The sscanf function returns the number of fields that were successfully converted
and assigned. The return value does not include fields that were read but not
assigned.

The return value is EOF for an attempt to read at end-of-string. A return value of 0
means that no fields were assigned.

Format Specifiers

The format should be a multi-byte character sequence, beginning and ending in its
initial shift state. The format is composed of:

• zero or more directives:

• one or more white-space characters

• an ordinary multi-byte character (not %); or a conversion specification.

Each conversion specification is introduced by the percent (%) character. After the
%, the following appear in sequence:

• An optional assignment-suppressing character (*).

• An optional decimal integer that specifies the maximum field width.

• An optional h, l (ell) or L indicating the size of the receiving object. The
conversion specifiers d, i and n shall be preceded by h if the corresponding
argument is a pointer to short int rather than a pointer to int, or by l if it is a
pointer to long int. Similarly, the conversion specifiers o, u and x shall be
preceded by h if the corresponding argument is a pointer to unsigned short
rather than a pointer to unsigned int, or by l if it is a pointer to unsigned long
int. Finally, the conversion specifiers e, f and g shall be preceded by l if the
corresponding argument is a pointer to double rather than a pointer to float, or
by L if it is a pointer to long double. If an h, l or L appears with any other
conversion specifier, the behavior is undefined.

Z180 C-Compiler
User Manual

UM004300-COR0200 Library Functions

94

• A character that specifies the type of conversion to be applied. The valid
conversion specifiers are described below.

The sscanf function executes each directive of the format in turn. If a directive
fails, as detailed below, the sscanf function returns. Failures are described as input
failures (due to the unavailability of input characters), or matching failures (due to
inappropriate input).

The following rules apply to the execution of a directive:

• A directive composed of white-space is executed by reading input up to the
first non-white-space character (which remains unread), or until no more
characters can be read.

• A directive that is an ordinary multi-byte character is executed by reading the
next characters of the stream. If one of the characters differs from one
comprising the directive, the directive fails, and the differing and subsequent
characters remain unread.

• A directive that is a conversion specification defines a set of matching input
sequences, as described below for each specifier.

A conversion specification is executed in the following steps:

– Input white-space characters (as specified by the isspace function) are
skipped, unless the specification includes a [, c or n specifier.

– An input item is read, unless the specification includes an n specifier. An
input item is defines as the longest sequence of input characters (up to
any specified maximum field width) which is an initial subsequence of a
matching sequence. The first character, if any, after the input item
remains unread. If the length of the input item is zero, the execution of
the directive fails: this condition is a matching failure, unless an error
prevented input, in which case it is an input failure.

– Except in the case of a% specifier, the input item (or, in the case of a%n
directive, the count of input characters) is converted to a type appropriate
to the conversion specifier. If the input item is not a matching sequence,
the execution of the directive fails: this condition is a matching failure.
Unless assignment suppression was indicated by a *, the result of the

Z180 C-Compiler
User Manual

Library Functions UM004300-COR0200

95

conversion is placed in the object pointed to by the first argument
following the format argument that has not already received a conversion
result.

– If this object does not have an appropriate type, or if the result of the
conversion cannot be represented in the space provided, the behavior is
undefined.

The following are valid conversion specifiers:

– The d specifier matches an optionally signed decimal integer, whose
format is the same as expected for the subject sequence of the strtol
function with the value 10 for the base argument. The corresponding
argument shall be a pointer to integer.

– The I specifier matches an optionally signed integer, whose format is the
same as expected for the subject sequence of the strtol function with the
value 0 for the base argument. The corresponding argument shall be a
pointer to integer.

– The o specifier matches an optionally signed octal integer, whose format
is the same as expected for the subject sequence of the strtol function
with the value 8 for the base argument. The corresponding argument shall
be a pointer to unsigned integer.

– The u specifier matches an optionally signed decimal integer, whose
format is the same as expected for the subject sequence of the strtol
function with the value 10 for the base argument. The corresponding
argument shall be a pointer to unsigned integer.

– The x specifier matches an optionally signed hexadecimal integer, whose
format is the same as expected for the subject sequence of the strtol
function with the value 16 for the base argument. The corresponding
argument shall be a pointer to unsigned integer.

– The e, f, g specifiers match an optionally signed floating-point
number, whose format is the same as expected for the subject string of
the strtod function. The corresponding argument shall be a pointer to
floating.

Z180 C-Compiler
User Manual

UM004300-COR0200 Library Functions

96

– The s specifier matches a sequence of non-white-space characters (%).
The corresponding argument shall be a pointer to the initial character of
an array large enough to accept the sequence and a terminating null
character, which will be added automatically.

– The bracket ([) specifier matches a non-empty sequence of characters
(%) from a set of expected characters (the scanset). The corresponding
argument shall be a pointer to the initial character of an array large
enough to accept the sequence and a terminating null character, which
will be added automatically. The conversion specifier includes all
subsequent characters in the format string, up to and including the
matching right bracket (]). The characters between the brackets (the
scanlist) comprise the scanset, unless the character after the left bracket
is a circumflex (̂), in which case the scanset contains all characters that
do not appear in the scanlist between the circumflex and the right bracket.
As a special case, if the conversion specifier begins with [] or [^], the
right bracket character is in the scanlist and the next right bracket
character is the matching right bracket that ends the specification. If a -
character is in the scanlist and is not the first, nor the second where the
first character is a ^, nor the last character, the behavior is
implementation-defined.

– The c specifier matches a sequence of characters (%) of the number
specified by the field width (1 if no field width is present in the directive).
The corresponding argument shall be a pointer to the first character of an
array large enough to accept the sequence. No null character is added.

– The P specifier matches an implementation-defined set of sequences,
which should be the same as the set of sequences that may be produced
by the %P conversion of the sprintf function. The corresponding
argument shall be a pointer to a pointer to void. The interpretation of the
input item is implementation-defined; however, for any input item other
than a value converted earlier during the same program execution, the
behavior of the %P conversion is undefined.

– The n specifier indicates that no input is consumed. The corresponding
argument shall be a pointer to integer that will contain the number of

Z180 C-Compiler
User Manual

Library Functions UM004300-COR0200

97

characters read from the input so far by this call to the sscanf function.
Execution of a %n directive does not increment the assignment count
returned at the completion of execution of the sscanf function.

– The percent sign (%) matches a single %; no conversion or assignment
occurs. The complete conversion specification shall be %%.

NOTES: The following are rules for the above specifiers

1. If a conversion specification is invalid, the behavior is undefined.

2. The conversion specifiers E, G and X are also valid and behave the
same as, respectively, e, g and x.

3. If end-of-file is encountered during input, conversion is terminated.

4. If end-of-file occurs before any characters matching the current direc-
tive have been read (other than leading white-space, where permitted),
execution of the current directive terminates with an input failure; oth-
erwise, unless execution of the current directive is terminated with a
matching failure, execution of the following directive (if any) is termi-
nated with an input failure.

5. If conversion terminates on a conflicting input character, the offending
input character is left unread on the input. Trailing white-space
(including new-line characters) is left unread unless matched by a
directive. The success of literal matches and suppressed assignments
is not directly determinable other than via the %n directive.

Z180 C-Compiler
User Manual

UM004300-COR0200 Library Functions

98

strcat FUNCTION

Header file statement: #include <string.h>

Syntax: char *strcat (char *string1, const char *string2);

The strcat function appends string2 to string1, terminates the resulting string
with a null character, and returns a pointer to the concatenated string (string1).

The strcat function operates on null-terminated strings. The string arguments to
this function are expected to contain a null character (‘\0’) marking the end of the
string. No overflow checking is performed when strings are copied or appended.

Return Value

The return values for this function are described above.

strchr FUNCTION

Header file statement: #include <string.h>

Syntax: char *strchr (const char *string, int c);

The strchr function returns a pointer to the first occurrence of c (converted to
char) in string. The converted character c may be the null character (‘\0’); the termi-
nating null character of string is included in the search. The function returns NULL
if the character is not found.

Parameter Description

string1 Destination string
string2 Source string

Parameter Description

string Source string
c Character to be located

Z180 C-Compiler
User Manual

Library Functions UM004300-COR0200

99

The strchr function operates on null-terminated strings. The string arguments to
these functions are expected to contain a null character (‘\0’) marking the end of the
string.

Return Value

The return values for this function are described above.

strcmp FUNCTION

Header file statement: #include <string.h>

Syntax: int strcmp (const char *string1, const char *string2);

The strcmp function compares string1 and string2 lexicographically and returns a
value indicating their relationship, as follows:

Value Meaning

< 0 string1 less than string2

= 0 string1 identical to string2

> 0 string1 greater than string2

The strcmp function operates on null-terminated strings. The string arguments to
these functions are expected to contain a null character (‘\0’) marking the end of the
string.

Note that two strings containing characters located between ‘Z’ and ‘a’ in the ASCII
table (‘[’, ‘\’_’]’, ‘^’, ‘_’, and ‘‘’) compare differently depending on their case. For
example, the two strings, "ABCDE" and "ABCD^", compare one way if the compar-
ison is lowercase ("abcde" > "abcd^") and compare the other way ("ABCDE" <
"ABCD^") if it is uppercase.

Parameter Description

string1 String to compare
string2 String to compare

Z180 C-Compiler
User Manual

UM004300-COR0200 Library Functions

100

Return Value

The return values for this functions are described above.

strcpy FUNCTION

Header file statement: #include <string.h>

Syntax: char *strcpy (char *string1, const char *string2);

The strcpy function copies string2, including the terminating null character, to the
location specified by string1, and returns string1.

The strcpy function operates on null-terminated strings. The string arguments to
this function are expected to contain a null character (‘\0’) marking the end of the
string. No overflow checking is performed when strings are copied or appended.

Return Value

The return values for this function are described above.

strcspn FUNCTION

Header file statement: #include <string.h>

Syntax: size_t strcspn (const char *string1, const char *string2);

Parameter Description

string1 Destination string
string2 Source string

Parameter Description

string1 Source string
string2 Character set

Z180 C-Compiler
User Manual

Library Functions UM004300-COR0200

101

The strcspn functions return the index of the first character in string1 belonging
to the set of characters specified by string2. This value is equivalent to the length of
the initial substring of string1 consisting entirely of characters not in string2. Termi-
nating null characters are not considered in the search. If string1 begins with a char-
acter from string2, strcspn returns 0.

The strcspn function operates on null-terminated strings. The string arguments
to these functions are expected to contain a null character (‘\0’) marking the end of
the string.

Return Value

The return values for this function are described above.

strlen FUNCTION

Header file statement: #include <string.h>

Syntax: size_t strlen (const char *string);

The strlen function returns the length, in bytes, of string, not including the termi-
nating null character (‘\0’).

Return Value

This function returns the string length. There is no error returned.

Parameter Description

string Null-terminated string

Z180 C-Compiler
User Manual

UM004300-COR0200 Library Functions

102

strncat FUNCTION

Header file statement: #include <string.h>

Syntax: char *strncat (char *string1, const char *string2, size_t count);

The strncat function appends, at most, the first count characters of string2 to
string1, terminate the resulting string with a null character (‘\0’), and return a pointer
to the concatenated string (string1). If count is greater than the length of string2, the
length of string2 is used in place of count.

Return Value

The return values for these functions are described above.

Parameter Description

string1 Destination string
string2 Source string

count Number of characters appended

Z180 C-Compiler
User Manual

Library Functions UM004300-COR0200

103

strncmp FUNCTION

Header file statement: #include <string.h>

Syntax: int strncmp (const char *string1, const char *string2, size_t count);

The strncmp function lexicographically compares, at most, the first count charac-
ters of string1 and string2 and return a value indicating the relationship between the
substrings, as listed below:

Value Meaning

< 0 string1 less than string2

= 0 string1 identical to string2

> 0 string1 greater than string2

Return Value

The return values for this function are described above.

Parameter Description

string1 String to compare
string2 String to compare
count Number of characters compared

Z180 C-Compiler
User Manual

UM004300-COR0200 Library Functions

104

strncpy FUNCTION

Header file statement: #include <string.h>

Syntax: char *strncpy (char *string1, const char *string2, size_t count);

The strncpy function copies count characters of string2 to string1 and return
string1. If count is less than the length of string2, a null character (‘\0’) is not
appended automatically to the copied string. If count is greater than the length of
string2, the string1 result is padded with null characters (‘\0’) up to length count.

Note that the behavior of strncpy is undefined if the address ranges of the source
and destination strings overlap.

Return Value

The return values for this function are described above.

strpbrk FUNCTION

Header file statement: #include <string.h>

Syntax: char *strpbrk (const char *string1, const char *string2);

The strpbrk function finds the first occurrence in string1 of any character from
string2. The terminating null character (‘\0’) is not included in the search.

Parameter Description

string1 Destination string
string2 Source string
count Number of characters copied

Parameter Description

string1 Source string
string2 Character set

Z180 C-Compiler
User Manual

Library Functions UM004300-COR0200

105

Return Value

This function returns a pointer to the first occurrence of any character from string2 in
string1. A NULL return value indicates that the two string arguments have no char-
acters in common.

strrchr FUNCTION

Header file statement: #include <string.h>

Syntax: char *strrchr (const char *string, int c);

The strrchr function finds the last occurrence of c (converted to char) in string.
The string’s terminating null character (‘\0’) is included in the search. (Use strchr to
find the first occurrence of c in string.)

Return Value

This function returns a pointer to the last occurrence of the character in the string. A
NULL pointer is returned if the given character is not found.

Parameter Description

string Searched string
c Character to be located

Z180 C-Compiler
User Manual

UM004300-COR0200 Library Functions

106

strspn FUNCTION

Header file statement: #include <string.h>

Syntax: size_t strspn (const char *string1, const char *string2);

The strspn function returns the index of the first character in string1 that does not
belong to the set of characters specified by string2. This value is equivalent to the
length of the initial substring of string1 that consists entirely of characters from
string2 . The null character (‘\0’) terminating string2 is not considered in the match-
ing process. If string1 begins with a character not in string2, strspn returns 0.

Return Value

This function returns an integer value specifying the length of the segment in string1
consisting entirely of characters in string2.

strstr FUNCTION

Header file statement: #include <string.h>

Syntax: char *strstr (const char *string1, const char *string2)

The strstr function returns a pointer to the first occurrence of string2 in string1.

Return Value

Parameter Description

string1 Searched string
string2 Character set

Parameter Description

string1 Searched string
string2 String to search for

Z180 C-Compiler
User Manual

Library Functions UM004300-COR0200

107

This function returns either a pointer to the first occurrence of string2 in string1, or
NULL if it does not find the string.

strtok FUNCTION

Header file statement: #include <string.h>

Syntax: char *strtok (char *string1, const char *string2)

The strtok function reads string1 as a series of zero or more tokens and string2 as
the set of characters serving as delimiter of the tokens in string1. The tokens in
string1 may be separated by one or more of the delimiters from string2.

The tokens can be broken out of string1 by a series of calls to strtok. In the first
call to strtok for string1, strtok searches for the first token in string1, skipping lead-
ing delimiters. A pointer to the first token is returned. To read the next token from
string1, call strtok with a NULL value for the string1 argument. The NULL
string1 argument causes strtok to search for the next token in the previous token
string. The set of delimiters may vary from call to call, so string2 can take any value.

Note that calls to this function will modify string1, because each time strtok is
called it inserts a null character (‘\0’) after the token in string1.

Return Value

The first time strtok is called, it returns a pointer to the first token in string1. In
later calls with the same token string, strtok returns a pointer to the next token in
the string. A NULL pointer is returned when there are no more tokens. All tokens are
null-terminated.

Parameter Description

string1 String containing token(s)
string2 Set of delimiter characters

Z180 C-Compiler
User Manual

UM004300-COR0200 Library Functions

108

strtod, strtol, strtoul FUNCTIONS

Header file statement: #include <stdlib.h>

Syntax: double strtod (const char *nptr, char **endptr);

long strtol (const char *nptr, char **endptr, int base);

unsigned long strtoul (const char *nptr, char **endptr, int base
)

The strtod , strtol , and strtoul functions convert a character string to a dou-
ble-precision value, a long-integer value, or an unsigned long-integer value, respec-
tively. The input string is a sequence of characters that can be interpreted as a
numerical value of the specified type.

These functions stop reading the string at the first character they cannot recognize as
part of a number. This may be the null character (‘\0’) at the end of the string. With
strtol or strtoul, this terminating character can also be the first numeric character
greater than or equal to base. If endptr is not NULL, a pointer to the character that
stopped the scan is stored at the location pointed to by endptr. If no conversion could
be performed (no valid digits were found or an invalid base was specified), the value
of nptr is stored at the location pointed to by endptr.

The strtod function expects nptr to point to a string with the following form:

[whitespace] [sign] [digits] [.digits] [{d | D | e | E}[sign]digits]

A whitespace consists of space and tab characters, which are ignored; sign is either
plus (+) or minus (-); and digits are one or more decimal digits. If no digits appear
before the decimal point, at least one must appear after the decimal point. The deci-

Parameter Description

nptr String to convert

endptr Pointer to character that stops
scan

base Number base to use

Z180 C-Compiler
User Manual

Library Functions UM004300-COR0200

109

mal digits can be followed by an exponent, which consists of an introductory letter
(b, D, e, or E) and an optionally signed decimal integer.

The first character that does not fit this form stops the scan.

The strtol and strtoul functions expect nptr to point to a string with the fol-
lowing form:

[whitespace] [{ + | -}] [0 [{ x | X }]] [digits]

If base is between 2 and 36, then it is used as the base of the number. If base is 0, the
initial characters of the string pointed to by nptr are used to determine the base. If the
first character is 0 and the second character is not ‘x’ or ‘X’, then the string is inter-
preted as an octal integer; otherwise, it is interpreted as a decimal number. If the first
character is ‘0’ and the second character is ‘x’ or ‘X’, then the string is interpreted as
a hexadecimal integer. If the first character is ‘1’ through ‘9’, then the string is inter-
preted as a decimal integer. The letters ‘a’ through ‘z’ (or ‘A’ through ‘Z’) are
assigned the values 10 through 35; only letters whose assigned values are less than
base are permitted.

The strtoul function allows a plus (+) or minus (-) sign prefix; a leading minus sign
indicates that the return value is negated.

Return Value

The strtod function returns the value of the floating-point number, except when
the representation would cause an overflow, in which case they return +/-
HUGE_VAL. The functions return 0 if no conversion could be performed or an
underflow occurred.

The strtol function returns the value represented in the string, except when the
representation would cause an overflow, in which case it returns LONG_MAX or
LONG_MIN. The function returns 0 if no conversion could be performed.

The strtoul function returns the converted value, if any. If no conversion can be
performed, the function returns 0. The function returns ULONG_MAX on overflow.

In all these functions, errno is set to ERANGE if overflow or underflow occurs.

Z180 C-Compiler
User Manual

UM004300-COR0200 Library Functions

110

tan, tanh FUNCTION

Header file statement: #include<math.h>

Syntax: double tan (double x);

double tanh (double x);

The tan and tanh functions find the tangent and hyperbolic tangent of x, respec-
tively.

Return Value

The tan function returns the tangent result. The tanh function returns the hyper-
bolic tangent result.

Parameter Description

x Angle in radian

Z180 C-Compiler
User Manual

Library Functions UM004300-COR0200

111

tolower, toupper FUNCTIONS

Header file statement: #include <ctype.h>

Syntax: int tolower (int c);

int toupper (int c);

The tolower and toupper routines macros convert a single character, as
described below:

Function MacroDescription

tolower tolower Converts c to lowercase if appropriate

toupper toupper Converts c to uppercase if appropriate

The tolower routine converts c to lowercase if c represents an uppercase letter. Oth-
erwise, c is unchanged.

The toupper routine converts c to uppercase if c represents an lowercase letter.
Otherwise, c is unchanged.

Return Value

The tolower and toupper routines return the converted character c. There is no
error returned.

Parameter Description

c Character to be converted

Z180 C-Compiler
User Manual

UM004300-COR0200 Library Functions

112

 va_arg, va_end, va_start FUNCTIONS

Header file statement: #include <stdarg.h>

Syntax: type va_arg (va_list arg_ptr, type);

void va_end (va_list arg_ptr);

void va_start (va_list arg_ptr, prev_param)

The va_arg , va_end , and va_start macros provide a portable way to access
the arguments to a function when the function takes a variable number of arguments.
The macros are listed below:

Macro Description

va_arg Macro to retrieve current argument

va_end Macro to reset arg_ptr

va_list The typedef for the pointer to list of arguments

va_start Macro to set arg_ptr to beginning of list of optional arguments

The macros assume that the function takes a fixed number of required arguments,
followed by a variable number of optional arguments. The required arguments are
declared as ordinary parameters to the function and can be accessed through the
parameter names. The optional arguments are accessed through the macros in
STDARG.H, which set a pointer to the first optional argument in the argument list,
retrieve arguments from the list, and reset the pointer when argument processing is
completed.

The ANSI C standard macros, defined in STDARG.H, are used as follows:

Parameter Description

arg_ptr Pointer to list of arguments
prev_param Pointer preceding first optional

argument

type Type of argument to be retrieved

Z180 C-Compiler
User Manual

Library Functions UM004300-COR0200

113

• All required arguments to the function are declared as parameters in the usual
way.

• The va_start macro sets arg_ptr to the first optional argument in the list of
arguments passed to the function. The argument arg_ptr must have
va_list type. The argument prev_param is the name of the required
parameter immediately preceding the first optional argument in the argument
list. If prev_param is declared with the register storage class, the macro’s
behavior is undefined. The va_start macro must be used before va_arg is used
for the first time.

• The va_arg macro does the following:

– Retrieves a value of type from the location given by arg_ptr

– Increments arg_ptr to point to the next argument in the list, using the size
of type to determine where the next argument starts

– The va_arg macro can be used any number of times within the function
to retrieve arguments from the list.

– After all arguments have been retrieved, va_end resets the pointer to
NULL.

Return Value

The va_arg macro returns the current argument va_start and va_end do
not return values.

Z180 C-Compiler
User Manual

UM004300-COR0200 Library Functions

114

vsprintf FUNCTION

Header file statement: #include <stdio.h>

#include <stdarg.h>

Syntax: int vsprintf (char *buffer, const char *format, va_list arg_ptr);

The vsprintf function formats data and outputs data to the memory pointed to by
buffer. This functions are similar to its counterpart sprintf, but accepts a pointer to a
list of arguments instead of an argument list.

The format argument has the same form and function as the format argument for the
sprintf function; see sprintf for a description of format.

The argptr parameter has type va_list, which is defined in the include files
STDARG.H. The argptr parameter points to a list of arguments that are converted
and output according to the corresponding format specifications in the format.

Return Value

The return value for vsprintf is the number of characters written, not counting
the terminating null character.

Parameter Description

format Format control

argptr Pointer to list of arguments

buffer Storage location for output

count Maximum number of bytes

Z180 C-Compiler
User Manual

UM004300-COR0200 Initialization File

115

Initialization and Link Files

INITIALIZATION FILE

The following is the initialization file that is included with the Z180 C-Compiler
installation.

;***

;* Z180Boot: C Runtime Startup
;* Copyright (c) ZiLOG, 1999
;***

;***

.sect ".bss "; In case no-one
else names it
;***

.sect ".startup"; This should be placed properly

.def _c_int0

.def __exit

.ref _main

.ref .BSS_BASE,.BSS_LENGTH

.ref .TOS

.OVERLAY .equ 1 ; Overlay support ?

.INITBSS .equ 1 ; Zero the .bss section ?

.INITASCI .equ 1 ; Initialize ASCI

;**********************************
; Program entry point
;**********************************

Z180 C-Compiler
User Manual

UM004300-COR0200 Initialization File

116

_c_int0:
ld sp,.TOS ; Setup SP

.if .INITASCI

; Initialize ASCI0 to 57.6K, 8 data bits, no parity,
; 2 stop bits, no flow control.
ld a,%ff
out0 (%46),a ; Port B AFSR, enable ASCI, CSIO
ld a,%80
out0 (%1f),a ; CCR PHI = XTAL/1
ld a,%0
out0 (%02),a ; asci_cntlb0 = 0

 ld a,8
 out0 (%1a),a ; asci_astc0l = 8
 ld a,0
 out0 (%1b),a ; asci_astc0h = 0

ld a,%6c
out0 (%12),a ; asci_asext0 = 0x6c
in0 a,(%4)
and a,%fe
out0 (%4),a ; asci_stat0 = asci_stat0 and 0xfe
ld a,%65
out0 (%0),a ; asci_cntla0 = 0x65

.endif

.if .INITBSS

;------ Initialize the .BSS section to zero

ld bc,.BSS_LENGTH; Check for non-zero length
ld a,0 ; *
cp a,b ; *
jr nz,$f ; *

Z180 C-Compiler
User Manual

 Initialization File UM004300-COR0200

117

cp a,c ; *
jr z,_c_bss_done; .BSS is zero-length ...

$$:
ld hl,.BSS_BASE; [hl]=.bss
ld (hl),0
dec bc ; 1st

byte's taken care of
ld a,b ;

modify zero flag
or a,c
jr z,_c_bss_done; Just 1 byte ...
ld de,.BSS_BASE+1; [de]=.bss+1
ldir

_c_bss_done:

.endif ; .INITBSS

;*******************************;
.ifdef .OVERLAY
.ref __z180OverlayInit
call __z180OverlayInit
.endif

;*******************************;

;------ main()

ld hl,0 ; hl=NULL
push hl ; argv[0] = NULL
ld ix,0
add ix,sp ; ix=&argv[0]
push ix ; &argv[0]
push hl ; argc==0
nop
call _main ; main()
pop af ; clean the stack
pop af ; *
pop af ; *

__exit:
jr $; ?

;***
*

.def ___HUGE_VAL
___HUGE_VAL

.long 80000000h
;***
*

.end

LINK FILE

The following is the linker initialization file that is included with the Z180 C-Compiler
installation.

-a

-ohello

-mhello

assign .const rom

assign .startup rom

order .startup

range rom 08400h:0ffffh

define .TOS=highaddr of rom-1

define .BSS_BASE=base of .bss

define .BSS_LENGTH=length of .bss

define .CBAR=0BAh; Common/Bank Area Register (for C runtime)

z180boot.o

z180mmu.o

z180eval.o

hello.o

"..\lib\libc.lib"

Z180 C-Compiler
User Manual

 MMU file UM004300-COR0200

119

"..\lib\lhf.lib"

MMU FILE

The following is the MMU initialization file that is included with the Z180 C-Com-
piler installation.

;***

;* Z180mmu: C Runtime Overlay Manager
;* Copyright (c) ZiLOG, 1999
;***

;***

.FCDEPTH .equ 8 ; Maximum overlay call depth

.def __z180Overlay

.define .ovlhf,space=ROM
.section .ovlhf
jp __z180Overlay

.ref .CBAR ; MMU Common/Bank
Area Register

;***

bbr .equ 039h ; Bank Base
Register
cbar .equ 03Ah ; Common/Bank Area
Register
;***

fcall .struct

Z180 C-Compiler
User Manual

UM004300-COR0200 MMU file

120

ret .word
seg .byte
fclen .endstruct
fcstack .tag fcall

.bss fcstack,fclen*.FCDEPTH

.bss fcsp,2
;***

.page
;***

; Initialize the overlay manager
;***

.def __z180OverlayInit
__z180OverlayInit:

ld hl,fcstack; Prime the far call stack
pointer

ld (fcsp),hl; *
ld a,.CBAR ; Common/Bank Area

Register
out0 (cbar),a; *
ret ; Done

;***

.page
;***

; Far Call entry point
;---

; Stack layout: [sp]->address of (RST p)+1
;***

.def __z180Overlay
__z180Overlay:

Z180 C-Compiler
User Manual

 MMU file UM004300-COR0200

121

push hl ; Allocate 1 word for indirect call
push ix ; Save frame pointer
ld ix,0 ; Establish our frame
add ix,sp ; *
push af ; Save scratch
push hl ; *
push de ; *

ld l,(ix+4); [hl]=RSTp+1
ld h,(ix+5); *
ld a,(hl); (a)=Callee's Bank Base Register
inc hl ; *
ld e,(hl) ; [de]=&(function to call)
inc hl ; *
ld d,(hl) ; *
inc hl ; [hl]=&(next sequential instruction)
ld (ix+2),e ; Patch in callee address
ld (ix+3),d ; *

in0 e,(bbr) ; (e)=Caller's bank base register
cp a,e ; Caller's BBR == Callee's BBR ?
jr nz,.stack ; No ... need to stack it ...

ld (ix+4),l; Patch in caller's return address
ld (ix+5),h; *
jr .common; Rejoin common

.stack:
ld (ix+4),<__z180OverlayRet ; Patch in kernel
return address
ld (ix+5),>__z180OverlayRet; *
ex de,hl ; (de)=Caller's return address
ld hl,(fcsp) ; (hl)=Far call stack pointer
ld (hl),e ; Save caller's return address
inc hl ; *
ld (hl),d ; *
inc hl ; *

in0 e,(bbr) ; (e)=Caller's bank base register
ld (hl),e ; Save caller's BBR
inc hl ; *
ld (fcsp),hl; Update far call stack pointer
out0 (bbr),a ; Map the callee into view

.common:
pop de ; Recover scratch
pop hl ; *
pop af ; *
pop ix ; Recover frame pointer
ret ; Dispatch the callee

;***
*

.page
;***
*

.def __z180OverlayRet
__z180OverlayRet:

push hl ; Save scratch
push af ; *
push de ; *
ld hl,(fcsp); Far call stack pointer
dec hl ; *
ld a,(hl) ; Caller's bank base register
dec hl ; *
out0 (bbr),a ; Remap caller
ld d,(hl) ; Reload caller's return address
dec hl ; *
ld e,(hl) ; *
ld (fcsp),hl; Update far call stack pointer
ex de,hl ; (hl)=Caller's return address
pop de ; Recover scratch
pop af ; *
ex (sp),hl ; Recover (hl); load caller's return
ret ; Back to caller

;***
*

.end

Z180 C-Compiler
User Manual

UM004300-COR0200

123

ASCII Character Set

TABLE 9. ASCII CHARACTER SET

Graphic Decimal Hexadecimal Comments

0 0 Null

1 1 Start Of Heading

2 2 Start Of Text

3 3 End Of Text

4 4 End Or Transmission

5 5 Enquiry

6 6 Acknowledge

7 7 Bell

8 8 Backspace

9 9 Horizontal Tabulation

10 A Line Feed

11 B Vertical Tabulation

12 C Form Feed

13 D Carriage Return

14 E Shift Out

15 F Shift In

16 10 Data Link Escape

Z180 C-Compiler
User Manual

UM004300-COR0200

124

17 11 Device Control 1

18 12 Device Control 2

19 13 Device Control 3

20 14 Device Control 4

21 15 Negative Acknowledge

22 16 Synchronous Idle

23 17 End Of Block

24 18 Cancel

25 19 End Of Medium

26 1A Substitute

27 1B Escape

28 1C File Separator

29 1D Group Separator

30 1E Record Separator

31 1F Unit Separator

32 20 Space

! 33 21 Exclamation Point

" 34 22 Quotation Mark

35 23 Number Sign

$ 36 24 Dollar Sign

TABLE 9. ASCII CHARACTER SET (CONTINUED)

Graphic Decimal Hexadecimal Comments

Z180 C-Compiler
User Manual

 UM004300-COR0200

125

% 37 25 Percent Sign

& 38 26 Ampersand

' 39 27 Apostrophe

(40 28 Opening (Left) Parenthesis

) 41 29 Closing (Right) Parenthesis

* 42 2A Asterisk

+ 43 2B Plus

, 44 2C Comma

- 45 2D Hyphen (Minus)

. 46 2E Period

/ 47 2F Slant

0 48 30 Zero

1 49 31 One

2 50 32 Two

3 51 33 Three

4 52 34 Four

5 53 35 Five

6 54 36 Six

7 55 37 Seven

8 56 38 Eight

TABLE 9. ASCII CHARACTER SET (CONTINUED)

Graphic Decimal Hexadecimal Comments

Z180 C-Compiler
User Manual

UM004300-COR0200

126

9 57 39 Nine

: 58 3A Colon

; 59 3B Semicolon

< 60 3C Less Than

= 61 3D Equals

> 62 3E Greater Than

? 63 3F Question Mark

@ 64 40 Commercial At

A 65 41 Uppercase A

B 66 42 Uppercase B

C 67 43 Uppercase C

D 68 44 Uppercase D

E 69 45 Uppercase E

F 70 46 Uppercase F

G 71 47 Uppercase G

H 72 48 Uppercase H

I 73 49 Uppercase I

J 74 4A Uppercase J

K 75 4B Uppercase K

L 76 4C Uppercase L

TABLE 9. ASCII CHARACTER SET (CONTINUED)

Graphic Decimal Hexadecimal Comments

Z180 C-Compiler
User Manual

 UM004300-COR0200

127

M 77 4D Uppercase M

N 78 4E Uppercase N

0 79 4F Uppercase 0

P 80 50 Uppercase P

Q 81 51 Uppercase Q

R 82 52 Uppercase R

S 83 53 Uppercase S

T 84 54 Uppercase T

U 85 55 Uppercase U

V 86 56 Uppercase V

W 87 57 Uppercase W

X 88 58 Uppercase X

Y 89 59 Uppercase Y

Z 90 5A Uppercase Z

[91 5B Opening (Left) Bracket

\ 92 5C Reverse Slant

] 93 5D Closing (Right) Bracket

^ 94 5E Circumflex

_ 95 SF Underscore

` 96 60 Grave Accent

TABLE 9. ASCII CHARACTER SET (CONTINUED)

Graphic Decimal Hexadecimal Comments

Z180 C-Compiler
User Manual

UM004300-COR0200

128

a 97 61 Lowercase A

b 98 62 Lowercase B

c 99 63 Lowercase C

d 100 64 Lowercase D

e 101 65 Lowercase E

f 102 66 Lowercase F

g 103 67 Lowercase G

h 104 68 Lowercase H

i 105 69 Lowercase I

j 106 6A Lowercase J

k 107 6B Lowercase K

1 108 6C Lowercase L

m 109 6D Lowercase M

n 110 6E Lowercase N

o 111 6F Lowercase O

p 112 70 Lowercase P

q 113 71 Lowercase Q

r 114 72 Lowercase R

s 115 73 Lowercase S

t 116 74 Lowercase T

TABLE 9. ASCII CHARACTER SET (CONTINUED)

Graphic Decimal Hexadecimal Comments

Z180 C-Compiler
User Manual

 UM004300-COR0200

129

u 117 75 Lowercase U

v 118 76 Lowercase V

w 119 77 Lowercase W

x 120 78 Lowercase X

y 121 79 Lowercase Y

z 122 7A Lowercase Z

{ 123 7B Opening (Left) Brace

| 124 7C Vertical Line

} 125 7D Closing (Right) Brace

~ 126 7E Tilde

127 7F Delete

TABLE 9. ASCII CHARACTER SET (CONTINUED)

Graphic Decimal Hexadecimal Comments

Z180 C-Compiler
User Manual

UM004300-COR0200

130

Z180 C-Compiler
User Manual

UM004300-COR0200

131

Problem/Suggestion Report Form

If you experience any problems while using this product, or if you note any inaccura-
cies while reading the User's Manual, please copy this form, fill it out, then mail or
fax it to ZiLOG. We also welcome your suggestions!

Customer Information

Product Information and Return Information

Problem Description or Suggestion

Provide a complete description of the problem or your suggestion. If you are
reporting a specific problem, include all steps leading up to the occurrence of the
problem. Attach additional pages as necessary.

Name Country

Company Telephone

Address Fax Number

City/State/ZIP E-Mail Address

Serial # or Board Fab #/Rev. # ZiLOG , Inc.

Software Version System Test/Customer Support

Manual Number 910 E. Hamilton Ave., Suite 110, MS 4-3

Host Computer Description/Type Campbell, CA 95008

Fax Number: (408) 558-8536

Email: tools@zilog.com

__

Z180 C-Compiler
User Manual

UM004300-COR0200

133

Glossary

AABS Absolute Value

Address Space Physical or logical area of the target system’s
Memory Map. The memory map could be phys-

ically
partitioned into ROM to store code, and RAM for

data.
The memory can also be divided logically to

form sepa-
rate areas for code and data storage.

ANSI American National Standards Institute.

ASCII American Standard Code of Information Inter-
change.

ASM Assembler File.

B Binary.

Binary Number system based on 2. A binary digit is a
bit.

Bisynchronous
Communications A protocol for communications data transfer
used

extensive in mainframe computer networks. The
sending and receiving computers synchronize

Z180 C-Compiler
User Manual

UM004300-COR0200

134

their
clocks before data transfer may begin.

C-Compiler A compiler program that is used to link and build
files written in C, convert them into assembly
and then create a hex file that can be dowloaded
or run on a processor.

Bit A digit of a binary system. It has only two
possible

values: 0 or 1.

BPS Bits Per Second. Number of binary digits trans-
mitted

every second during a data-transfer procedure.

Buffer Storage Area in Memory.

Bug A defect or unexpected characteristic or event.

Bus In Electronics, a parallel interconnection of the
internal

units of a system that enables data transfer and
control Information.

Byte A collection of four sequential bits of memory.
Two

sequential bytes (8 bits) comprise one word.

CALL This command invokes a subroutine

Z180 C-Compiler
User Manual

UM004300-COR0200

135

Checksum A field of one or more bytes appended to a block
of n

words which contains a truncated binary sum
formed

from the contents of that block. The sum is used
to

verify the integrity of data in a ROM or on a tape.

COM Device name used to designate a communica-
tion

port.

Z180 C-Compiler
User Manual

UM004300-COR0200

136

Control Section A continuous logical area containing code or
user

data. Each control section has a name. The
linker puts

all those control sections with the same name in
one

entity. The linker provides address spaces to the
control sections. There are either absolute

control
sections or relocatable ones.

CPU Central Processing Unit.

Cross-Linkage Editor A linkage editor that executes on a processor
that is not

the same as the target processor.

DSP Digital Signal Processing. A specialized
micropro-

cessor that is tailored to perform high repetition
math

processing and improve signal quality.

Emulator An emulation device. For example, an In-Circuit
Emulator (ICE) module duplicates the behavior

of the
chip it emulates in the circuit being tested.

External Symbol A symbol that is referenced in the current
program file

but is defined in another program file.

Z180 C-Compiler
User Manual

UM004300-COR0200

137

GUI Graphical User Interface. The windows and text
that a

user sees on their computer screen when they
are

using a program.

H Hexadecimal, Half-Carry Flag.

Hex Hexadecimal.

Hexadecimal A Base-16 Number System. Hex values are
often

substituted for harder to read binary numbers.

ICE In-Circuit Emulator. A ZiLOG product which
supports

the application design process.

IE Interrupt Enable.

IM Immediate Data Addressing Mode.

IMASK Interrupt Mask Register.

IMR Interrupt Mask Register.

INC Increment.

INCW Increment Word.

Initialize To establish start-up parameters, typically
involving

Z180 C-Compiler
User Manual

UM004300-COR0200

138

clearing all of some part of the device’s memory
space.

Instruction Command.

INT Interrupt.

Internal Symbol A symbol that is defined in a program file. This
symbol

could be visible to multiple functions within the
same

program file.

I/O Input/Output. In computers, the part of the
system that

deals with interfacing to external devices for
input or

output, such as keyboards or printers.

IPR Interrupt Priority Register.

Ir Indirect Working-Register Pair Only.

IR Infrared. A light frequency range just below that
of

visible light.

IRQ Interrupt Request.

ISDN Integrated Services Digital Network.

ISO International Standards Organization.

Z180 C-Compiler
User Manual

UM004300-COR0200

139

JP Jump.

JR Jump Range.

Library A File Created by a Librarian. This file contains a
collection of object modules that were created

by an
assembler or directly by a C compiler.

Local Symbol Symbol visible only to a particular function within
a

program file.

LSB Least Significant Bit.

MCU Microcontroller or Microcomputer Unit.

MI Minus.

MLD Multiply and Load.

MPYA Multiply and ADD.

MPYS Multiply and Subtract.

MSB Most Significant Bit.

Nibble A Group of 4 Bits.

NMI Non-Maskable Interrupt.

NOP No Operation.

Z180 C-Compiler
User Manual

UM004300-COR0200

140

Object Module Programming code created by assembling a file
with

an assembler or compiling a file with a compiler.
These are relocatable object modules and are

input to
the linker in order to produce an executable file.

OMF Object Module Format.

OPC Operation Code.

Op Code Operation Code.

OTP One-Time Programmable.

PCON Port configuration register.

PER Peripheral. A device which supports the import
or

output of information.

POP Retrieve a Value from the Stack.

POR Power-On Reset.

Port The point at which a communications circuit
termi-

nates at a Network, Serial, or Parallel Interface
card.

PRE Prescaler.

Z180 C-Compiler
User Manual

UM004300-COR0200

141

PROM Programmable Read-Only Memory.

Protocol Formal set of communications procedures
governing

the format and control between two communica-
tions

devices. A protocol determines the type of error
checking to be used, the data compression

method, if
any, how the sending device will indicate that it

has
finished sending a message, and how the

receiving
device will indicate that it has received a

message.

PRT Programmable Reload Timer or Print.

PTR Pointer.

PTT Post, Telephone, and Telegraph. Agency in
many

countries that is responsible for providing tele-
commu-

nication approvals.

Public/Global Symbol A programming variable that is available to more
than

one program file.

PUSH Store a Value In the Stack.

Z180 C-Compiler
User Manual

UM004300-COR0200

142

r Working Register Address.

R Register or Working-Register Address, Rising
Edge.

RA Relative Address.

RAM Random-Access Memory. A memory that can
be

written to or read at random. The device is
usually

volatile, which means the data is lost without
power.

RC Resistance/Capacitance.

RD Read.

RES Reset.

ROM Read-Only Memory. Nonvolatile memory that
stores

permanent programs. ROM usually consists of
solid-state chips.

ROMCS ROM Chip Select.

RP Register Pointer.

RR Read Register or Rotate Right.

SCF Set C Flag.

Z180 C-Compiler
User Manual

UM004300-COR0200

143

SIO Serial Input/Output.

SL Shift Left or Special Lot.

SLL Shift Left Logical.

SMR Stop Mode Recovery.

SN Serial Number.

SOIC Small Outline IC.

SP Stack Pointer.

SPH Stack Pointer High.

SPI Serial Peripheral Interface.

SPL Stack Pointer Low.

SRAM Static Random Access Memory.

SR Shift Right.

SRA Shift Right Arithmetic.

SRC Source.

SSI Small Scale Integration. Chip that contains 5 to
50

gates or transistors.

Static Characteristic of Random Access Memory that
enables It to operate without clocking signals.

ST Status.

STKPTR Stack Pointer.

SUB Subtract.

SVGA Super Video Graphics Adapter.

S/W Software.

SWI Software Interrupt.

Symbol Definition Symbol defined when the symbol name is associ-
ated with a certain amount of memory space,
depending on the type of the symbol and the size of
Its dimension.

Symbol Reference Symbol referenced within a program flow, when-
ever It is accessed for a read, write, or execute
operation.

SYNC Synchronous Communication Protocol. An event or
device is synchronized with the CPU or other process
timing.

TC Time Constant.

TCM Trellis Coded Modulation.

TCR Timer Control Register.

TMR Timer Mode Register.

UART Universal Asynchronous Receiver Transmitter.
Component or functional block that handles asynchro-

Z180 C-Compiler
User Manual

UM004300-COR0200

145

nous communications. Converts the data from
the

parallel format in which it is stored, to the serial
format

for transmission.

UGE Unsigned Greater Than or Equal.

UGT Unsigned Greater Than.

ULE Unsigned Less Than or Equal.

ULT Unsigned Less Than.

USART Universal Synchronous/Asynchronous
Receiver/Transmitter. Can handle synchronous

as well
as asynchronous transmissions.

USB Universal Serial Bus.

USC Universal Serial Controller.

UTB Use Test Box. A board or system to test a partic-
ular

chip in an end-use application.

V Volt, Overflow Flag.

WDT Watch-Dog Timer. A timer that, when enabled
under

normal operating conditions, must be reset

Z180 C-Compiler
User Manual

UM004300-COR0200

146

within the
time period set within the application (WDTMR

(1,0)). If
the timer is not reset, a Power-on Reset occurs.

Some
earlier manuals refer to this timer as the

WDTMR.

WDTOUT Watch-Dog Timer Output.

Word Amount of data a processor can hold in its regis-
ters

and process at one time. A DSP word is often 16
bits.

Given the same clock rate, a 16-bit controller
processes four bytes in the same time it takes

an 8-bit
controller to process two.

WR Write.

WS Wafer Sort.

X Indexed Address, Undefined.

XOR Bitwise Exclusive OR.

XTAL Crystal.

Z Zero, Zero Flag.

Z180 C-Compiler
User Manual

UM004300-COR0200

147

ZASM ZiLOG Assembler. ZiLOG’s program develop-
ment

environment for DOS.

ZDS ZiLOG Developer Studio. ZiLOG’s program
develop-

ment environment for Windows 95/98/NT.

ZiLOG Symbol Format Three fields per symbol including a string
containing

the Symbol Name, a Symbol Attribute, and an
Absolute

Value in Hexadecimal.

ZLD ZiLOG Linkage Editor. Cross linkage editor for
ZiLOG’s

microcontrollers.

ZLIB ZiLOG Librarian. Librarian for creating library
files from

locatable object modules for the ZiLOG family of
microcontrollers.

ZMASM ZiLOG Macro Cross Assembler. ZiLOG’s
program

development environment for Windows 3.1.

ZOMF ZiLOG’s Object Module Format. The object
module

format used by the linkage editor.

Z180 C-Compiler
User Manual

UM004300-COR0200

148

Z180 C-Compiler
User Manual

UM004300-COR0200

149

Index

A–D

ASCII Character Set. 123
Assembly File

Generation. 36
Incorporating with C. 37

Assigning Types. 24
called function

special cases. 62
C-Compiler Optimizations Page15, 16
C-Compiler Preprocessor page . . . 17
Chip Data. 9
Common Object File Format. 45
Compiling and connecting. 20
Configuring 9
Configuring Optimization Levels. . 16
Create a project 8
Defining include files. 34
Development flow 2

E–I

far call. 63
Function Call

Procedures. 61
Function Calls 61
General configuration. 13
Include Directories. 19
Include Files 34
Initialization files 12
Insert Files. 12
Installation. 5, 7

Installing ZDS.5, 7

J–N

Library functions
_asm. 69
_di . 72
_setvector function 92
abs . 67
acos . 68
asin. 68
atan, atan2. 69
atof, atoi, atol 70
ceil . 71
cos, cosh. 72
div function. 72
exp. 73
fabs . 73
floor . 74
frexp. 76
is . 77
is functions. 77
labs. 78
ldexp 79
ldiv . 80
log, log10 81
memchr function. 81
memcmp. 82
memcpy 82
memmove. 83
memset. 84

Z180 C-Compiler
User Manual

UM004300-COR0200

150

modf . 84
pow. 85
rand. 85
sin, sinh. 86
sprintf 86
sqrt . 91
srand function 92
sscanf 92
strcat . 98
strchr. 98
strcmp 99
strcpy. 100
strcspn. 100
strlen function 101
strncat 102
strncmp 103
strncpy. 104
strpbrk. 104
strrchr function. 105
strspn. 106
strstr 106
strtod, strtol, strtoul. 108
strtok. 107
tan, tanh. 110
tolower, toupper. 111
va_arg, va_end, va_start 112
vsprintf 114

Linker
Debugging support. 42
Default 46
Purpose 41

Linker Command
ASSIGN 50
BANK 50

BANKAREA 50
BANKVECTOR 51
COPY. 52
DEFINE 53
ORDER 54
RANGE 54

Linker Command Line.54
Options. 57
Specifications 55

Manual Configuration13
Manually Configuring the Compiler. .
10, 12
Memory Extensions

Default 25
Minimum Requirements.3
New Project9

O–T

Object Sizes36
Overlay. .63
Pointers .25
Predefined Names.34
Preprocessor Symbols17
requirements.3
Section Names36
size. .25
Technical support21
Types .24

U–Z

Uninstalling21
Using the Wizard.9
Warning Messages34
XDATA memory layout25, 48

	Introduction
	ZDS Environment
	Run-time model
	Minimum Requirements
	Installing the Z180 C-compiler
	Registry Keys
	Installing ZDS
	Sample Session
	Create a project and Select a Processor
	Configuring the Compiler using the Wizard
	Adding included files
	Configuring the Compiler
	Configure Settings
	Compiling and connecting to the emulator
	Connect to the emulator
	Contacting ZiLOG Customer support

	C-Compiler Overview
	Language Extensions
	Assigning Types
	Default Memory Qualifiers
	Pointers
	I/O Address sPace
	Accessing I/O Address Space
	Interrupt Functions
	Using the DOS Command Line
	Command line format
	Command line switches
	Command Line Examples
	Optimization Levels
	Debugging Code after Optimization
	Level 2 Optimizations
	Level 3 Optimizations
	Level 4 Optimizations
	Understanding errors
	Enabling Warning Messages
	Included Files
	Predefined Names
	Generated Assembly File
	Object Sizes
	Section Names
	Incorporating Assembly with C
	Incorporating C with assembly

	Linking Files
	Introduction
	What the Linker Does
	Using the Linker with the C-compiler
	Run Time Initialization File
	Installed files
	Invoking the Linker
	Using the Linker in ZDS
	Using the linker with the command line
	Linker symbols
	Linker Command File
	Linker Command Line
	Command Line Specifications
	Linker Command Line Options
	Symbol File In Zilog Symbol Format
	Using the Librarian
	Command Line Options

	Run Time Environment
	Function Calls
	Function Call Steps
	Special cases for a called function
	Overlay Support
	Enabling Overlays
	Using the Run-Time Library
	Installed files
	Library Functions
	abs function
	acos Function
	asin Function
	atan, atan2 Function
	_asm function
	atof, atoi, atol functions
	ceil Function
	cos, cosh Function
	div function
	exp Function
	fabs Function
	floor Function
	fmod Function
	frexp Function
	labs function
	ldexp Function
	ldiv Function
	log, log10 Function
	memchr function
	memcmp function
	memcpy function
	memmove function
	memset function
	modf Function
	pow Function
	rand function
	sin, sinh Function
	sprintf Function
	sqrt FUNCTION
	srand function
	sscanf Function
	strcat function
	strchr function
	strcmp function
	strcpy function
	strcspn function
	strlen function
	strncat function
	strncmp function
	strncpy function
	strrchr function
	strspn function
	strstr function
	strtok function
	strtod, strtol, strtoul functions
	tan, tanh Function
	tolower, toupper functions
	va_arg, va_end, va_start functions
	vsprintf Function

	Initialization and Link Files
	Initialization File
	Link file
	MMU file

	ASCII Character Set
	Problem/Suggestion Report Form
	Glossary
	Index

